
Object-Oriented Programming, Iouliia Skliarova

Basic built-in types – char, int, float, double, bool.

Specifiers – modify the meaning of the basic built-in types, i.e. modify the
maximum and minimum values that a data type will hold.

long, short, signed, unsigned.

Data types define the way you use the storage (memory) in the programs. By
specifying a data type, you tell the sompiler how to create a particular piece of
storage, and how to manipulate that storage.

Data types can be built-in or abstract.

A built-in data type is one that the compiler intrinsically understands, one that is
wired directly into the compiler.

The compiler “learns” how to handle abstract data types by reading header files
containing class definitions.

Whenever you run a program, it is first loaded into the computer’s memory.
Thus, all elements of your program are located somewhere in memory.
Each program element can be uniquely distinguished from all other elements
by its address.

Operator & tells the address of an element.

#include <iostream>
using namespace std;

void f(int)
{}

int main()
{
 cout << "f(): " << &f << endl;

 int ar[3];
 cout << "ar[0]: " << &ar[0] << endl;
 cout << "ar[1]: " << &ar[1] << endl;
 cout << "ar[2]: " << &ar[2] << endl;
 cout << sizeof(ar) << endl;
}

Variable that holds the address is a pointer.

When you define a pointer, you must specify the type of variable it points to.

int* pInt;
CBook* pBook;

int* ipa, ipb, ipc;

Example:
What is declared here?

int* ipa;
int* ipb;
int* ipc;

int* ipa,* ipb, * ipc;

To access a variable through a pointer, you dereference the pointer using the
same operator that you used to define it.

int a = 47;
int* ipa = &a;

*ipa = 74;

Pass-by-value: when you pass an argument to a function, a copy of that
argument is made inside the function.

#include <iostream>
using namespace std;

void f(int a)
{
 cout << "a = " << a << endl;
 a = 5;
 cout << "a = " << a << endl;
}

int main()
{ int x = 10;
 cout << "x = " << x << endl;
 f(x);
 cout << "x = " << x << endl;
}

a is a local variable that only
exists for the duration of the
function call.

When you’re inside f(), x is the
outside object, and changing
the local variable does not
affect the outside object (since
they are two separate locations
in storage).

It is not possible to pass arrays by value!

Pass-by-pointer: you pass a pointer into a function instead of an ordinary value,
actually passing an alias to the outside object, enabling the function to modify
that outside object.

#include <iostream>
using namespace std;

void f(int* p)
{
 cout << "p = " << p << endl;
 cout << "*p = " << *p << endl;
 *p = 5;
 cout << "p = " << p << endl;
}

int main()
{
 int x = 10;
 cout << "x = " << x << endl;
 cout << "&x = " << &x << endl;
 f(&x);
 cout << "x = " << x << endl;
}

Pass-by-reference: you pass a reference into a function (the function gets a
reference to the object, i.e. its address).

void f(int& r)
{ cout << "r = " << r << endl;
 cout << "&r = " << &r << endl;
 r = 5;
 cout << "r = " << r << endl;
}

int main()
{ int x = 10;
 cout << "x = " << x << endl;
 cout << "&x = " << &x << endl;
 f(x);
 cout << "x = " << x << endl;
}

The difference between references and pointers is that calling a function that
takes references is cleaner, syntactically, than calling a function that takes
pointers.

Inside f(), if you just say ‘r’ (which
would produce the address if r
were a pointer) you get the value
in the variable that r references. If
you assign to r, you actually
assign to the variable that r
references.

When a C++ object is created, two events occur:
1. Storage is allocated for the object.
2. The constructor is called to initialize that storage.

Storage can be allocated in different ways:

- before the program begins, in the static storage area. This storage exists for the
life of the program.

- from a pool of memory called the heap (or free store). This is called dynamic
memory allocation and is used when you do not know exactly how many
objects you need when you are writing the program. You can decide at any
time that you want some memory and how much you need. You are also
responsible for determining when to release the memory, which means the
lifetime of that memory can be as long as you choose – it isn’t determined by
scope.

- on the stack whenever a particular execution point is reached (an opening
brace). That storage is released automatically at the complementary execution
point (the closing brace).

