
Object-Oriented Programming, Iouliia Skliarova

CBook a = CBook("C++", 2014);
CBook b = CBook("Physics", 1960);

a.Display();
b.Display();

void CBook::Display()
{
 cout << "Title: " << m_sTitle <<
 " year: " << m_nYear << endl;
}

How does the first call to the function know that the title and year for the object
a are to be displayed and the second call to the function know that the title and
year for the object b are to be shown?

Each object has a pointer that identifies that object.

When an object is created, the compiler
allocates storage for it and calls the constructor.

The allocated storage has an extra field which
holds the address of the area reserved for the
object. The value stored in this field can be
accessed through the keyword (pointer) this.
Every (non static) member function always
gets this pointer as an additional hidden
argument.

 a
this

 b
this

Memory

⇒ it is not possible to change value stored in this pointer;
⇒ it is not possible to access the address of this pointer.

my_class* const this;

Usually this pointer is used implicitly:

void CBook::Display()
{ cout << "Title: " << m_sTitle <<
 " year: " << m_nYear << endl;
}

void CBook::Display()
{
 cout << "Title: " << this->m_sTitle <<
 " year: " << this->m_nYear << endl;
}

void CBook::func()
{ CBook q;
 this = &q;
 &this;
}

not possíble

It can however be used explicitly:

You should not use this keyword everywhere because it might not add anything
to the meaning of the code and often indicates an inexperienced programmer.

CBook CBook::Clone()
{
 return *this;
}

But when you do actually need it, it’s there.

bool CBook::Compare(CBook* par)
{
 return (this == par);
}

Access specifiers control access to class members.

What if you want to explicitly grant access to a function that isn’t a member of
the current class?

This is accomplished by declaring that function a friend inside the class
definition.

You can declare a global function as a friend, and you can also declare a
member function of another class, or even an entire class, as a friend.

The friend declaration can be accomplished in any part of the class definition
(i.e. either public, protected or private).

void Y::f1(X* x)
{
 x->i = 22;
}

class X;
class Y
{ public:
 void f1(X* x);
 void f2(X* x);
};

class Z
{
 int j;
public:
 Z() { X x; j = x.i; };
 void g(X* x) { x->i = j; };
};

void h()
{
 X x;
 x.i = 100; //access to a private member
}

void Y::f2(X* x)
{
 x->i = 33;
}

error

class X
{
 int i;
public:
 X() { i = 0; };
 friend void Y::f1(X*);
 friend class Z;
 friend void h();
};

class my_class2; // forward declaration
class my_class1
{public:
 friend void compare(my_class1&, my_class2&);
 my_class1(int A) { a = A}
private: int a;
};

class my_class2
{public:
 friend void compare(my_class1&, my_class2&);
 my_class2(int A): { a = A}
private: int a;
};

void compare(my_class1 &cl1, my_class2 &cl2)
{
 if(cl1.a==cl2.a) cout << "equal\n";
 else cout << " not equal\n";
}

Friendship is not inherited.

Z

DZ

X

friend

not a friend

class Z is a friend of class X

class DZ is not a friend of class X!

class Z
{
 int j;
public:
 Z()
 { X x; j = x.i; }
 friend class Y;
};

class X
{
 int i;
public:
 X() { i = 0; }
 friend class Z;
};

class Z is
a friend of
class X

OK

class Y
{
public:
 Y () { X x; x.i; }
};

class Y is not a friend of
class X!

error

class Y is
a friend of
class Z

X Z Y

friend friend

not a friend

 value substitution (to eliminate the use of #define)

 objects

 pointers

 function arguments

 return types

 class objects and member functions

#define NUM_STUDENTS 150

(preprocessor, simple text
replacement, no type checking)

const int num_students = 150;

(compiler, constant folding (reducing
complicated constant expressions to
simple ones by performing the
necessary calculations at compile
time, type checking)

 value substitution (to eliminate the of #define)

Since its origin, const has taken on a number of different purposes:

If you have an objects whose value will not change, you should declare this
object as const.

int main(int argc, char* argv[])
{
 cout << "Insert a letter..." << endl;
 const char a = cin.get();
 cout << "ASCII of the letter " << a << " is "
 << static_cast<int>(a);
 return 0;
}

Insert a letter...
A
ASCII of the letter A is 65

When using const with pointers, you have two options: const can be applied to
what the pointer is pointing to (i.e. to the object), or the const can be applied to
the address stored in the pointer itself (i.e. to the object’s address).

char c1 = 'a', c2 = 'b';
const char* letter = &c1;

letter = &c2;
*letter = 'c'; //error
*letter = c2; //error

char c1 = 'a', c2 = 'b';
char const* letter = &c1;

letter = &c2;
*letter = 'c'; //error
*letter = c2; //error

=

char c1 = 'a', c2 = 'b';
char* const letter = &c1;

letter = &c2; //error
*letter = 'c';
*letter = c2;

constant
object

constant
address

You can also make a const pointer to a const object using either of two legal
forms:

char c1 = 'a', c2 = 'b';
const char* const letter = &c1; //1 or
char const* const letter = &c1; //2

letter = &c2; //error
*letter = c2; //error

You can’t assign the address of a const object to a non-const pointer
because then you’re saying you might change the object via the pointer.

const char c1 = 'a';
char* s = &c1; // error

You can assign the address of a non-const object to a const pointer because
you’re simply promising not to change something that is OK to change.

char c1 = 'a';
const char* const s = &c1;

The place where strict constness is not enforced is with character array literals
(because there’s so much existing C code that relies on this).

