
Object-Oriented Programming, Iouliia Skliarova

You reuse code by creating new classes, but instead of creating them from
scratch, you use existing classes that someone else has built and debugged.
In composition the new class is composed of objects of existing classes.

Vehicle Engine

class Engine
{
 // definition of the engine
};

class Vehicle
{
 Engine engine;
 // definition of the vehicle
};

The Vehicle class
only has access to
the public members
of Engine.

Composition is often
referred to as a “has-a”
relationship, as in “a
car has an engine.”

Inheritance permits new classes to be derived from the existing classes,
reusing their interface and adding new functionality.

Base class

(superclass)

Derived class
(subclass)

Shape

Circle Rectangle Triangle

Square

“is-a“ relationship, because
you can say “a triangle is a
(specific) shape.”

class Shape
{ //definition of the class
};

class Triangle : public Shape
{ //definition of the class
};

When you inherit from an existing type, you create a new type.

The new class has all the members of the old class (although the private ones
are hidden away and inaccessible), and has the same interface.

All the messages you can send to objects of the base class you can also send
to objects of the derived class.

You have two ways to differentiate your new derived class from the original
base class:
1. Add brand new functions to the derived class.
2. Change the behaviour of an existing base-class function. This is referred to

as overriding that function.

class X
{ int i;
public:
 X() { i = 0; }

 void set(int ii)
 { i = ii; }

 int read() const
 { return i; }
};

class Y : public X
{
 int i;
public:
 Y() { i = 0; }

 void set(int ii)
 {
 i = ii;
 X::set(ii);
 }
};

int main()
{ cout << "sizeof(X) = " << sizeof(X) << endl;
 cout << "sizeof(Y) = " << sizeof Y << endl;

 Y D;

 D.read();

 D.set(12);
}

overriding

The constructor initializer list occurs only in the definition of the constructor and is
a list of “constructor calls” that occur after the function argument list and a colon,
but before the opening brace of the constructor body.

This is to remind you that the initialization in the list occurs before any of the main
constructor code is executed.

When an object is created, the compiler guarantees that constructors for all of its
subobjects are called.

class A
{
public:
 A () { b = CBook (“Test”, 2010); }
private:
 CBook b;
 int n;
};

The constructor initializer list is empty =>
1) A default CBook constructor will be called to initialize the subobject b;
2) A temporary object will be constructed with the call of CBook (“Test”, 2010);
3) The operator = will assign the temporary object to b;
4) The temporary object will be destroyed.

A () : b (“Test”, 2010), n (10) { };

Here, the object b is initialized with just one constructor call!

If you do not call the pseudo-constructor explicitly, no initialization will be
done.

class A
{
public:
 A () : b (“Test”, 2010), n (10) { };
private:
 CBook b;
 int n;
};

Pseudo-constructor

int i (3);
int* ip = new int (12);

The constructor initializer list should contain a call to the base-class
constructor.

class CPerson
{
 std::string m_sName;
 unsigned m_uAge;
public:
 CPerson(std::string name, unsigned age);
};

class CStudent : public CPerson
{ int m_iMecNum;
public:
 CStudent(std::string name, unsigned age, int num)
 : CPerson (name, age) { m_iMecNum = num; };
};

Construction starts at the very root of the class hierarchy, and at each level
the base class constructor is called first, followed by the member object
constructors.

CStudent ("Ana Lopes", 23, 12345);

1. Constructor of CPerson
2. Constructor of CStudent

The destructors are called in exactly the reverse order.

1. Destructor of CStudent
2. Destructor of CPerson

Anytime you redefine an overloaded function name from the base class, all the
other versions are automatically hidden in the new class.

class Base
{
public:
 int f();
 int f(int flag);
};

class Derived1 : public Base
{
};

class Derived2 : public Base
{
public:
 int f();
};

int main()
{
 Derived1 d1;

 d1.f();
 d1.f(0);

 Derived2 d2;
 d2.f();
 // d2.f(0); error
}

Not all functions are automatically inherited from the base class into the derived
class. Functions that don’t automatically inherit:

1. Constructors
2. Destructors
3. Operator =

If the derived class does not have any constructor, the compiler will synthesize
the default constructor.