To allocate memory dynamically at runtime, C provides functions in its standard
library: malloc(), calloc(), realloc(), free().

The solution in C++ is to combine all the actions necessary to create and
destroy an object into two operators called new and delete.

Operator new allocates enough storage on the heap to hold the object and calls the
constructor for that storage.

The default new checks to make sure the memory allocation was successful before
passing the address to the constructor, so you don’t have to explicitly determine if
the call was successful. The new returns the address of the created and properly
initialized object.

int* ip = new int;
CBook* pBook = new CBook (“C++”, 2014);

In C++, when you create arrays of objects on the stack or on the heap, the
constructor is called for each object in the array. There’s one constraint, however:
there must be a default constructor, because a constructor with no arguments
must be called for every object.
CBook* books = new CBook[5];

The complement to the new-expression is the delete-expression, which first calls the
destructor and then releases the memory (often with a call to free()). Just as a new-
expression returns a pointer to the object, a delete-expression requires the address
of an object.

If you forget to delete an object created on the heap, you get a memory leak.

int* ip = new int; ⇔ delete ip;

CBook* pBook = new CBook (“C++”, 2014); ⇔ delete pBook;

If you delete a void pointer, the only thing that happens is the memory gets
released, because there’s no type information and no way for the compiler to
know what destructor to call.

When you delete an array of objects, you have to give the compiler the information
that the pointer is actually the starting address of an array:

 CBook* books = new CBook[5];
 delete [] books;

The empty brackets tell the compiler to generate code that fetches the number of
objects in the array, stored somewhere when the array is created, and calls the
destructor for that many array objects.

If you forget to use empty brackets, all the used by the array memory will be
released, but only the first object desctructor will be called.

If you try to delete a null pointer, nothing happens.

int main()
{
 CBook* pBook = new CBook ("C++", 2014);
 delete pBook;
 pBook = 0;
 delete pBook;
}

A default constructor is one that can be called with no arguments.

The default constructor is so important that if (and only if) there are no constructors
in a class, the compiler will automatically create one for you.

class V
{
 int i;
 // public: V (int ii) { i = ii; }
};
int main()
{
 V v, v2[10];
}

If any constructors are defined, however, and there’s no default constructor, the code
above will generate compile-time errors.

The default constructors generated by the compiler do not perform* initialization of
the class members. If you want the memory to be initialized to zero, you must do it
yourself by writing the default constructor explicitly.

Although the compiler will create a default constructor for you, the behavior of the
compiler-synthesized constructor is rarely what you want. In general, you should
define your constructors explicitly and not allow the compiler to do it for you.

If a class does not have a destructor, the compiler will generate one.

The destructor synthesized by the compiler does not free* memory occupied by the
class members.

In general, you should not leave this task to the compiler and should define explicitly
the destructor for every class.

It is not possible to obtain the address of a constructor.

It is not possible to obtain the address of a destructor.

Pointer arithmetic refers to the application of some of the arithmetic
operators to pointers.

#include <iostream>
#include "Book.h"

using namespace std;
int main()
{
 int i[10];
 int* ip = i;
 cout << "ip = " << ip << endl;
 ip++;
 cout << "ip = " << ip << endl;

 CBook b[10];
 CBook* bp = b;
 cout << "bp = " << bp << endl;
 bp++;
 cout << "bp = " << bp << endl;
}

The operator ++, instead of
adding 1, makes the pointer
to point to the next value (i.e.
moves the pointer x bytes
where x is the size of each
array element).

4 bytes

8 bytes

In the standard header file <cassert> you’ll find assert(), which is a convenient
debugging macro. When you use assert, you give it an argument that is an
expression you are “asserting to be true.”
The preprocessor generates code that will test the assertion. If the assertion isn’t
true, the program will stop after issuing an error message telling you what the
assertion was and that it failed.

#include <cassert>
int main()
{
 bool test = false;
 assert(test);
}

The macro can only be used in the Debug configuration! In the Release
configuration the macro will not work!

Bruce Eckel, Thinking in C++, 2nd edition, MindView, Inc., 2003

=> chapters 3, 6, 13

http://mindview.net/Books/TICPP/ThinkingInCPP2e.html

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

