
Object-Oriented Programming, Iouliia Skliarova

Operator definition is just like an ordinary function definition except that
the name of the function consists of the keyword operator followed by
the operator.

There are certain operators in the available set that cannot be overloaded.
The general reason for the restriction is safety.

There are no user-defined operators. That is, you can’t make up new
operators that aren’t currently in the set. Part of the problem is how to
determine precedence, and part of the problem is an insufficient need to
account for the necessary trouble.

Operator overloading is just “syntactic sugar,” which means it is simply
another way for you to make a function call.

class CDate
{
 unsigned m_Year;
 short int m_Month;
 short int m_Day;

public:
 CDate(); //initialize with the today’s date
 CDate(short int d, short int m, unsigned y);
 ~CDate();
};

int main()
{
 CDate today;
 CDate new_year = CDate(1, 1, 2015);

 return 0;
}

How to calculate
the difference (in
days) between two
dates?

class CDate
{
 // ...
public:
 //...

 int Difference (const CDate& d) const;
 friend int Difference(const CDate& d1, const CDate& d2);
};

int main()
{
 CDate today;
 CDate new_year = CDate(1, 1, 2015);

 int how_many = new_year.Difference(today);
 how_many = Difference(new_year, today);
 return 0;
}

class CDate
{
 // ...
public:
 //...
 int operator- (const CDate& d) const;
};

int main()
{
 CDate today;
 CDate new_year = CDate(1, 1, 2015);

 int how_many = new_year - today;

 return 0;
}

int Difference (const CDate& d) const;

int how_many = new_year.Difference(today);

To overload the operator + so as to be able to add two objects of type X:

return X (a + xr.a);

class X //class definition
{ int a;
public:
 X(int aa) {a=aa;}
 // operator + overloading
 const X operator+(const X&)const;
};

const X X::operator+(const X& xr) const
{
 X tmp(this->a);

 tmp.a += xr.a;
 return tmp;
 }

The overloaded operator can be called in two different manners:

x1 = x1 + x2 + x3;
x1 = x1.operator+(x2).operator+(x3);

Unary and assignment operators are executed starting from the right-hand side of
an expression.

The remaining operators are executed starting from the left-hand side.

X x1(1), x2(2), x3(3);
x1 = x2 + x3; //implicit call
x1 = x2.operator+(x3); //explicit call

Not all the operators can be overloaded.

The operators that cannot be overloaded in C++ are:

+ - * / % ^ &
| ~ ! = < > +=
-= *= /= %= ^= &= |=
<< >> >>= <<= == != <=
>= && || ++ -- ->* ,
-> [] () new new[] delete delete[]

.* :: . ?: sizeof typeid

The operators that can be overloaded in C++ are the following:

You cannot change the evaluation precedence of operators (only with
parentheses).

You cannot change the number of arguments required by an operator. Unary
operators require one operand and binary operators require two operands. The
operators & , * , + , -, ~, ! exist in both versions: unary and binary, each of which
can be overloaded separately.

You cannot create new operators.

A = B + C*D;

1 2 3

A = (B + C)*D;

2 1 3

A = B ++C;

 A= B** C;

Suppose that new operators would be allowed and we created the operator <- .

Example:

Then, in the following expression:

a<--b

the compiler does not know how to interpret the expression:

a<-(-b) a<(--b) or

A programmer cannot overload the operator + to add two integers but it is
possible to overload the operator + to add two objects of a user-defined
class X.

Only an expression containing a user-defined type can have an overloaded
operator.

At least one of the operands must be either an object of a class or a reference to
an objects of a class. It is not possible to overload an operator which works
exclusively with pointers.

Example:

Overloading a certain operator does not imply authomatic overloading of the
related operators, i.e. the operators can only be overloaded explicitly, never
implicitly.

Example:

If the class X has two operators overloaded: + and = then it is possible to apply
the following expression to the objects x1 and x2 of type X:

 x1 = x1 + x2; // Ok

In meantime, the operator += may not be applied:

 x1 += x2; // Error

To make the previous code compile, an explicit overloading of the operator +=
is required.

class X
{ int a;
public:
 X(int aa) {a=aa;}
 const X operator+(const X&) const;
 friend const X operator+(const X& xl, const X& xr);
};

const X X::operator+(const X& xr) const
{ return X(a + xr.a); }

OR

const X operator+ (const X& xl, const X& xr)
{ return X(xl.a + xr.a); }

A binary operator can be overloaded as either a member-function with one
argument or a global function with two arguments.

class X
{ int a;
public:
 X(int aa) {a=aa;}
 const X operator-() const;
 friend const X operator-(const X& xr);
};

const X X::operator- () const
{ return X(-a); }

const X operator-(const X& xr)
{ return X(-xr.a); }

A unary operator can be overloaded as either a member-function with no
arguments or a global function with one argument.

OR

class X {
//...
public:
 const X operator+(const X&)
 const;
//...

X x1(1) ,x2(2), x3(3);
// or x1 = x2.operator+(x3);
x1 = x2 + x3;

The 1st argument is
passed implicitly through
this pointer.