The synthesized constructor will call the default constructor of the base class.

If the derived class does not have the destructor, the compiler will synthesize
one.

Taking the address of an object (either a pointer or a reference) and treating it as
the address of the base type is called upcasting because of the way inheritance
trees are drawn with the base class at the top.

CPerson

CStudent CProfessor

upcasting

Example:

CStudent s;
CProfessor p;
CPerson* ps = &s;
CPerson& rp = p;

The base class can be declared as either private, protected or public, for example:

 class DERIVED_PUBLIC : public BASE {};
 class DERIVED_PROTECTED : protected BASE {};
 class DERIVED_PRIVATE : private BASE {};

When you’re inheriting, the base class defaults to private.

The access specifier controls:
1) access to the members of the base class;
2) pointer and reference upcasting.

In public inheritance:
- public members of the base class remain public members in the derived
class;
- protected members of the base class remain protected members in the
derived class;
- private members of the base class are inaccessible in the derived class.

If a class B is the public base of the class D, then public members of B can be
used by anyone and protected members of B can be used by members and
friends of D.

Anyone can upcast D* to B*.

class c1
{ public:
 int pub_1;
protected:
 int prot_1;
private:
 int priv_1;
};

class c2 : public c1
{ public:
 int pub_2;
 c2() { pub_1; prot_1; priv_1; }
protected:
 int prot_2;
private:
 int priv_2;
};

c1 a; a.pub_1; a.prot_1; a.priv_1;
c2 b; b.pub_1; b.pub_2; b.prot_2; b.priv_2;
c1* p = new c2;

If a class B is the protected base of the class D, then public and protected
members of B can only be used by members and friends of D.

Only members of D can upcast D* to B*.

In protected inheritance:
- public members of the base class transform into protected members in the
derived class;
- protected members of the base class remain protected members in the
derived class;
- private members of the base class are inaccessible in the derived class.

class c1
{ public:
 int pub_1;
protected:
 int prot_1;
private:
 int priv_1;
};

class c2 : protected c1
{ public:
 int pub_2;
 c2() { pub_1; prot_1; priv_1;
 c1* p = new c2; }
protected:
 int prot_2;
private:
 int priv_2; };

c1 a; a.pub_1; a.prot_1; a.priv_1;
c2 b; b.pub_1; b.pub_2; b.prot_2; b.priv_2;
c1* p = new c2;

If a class B is the private base of the class D, then public and protected members
of B can only be used by members and friends of D.

Only members of D can upcast D* to B*.

In private inheritance:
- public and protected members of the base class transform into private
members in the derived class;
- private members of the base class are inaccessible in the derived class.

class c1
{ public:
 int pub_1;
protected:
 int prot_1;
private:
 int priv_1;
};

class c2 : private c1
{ public:
 int pub_2;
 c2() { pub_1; prot_1; priv_1;
 c1* p = new c2; }
protected:
 int prot_2;
private:
 int priv_2; };

c1 a; a.pub_1; a.prot_1; a.priv_1;
c2 b; b.pub_1; b.pub_2; b.prot_2; b.priv_2;
c1* p = new c2;

Normally, you’ll make the inheritance public so the interface of the base class is
also the interface of the derived class. Public derivation means “is-a” for derived
classes and friends. (list ↔ sorted list)

When you inherit privately, you’re “implementing in terms of;” that is, you’re
creating a new class that has all of the data and functionality of the base class,
but that functionality is hidden, so it’s only part of the underlying implementation.
The class user has no access to the underlying functionality, and an object
cannot be treated as a instance of the base class. (list ↔ stack)

Protected derivation means “implemented-in-terms-of” to other classes but “is-
a” for derived classes and friends. It’s something you don’t use very often, but
it’s in the language for completeness.

class CPerson
{
 public:
 void print () const
 {
 cout << “I am a person!" << endl;
 }
};

class CStudent : public CPerson
{
 public:
 void print () const
 {
 cout << “I am a student!" << endl;
 }
};

int main (int argc, char* argv[])
{
 CStudent s1;
 CPerson& r = s1;
 r.print();

 return 0;
}

I am a person! ?
early late

Connecting a function call
to a function body is
called binding.

