
Object-Oriented Programming, Iouliia Skliarova

class base
{ char* name;
 void copy(char* str);
public:
 base(char* str = 0);
 base (const base& r);
 virtual ~base();
};

void base::copy(char* str)
{ if (str)
 {
 name = new char [strlen(str)+1];
 strcpy_s (name, strlen(str)+1 , str);
 }
 else
 name = 0;
}

base::base(char* str)
{ copy (str); }

base::base(const base& r)
{ copy (r.name); }

base::~base()
{ delete [] name; }

class derived : public base
{ int index;
public:
 derived(char* s = 0, int i = 0);
 derived (const derived& r);
 ~derived() {};
};

derived::derived (char* s, int i)
 : base (s)
{ index = i; }

derived::derived (const derived& r)
 : base(r)
{ index = r.index; }

Remember to properly call
(in the constructor initializer
list) the base-class copy-
constructor whenever you
write your own copy-
constructor!
If you forget, then the default
constructor will automatically
be called for the base-class!

class A
{ char* name;
public:
 A(char* str = 0);
 A (const A& r);
 virtual ~A();
};

class B
{
 A object;
public:
 B (char* str);
 B (const B& r);
};

Class B includes an object of
type A.

When implementing the copy-constructor of the class B remember to properly
call (in the constructor initializer list) the copy-constructor of the class A!
If you forget, then the default constructor of the class A will automatically be
called!

B::B (const B& r) : object(r.object) {}

If you do not implement the copy-constructor in the derived class, the compiler
then synthesizes the copy-constructor (since that is one of the four functions it will
synthesize, along with the default constructor – if you don’t create any constructors
– and the destructor) by calling the base-class copy-constructor, copy-constructors
for subobjects and making a bitwise copy of the remaining data members.

 static variables and objects

 static members (data and functions)

 visibility control

There is a single piece of storage for a static data member, regardless of
how many objects of that class you create. All objects share the same static
storage space for that data member.

Access control functions in the same way as for non-static data members.

The static data members can be accessed:
1) as non-static data members;
2) using their complete name, including the scope resolution operator :: and

the class name, for example:

obj.static_var
pobj->static_var
my_class::static_var

Because static data has a single piece of storage regardless of how many objects
are created, that storage must be defined in a single place.

The linker will report an error if a static data member is declared but not defined.

The definition must occur outside the class (no inlining is allowed), and only one
definition is allowed. Thus, it is common to put it in the implementation file (*.cpp)
for the class.

class my_class
{
 static int s_n;
 //…
};

int my_class::s_n = 10;

The type has to be repeated in
the my_class.cpp file!

class CStatic
{
public:
 static int s_nInstances;
 CStatic();
 virtual ~CStatic();
};

int CStatic::s_nInstances = 0;

CStatic::CStatic()
{ s_nInstances++; }
CStatic::~CStatic()
{ s_nInstances--; }

void main()
{
 {
 cout << CStatic::s_nInstances << endl;
 CStatic s1, s2;
 cout << CStatic::s_nInstances << endl;
 CStatic s3 = s2;
 cout << s2.s_nInstances << endl;
 }
 cout << CStatic::s_nInstances << endl;
}

A static data member can be const.

There will be a single piece of storage for a static const data member, to be
shared by all the class instances, and that piece of storage, once initialized,
cannot be modified.

class my_class
{
 static int const A;
 static const int B;
public:
 //...
};

int const my_classe::A = 1;
const int my_classe::B = 2;

Bruce Eckel, Thinking in C++, 2nd edition, MindView, Inc., 2003

=> Chapters 10, 14

http://mindview.net/Books/TICPP/ThinkingInCPP2e.html

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