1st argument 2nd argument

class X {
//...
public:
 friend const X operator+
 (const X&, const X&);
//...

X x1(1) ,x2(2), x3(3);
// or x1 = operator+(x2, x3);
x1 = x2 + x3;

The 1st argument is
passed explicitly.

1st argument 2nd argument

CVector& CVector::operator=(const CVector& rv)
{ if (this != &rv)
 { delete [] m_arElements;
 m_nElements = rv.m_nElements;
 m_arElements = new int[m_nElements];
 memcpy(m_arElements, rv.m_arElements,
 sizeof (int) * m_nElements);
 }
 return *this;
}

class CVector
{ unsigned m_nElements;
 int* m_arElements;
public:
 CVector& operator=(const CVector& rv);
 CVector(unsigned el) ;
 virtual ~CVector();
};

int main ()
{
 CVector v1 (5);
 v1 = v1;

 return 0;
}

All of the assignment
operators must include
code to check for
self-assignment !!!

CVector::CVector(const CVector& rv)
{
 m_nElements = rv.m_nElements;
 m_arElements = new int[m_nElements];
 memcpy(m_arElements, rv.m_arElements,
 sizeof (int) * m_nElements);
} CVector v1(3);

CVector v2 = v1;
CVector v3;
v3 = v1;

Copy-
constructor

operator =

CVector& CVector::operator=(const CVector& rv)
{ if (this != &rv)
 { delete [] m_arElements;
 m_nElements = rv.m_nElements;
 m_arElements = new int[m_nElements];
 memcpy(m_arElements, rv.m_arElements,
 sizeof (int) * m_nElements);
 }
 return *this;
}

class CSetInt
{ //…
public:
 CSetInt& operator+= (const CSetInt& rv);
 const CSetInt operator+ (const CSetInt& rv) const
 { CSetInt aux(/*..*/); /*…*/ return aux; }
 CSetInt& operator= (const CSetInt& right);
 //…
};

CSetInt function (CSetInt& my_set)
{
 CSetInt my_set1 = my_set; //1
 CSetInt my_set2 = my_set1; //2
 my_set1 = my_set; //3
 my_set2 += my_set; //4
 my_set2 = my_set + my_set1; //5
 return my_set2; //6
}

Example: identify lines where the copy-constructor and operator = are called

The operator = , when overloaded, must be declared as a class member!

It is not possible to overload the global operator = !

Do not forget to check for self-assignment.

Before starting to reserve memory for the object member, first release all the
memory which was reserved before!

Because assigning an object to another object of the same type is an activity
most people expect to be possible, the compiler will automatically create a
type::operator=(type) if you don’t make one.

The synthesized operator = will perform bitwise copy of data members (and
will call recursively the operator = for all the subobjects).
⇒ The synthesized operator = is not suitable for complex objects (which
reserve memory dynamically).

⇒ The operator = is not inherited by the derived classes.

For complex classes always define yourself the operator =, as well as
the copy-constructor and the destructor.

class CVector
{ unsigned m_nElements;
 int* m_arElements;
public:
 int& operator[](unsigned pos);

 // …
};

int& CVector::operator[](unsigned pos)
{
 //check the pos
 return m_arElements[pos];
}

int main ()
{
 CVector v (5);
 v [3]= 3;
 int k = v[2];

 return 0;
}

The overloaded operador [] must be a class member!

The number of arguments in an overaloaded operator is:

 0 – unary/member;
 1 – unary/global or binary/member;
 2 – binary/global.

As with any function argument, if you only need to read from the argument and not
change it, default to passing it as a const reference:

... operator + (const type& r);

Only with the operator-assignments (like +=) and the operator=, which change the
left-hand argument, is the left argument not a constant, but it’s still passed in as an
address because it will be changed.

The type of return value you should select depends on the expected meaning of the
operator!

To allow the result of the assignment to be used in chained expressions, like a=b=c,
it’s expected that you will return a reference to that same lvalue that was just
modified. The assignment operators usually return non-const references:

type& operator = (const type& r);

Logical operators usually return bool values:

bool operator >= (const type& r);

If the effect of the operator is to produce a new value, you will need to generate a
new object as the return value. This object is returned by value as a const, so the
result cannot be modified as an lvalue:

const type operator - (const type& r);

When the left-hand operand is a class object, the operator can be defined as a class
member function.

X p(5);

cout << p << endl;

When the left-hand operand is not a class object, the operator has to be defined as a
global function.

friend ostream& operator << (ostream& os, const type& r);

friend std::ostream& operator << (std::ostream& os, const X& x);
friend std::istream& operator >> (std::istream& is, X& x);

ostream& operator << (ostream& os, const X& x)
{
 return os << x.a;
}

istream& operator >> (istream& is, X& x)
{
 return is >> x.a;
}

Operator Recommended use
All unary operators member

= () [] -> ->* must be member
Assignment operators (excepting =):
+= –= /= *= ^= &= |= %= >>= <<=

member

All other binary operators non-member

Bruce Eckel, Thinking in C++, 2nd edition, MindView, Inc., 2003

=> Chapter 12

http://mindview.net/Books/TICPP/ThinkingInCPP2e.html

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26