(before the
program is run)

(at runtime)

To cause late binding to occur for a particular function, C++ requires that you use
the virtual keyword when declaring the function in the base class.

Late binding occurs only with virtual functions, and only when you’re using an
address of the base class where those virtual functions exist.

class CPerson
{
 public:
 virtual void print () const;

};

person.h
void CPerson::print() const
{
 cout << “I am a person!" << endl;
};

person.cpp

If a function is declared as virtual in the base class, it is virtual in all the derived
classes. The redefinition of a virtual function in a derived class is usually called
overriding.

class CPerson
{
 public:
 virtual void print () const;

};

person.h
class CStudent : public CPerson
{
 public:
 void print () const;

};

student.h

void CStudent::print() const
{
 cout << “I am a student!" << endl;
};

student.cpp
void CPerson::print() const
{
 cout << “I am a person!" << endl;
};

person.cpp

int main (int argc, char* argv[])
{
 CStudent a1;
 CPerson& r = s1;
 r.print();

 return 0;
}

I am a student!

With print() defined as virtual in the base class, you can add as many new types as
you want without changing the code that calls print() for objects of different types.

class CPostGradStudent : public CStudent
{
 public:
 void print () const;

};

post_gr.h
void CPostGradStudent::print() const
{
 cout << “I am a postgraduate"
 “ student!" << endl;
};

post_gr.cpp

int main (int argc, char* argv[])
{
 CPostGradStudent a2;
 CPerson& r = a2;
 r.print();
 return 0;
}

I am a postgraduate student!

Such a program is extensible because you can add new functionality by inheriting
new data types from the common base class.

The functions that manipulate the base class interface will not need to be changed
at all to accommodate the new classes.

class CPostGradStudent : public CStudent
{
 public:
 void print () const;

};

post_gr.h
void CPostGradStudent::print() const
{
 cout << " I am a postgraduate "
 “student!" << endl;
};

post_gr.cpp

int main (int argc, char* argv[])
{
 CPhDStudent s3;
 CPerson& r = s3;
 r.print();

 return 0;
}

I am a postgraduate student!

class CPhDStudent : public CPostGradStudent
{

};

PhD_student.h

CPerson

CStudent

CPostGradStudent

CPhDStudent

The keyword virtual tells the compiler it should not perform early binding.

The typical compiler creates a single table (called the VTABLE) for each class
that contains virtual functions.

The compiler places the addresses of the virtual functions for that particular class
in the VTABLE.

In each class with virtual functions, it secretly places a pointer, called the
vpointer (abbreviated as VPTR), which points to the VTABLE for that object.

When you make a virtual function call through a base-class pointer (that is, when
you make a polymorphic call), the compiler quietly inserts code to fetch the
VPTR and look up the function address in the VTABLE, thus calling the correct
function and causing late binding to take place.

class NoVirtual
{
 int a;
public:
 void x() {}
 int i() { return 1; }
};

class OneVirtual
{
 int a;
public:
 virtual void x() {}
 int i() { return 1; }
};

class TwoVirtuals
{
 int a;
public:
 virtual void x() {}
 virtual int i() { return 1; }
};

int main()
{
 cout << "int: " << sizeof(int) << endl;
 cout << "NoVirtual: " << sizeof(NoVirtual) << endl;
 cout << "void* : " << sizeof(void*) << endl;
 cout << "OneVirtual: " << sizeof(OneVirtual) << endl;
 cout << "TwoVirtuals: " << sizeof(TwoVirtuals) << endl;

 return 0;
}

int: 4
NoVirtual: 4
void*: 4
OneVirtual: 8
TwoVirtuals: 8

CPerson* A [] = { new CPerson, new CStudent, new CPostGradStudent,
 new CPhDStudent };

