
Object-Oriented Programming, Iouliia Skliarova

In a declaration, T& means reference to an object of type T.

 int a = 47;
 int* pa = &a; int& ra = a;
 *pa = 10; ra = 13;
 int& test; //error

A reference (&) is like a constant pointer that is automatically dereferenced.

There are certain rules when using references:
1. A reference must be initialized when it is created (pointers can be initialized at
any time).
2. Once a reference is initialized to an object, it cannot be changed to refer to
another object (pointers can be pointed to another object at any time).
3. You cannot have NULL references. You must always be able to assume that
a reference is connected to a legitimate piece of storage.

void main(void)
{ int i=3;
 int& j=i;
 j=2;
}

A reference is an implicit pointer.

void main(void)
{ int i=3;
 int* j=&i;
 *j=2;
}

This is an explicit pointer.

004113BE mov dword ptr [i],3

004113C5 lea eax,[i]
004113C8 mov dword ptr [j],eax

004113CB mov eax,dword ptr [j]
004113CE mov dword ptr [eax],2

lvalue – variable on the left-hand side in an assignment operator.

rvalue – constant, variable or expression appearing on the right-hand side in an
assignment operator.

Array identifier is not an lvalue; you cannot assign to it.

int main()
{
 int a[3] = { 0, 1, 2 };
 a = { 1, 2, 3 }; // error
}

Reference is an address and can therefore be used as lvalue.

A reference can be returned from a function.

int F(int& i) { return i; }

int& RF(int& j) { return j; }

void main(void)
{
 int x=3;
 F(x) = 6; // error
 RF(x) = 6; // Ok
}

In this case the function can be used as lvalue.

int* f (int* x)
{
 (*x)++;
 return x;
}

int& g (int& x)
{ x++;
 return x;
}

int main()
{
 int a = 0;
 f(&a);
 g(a);
}

References are frequently used in function
argument lists.

When a reference is used as a function argument,
any modification to the reference inside the
function will cause changes to the argument
outside the function.

If you return a reference from a function, you must
take the same care as if you return a pointer from
a function. Whatever the reference is connected to
shouldn’t go away when the function returns,
otherwise you’ll be referring to unknown memory.

The use of const references in function arguments is especially important because
your function may receive a temporary object. This might have been created as a
return value of another function or explicitly by the user of your function. Temporary
objects are always const, so if you don’t use a const reference, that argument
won’t be accepted by the compiler.

 void f (int&) {}

 void g (const int&) {}

 void p (int*) {}

 int main()
 {
 // f (1);
 g (1);
 // p (1);
 }

Your normal habit when passing an argument to a function should be to pass by
const reference!

1) To pass an argument by value requires a constructor call, but if you’re not

going to modify the argument then passing by const reference only needs an
address pushed on the stack.

2) There is a guarantee that the function will not modify the object ⇒ service for
the class user.

3) The syntax of calling the function is identical to that pf pass-by-value ⇒
service for the class user.

4) It is possible to pass temporary objects.

class CBook
{
 char* m_sTitle;
 unsigned m_nYear;
public:
 CBook (char* title, unsigned year);
 virtual ~CBook();
}; CBook goodBook = CBook("C++", 2014);

CBook anotherBook = goodBook;

CBook::CBook(char* title, unsigned year)
{ if (title == 0) m_sTitle = 0;
 else
 { unsigned len = strlen(title) + 1;
 m_sTitle = new char [len];
 strcpy_s (m_sTitle, len, title);
 }
 m_nYear = year;
}
CBook::~CBook()
{ delete [] m_sTitle; }

When create a new object from an existing object, a special function is called –
the copy constructor.

New objects are created from the existing objects when:
- you pass an object by value (you create a new object, the passed object
inside the function frame, from an existing object, the original object outside the
function frame);
- you return an object from a function;
- you explicitly assign one object to a new object of the same type.

If you do not implement a copy constructor this will be synthesized by the
compiler.
The copy constructor synthesized by the compiler makes a simple bitcopy of the
excisting object.
However, a bitcopy not makes sense, because it doesn’t necessarily implement
the proper meaning.

CBook goodBook = CBook("C++", 2014);
CBook anotherBook = goodBook;

Object
goodBook

char* m_sTitle

memory memory

C
+
+
\0

unsigned m_nYear

Object
goodBook

char* m_sTitle

memory memory

C
+
+
\0

unsigned m_nYear

Object
anotherBook

char* m_sTitle
unsigned m_nYear

A problem appears when the objects
goodBook and anotherBook go out
of scope (and need to be destroyed)

The first object to be destroyed is
anotherBook. Its desctructor will be
called and will release storage
occuppied by the book’s title.

Afterwards the object goodBook will
be destroyed and its destructor will
try to release storage occuppied by
the book’s title, which has already
been released by anotherBook
destructor!

If your class uses dynamic memory allocation, you should always implement the
proper copy constructor!

CBook::CBook(const CBook& Book)
{
 if (Book.m_sTitle == 0)
 m_sTitle = 0;
 else
 {
 unsigned len = strlen(Book.m_sTitle) + 1;
 m_sTitle = new char [len];
 strcpy_s (m_sTitle, len, Book.m_sTitle);
 }
 m_nYear = Book.m_nYear;
}

A copy constructor always receives a const reference to an object of the same
class.

Object
goodBook

char* m_sTitle

memory memory

C
+
+
\0

unsigned m_nYear

Object
goodBook

char* m_sTitle

memory memory

C
+
+
\0

unsigned m_nYear

Object
anotherBook

char* m_sTitle
unsigned m_nYear

C
+
+
\0

CBook goodBook = CBook("C++", 2014);
CBook anotherBook = goodBook;

CBook::CBook(const CBook& Book)
{
 if (Book.m_sTitle == 0)
 m_sTitle = 0;
 else
 {
 unsigned len = strlen(Book.m_sTitle) + 1;
 m_sTitle = new char [len];
 strcpy_s (m_sTitle, len, Book.m_sTitle);
 }
 m_nYear = Book.m_nYear;
}

Each object is destroyed in a correct
manner!

Copy constructor is also called when you pass an object by value.

void compare (CBook a, CBook b)
{
 if (a.m_nYear() == b.m_nYear() &&
 (strcmp(a.m_sTitle(), b.m_sTitle()) == 0))
 cout << " equal" << endl;
 else
 cout << "not equal" << endl;
}

The function compare receives as arguments two objects a and b by value.
These objects will be created on the function’s stack. When the function terminate,
all local objects have to be destroyed from the stack. If the copy constructor is not
implemented, than the same problem as before will appear.

int main(int argc, char* argv[])
{
 CBook Book1 = CBook("C++", 2014);
 CBook Book2 = Book1;
 CBook Book3 = CBook("Java", 2015);

 compare(Book1, Book2);
 compare(Book1, Book3);
 return 0;
}

- construction of a new object from the existing object:

A copy constructor is called upon:

- pass-by-value:

type new_item = type (old_item);

- return-by-value:

void function (type);

type function ();

const type type::f ()
{
 return type(/*arguments*/);
}

const type type::f ()
{
 type tmp (/*arguments*/);
 return tmp;
}

1. Constructor for tmp
2. Copy constructor
3. Destructor of tmp

1. Constructor

Bruce Eckel, Thinking in C++, 2nd edition, MindView, Inc., 2003

=> Chapter 11

http://mindview.net/Books/TICPP/ThinkingInCPP2e.html

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