The following code will be accepted by the compiler without complaint.
This is technically an error because a character array literal (“hello” in this case)
is created by the compiler as a constant character array, and the result of the
quoted character array is its starting address in memory. Modifying any of the
characters in the array is a runtime error, although not all compilers enforce this
correctly.

char* str = "hello";
str[1] = 'a'; error

char str [] = "hello";
str[1] = 'a'; Ok

void f1 (const int a)
{
 a++; //error
}

const int f2 (int a)
{
 return ++a;
}

int main(int argc, char* argv[])
{
 f1(7);

 const int i1 = f2(6);
 int i2 = f2(6);
}

If you are passing objects by value, specifying const has no meaning to the client
(it means that the passed argument cannot be modified inside the function).
If you are returning an object of a user-defined type by value as a const, it means
the returned value cannot be modified.
If you are passing and returning addresses, const is a promise that the destination
of the address will not be changed.

For built-in types, it doesn’t matter whether you return by value as a const, so you
should avoid confusing the client programmer and leave off the const when
returning a built-in type by value.
Returning by value as a const becomes important when you’re dealing with user-
defined types. If a function returns a class object by value as a const, the return
value of that function cannot be assigned to or otherwise modified.

class my_class
{ int i;
public:
 my_class (int ii) : i(ii) {}
 void inc () { i++; }
};

my_class f3 (my_class mc)
{
 mc.inc();
 return mc;
}

int main(int argc, char* argv[])
{
 my_class obj1(3);
 f3(obj1).inc();
}

const my_class f3 (my_class mc)
{
 mc.inc();
 return mc;
}

cannot be modified

If you pass or return an address (either a pointer or a reference), it’s possible for
the client programmer to take it and modify the original value. If you make the
pointer or reference a const, you prevent this from happening.
Whenever you’re passing an address into a function, you should make it a const if
at all possible.

void f4 (my_class*) {}
void f5 (const my_class*) {}

int main(int argc, char* argv[])
{
 my_class obj(1);
 my_class* p1 = &obj;
 const my_class* p2 = &obj;

 f4(p1);
 f4(p2); //error

 f5(p1);
 f5(p2);
}

a function that takes a const pointer
is more general than one that does
not

Your first choice when passing an argument is to pass by reference, and by
const reference at that.

To the client programmer, the syntax is identical to that of passing by value, so
there’s no confusion about pointers – they don’t even have to think about pointers.

For the creator of the function, passing an address is virtually always more efficient
than passing an entire class object, and if you pass by const reference it means
your function will not change the destination of that address, so the effect from the
client programmer’s point of view is exactly the same as pass-by-value (only more
efficient).

The use of const inside a class means “this is constant for the lifetime of the
object.” However, each different object may contain a different value for that
constant.

It is not possible to initialize the const in the class definition.
The special initialization point is called the constructor initializer list.

class my_class
{
 int i;
 const int max;
public:
 my_class (int ii, int m) : max(m) { i = ii;}
 void inc () { if (i < max) i++; }
};

my_class obj1(1, 50);
my_class obj2(2, 10);

class my_class
{
 int i;
 const int max;
public:
 my_class (int ii, int m) : i(ii), max(m) {}
 void inc () { if (i < max) i++; }
 void Display () const { cout << i }
};

my_class obj1(1, 50);
const my_class obj2(2, 10);

obj1.Display();
obj2.Display();

obj1.inc();
obj2.inc(); //error

Every member function that does not modify the state of the object should
be declared as const!!!

Class member functions can be made const.

If you declare a member function const, you tell the compiler the function can be
called for a const object. A member function that is not specifically declared const
is treated as one that will modify data members in an object, and the compiler will
not allow you to call it for a const object.

Neither constructors nor destructors can be const member functions because they
virtually always perform some modification on the object during initialization and
cleanup.

When a const member function is defined in *.cpp file, its signature must include
the const suffix:

void my_class::Display () const
{
 cout << i << endl;
};

In const member functions the pointer this is defined as:

const my_class *const this;

Bruce Eckel, Thinking in C++, 2nd edition, MindView, Inc., 2003

=> Chapters 4, 5, 8

http://mindview.net/Books/TICPP/ThinkingInCPP2e.html

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