Array of
pointers to
persons:

CPerson
 vptr

Objects:

CStudent
 vptr

CPostGradStudent
 vptr

CPhDStudent
 vptr

VTABLES:

&CPerson::print

&CStudent::print

&CPostGradStudent::print

&CPostGradStudent::print

class CPerson
{
 public:
 virtual void print () const
 {
 cout << “I am a person!" << endl;
 }
 virtual void print_me() const;
 virtual ~CPerson();
};

class CStudent : public CPerson
{
 public:
 void print () const
 {
 cout << “I am a student!" << endl;
 }
 void print_me() const;
 ~CStudent();
};

pointer to a
person: VTABLE: Object:

CStudent
 vptr

&CStudent :: print [0]

&CStudent :: print_me [1]

&CStudent :: ~CStudent [2]

mov ecx,dword ptr [ebp-14h]
call @ILT+160(CPessoa::print_me) (004010a5)

no virtual:
call the function CPerson::print_me

CStudent s; CPerson& pr = s; pr.print_me();

virtual:
call the function at the address VPTR[1]

mov ecx,dword ptr [ebp-14h]
mov edx,dword ptr [ecx]
mov esi,esp
mov ecx,dword ptr [ebp-14h]
call dword ptr [edx+4]
cmp esi,esp
call __chkesp (004038d0)

The vpointer is inicialized to the proper VTABLE in the constructor.

Upcasting deals only with addresses. If the compiler has an object, it knows the
exact type and therefore will not use late binding for any function calls.

int main()
{
 CStudent s;
 s.print();

 CPerson& pr = s;
 pr.print();

 CPerson* pp = &s;
 pp.print();

 return 0;
}

static binding

dynamic binding

dynamic binding

Overhead

class B
{ int* a;
public:
 B() { a = new int[2];
 cout << "constr_B\n"; }
 ~B(){ delete[] a;
 cout << "destr_B\n"; }
};

class D : public B
{ int* b;
public:
 D() { b = new int[4];
 cout << "constr_D\n"; }
 ~D(){ delete[] b;
 cout << "destr_D\n"; }
};

int main(int argc, char* argv[])
{ B* pb = new D;
 delete pb;
 return 0; }

constr_B
constr_D
destr_B

The results:

constr_B
constr_D
destr_B

memory
a = new int[2];

b = new int[4];

delete[] a;

Firstly, the constructor for the base class is executed,
and only after that the derived class constructor is
run.

The destructors are executed in the reverse order.

We have a problem with the destructor calls.

The problem is resolved with virtual destructors.

class B
{ int* a;
public:
 B() { a = new int[2];
 cout << "constr_B\n"; }
 virtual ~B(){ delete[] a;
 cout << "destr_B\n"; }
};

class D : public B
{ int* b;
public:
 D() { b = new int[4];
 cout << "constr_D\n"; }
 virtual ~D(){ delete[] b;
 cout << "destr_D\n"; }
};

constr_B
constr_D
destr_D
destr_B

The results:

constr_B
constr_D
destr_D
destr_B

a = new int[2];
memory

b = new int[4];

delete[] a;

delete[] b;

It is possible for the destructor to be virtual
because the object already knows what type it is
(whereas it doesn’t during construction). Once
an object has been constructed, its VPTR is
initialized, so virtual function calls can take
place.

Forgetting to make a destructor virtual is an
insidious bug because it often doesn’t directly
affect the behavior of your program, but it can
quietly introduce a memory leak.

Constructors cannot be virtual.

Destructors can and often must be virtual.

If you’re inside an ordinary member function and you call a virtual function, that
function is called using the late-binding mechanism.

Inside a constructor or a destructor, only the “local” version of the member
function is called; the virtual mechanism is ignored.

The reason is that you’d be calling a function that might manipulate members
that hadn’t been initialized yet or had already been destroyed!

Bruce Eckel, Thinking in C++, 2nd edition, MindView, Inc., 2003

=> Chapters 14, 15

http://mindview.net/Books/TICPP/ThinkingInCPP2e.html

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38

