
Object-Oriented Programming, Iouliia Skliarova

If you encounter an exceptional situation in your code – that is, one where you
don’t have enough information in the current context to decide what to do –
you can send information about the error into a larger context by creating an
object containing that information and “throwing” it out of your current context.
This is called throwing an exception.

If you’re inside a function and you throw an exception, that function will exit in
the process of throwing. If you don’t want a throw to leave a function, you can
set up a special block within the function where you try to solve your actual
programming problem (and potentially generate exceptions). This is called the
try block because you try your various function calls there.

Of course, the thrown exception must end up someplace. This is the exception
handler, and there’s one for every exception type you want to catch. Exception
handlers immediately follow the try block and are denoted by the keyword
catch.

Exception handling follows a different execution path of the normal program
execution and is only used when problems during arise the course of the program

Advantages:

- An exception cannot be ignored (as opposite to an error code).

- Exceptions may permit to recover from problematic situations.

- Exceptions permit to construct more robust systems.

- The exception processing code is separated from the normal program code.

A situation is exceptional if there is not enough information to solve the
problem in the current context.

When an exceptional situation is found it is possible to send information about
the exception to a larger context.

For this an object is created that contains information about the error and this
object is thrown out of the current context - throwing an exception.

class MyError {
 const char* const data;
public:
 MyError(const char* const msg = 0) : data (msg) {}
};

int& CVector::operator[](unsigned pos)
{ if (pos >= m_nElements)
 throw (MyError("Range exception in vector"));
 return m_arElements[pos];
}

The keyword throw:
1) creates a copy of the object to be thrown;
2) destroys all local objects whose construction was completed by the time of

throw - stack unwinding;
3) the object is, in effect, “returned” from the function, even though that object

type isn’t normally what the function is designed to return (where you return
to is someplace completely different than for a normal function call);

4) searches the nearest exception handler and transfers control to it.

You can throw as many different types of objects as you want. Typically, you’ll
throw a different type for each different type of error. The idea is to store the
information in the object and the type of object, so someone in the bigger
context can figure out what to do with your exception.

If a function throws an exception, it must assume that exception is caught and
dealt with.

If you’re inside a function and you throw an exception (or a called function
throws an exception), that function will exit in the process of throwing. If you
don’t want a throw to leave a function, you can set up a special block within
the function where you try to solve your actual programming problem (and
potentially generate exceptions). This is called the try block because you try
your various function calls there.

try
{
 CVector v(3);
 v[10] = 7;
}

Instead of testing all possible errors that may occur, all potentially "dangerous"
code is placed inside the try block without any error test.

The thrown exception must end up someplace. This is the exception handler,
and there’s one for every exception type you want to catch. Exception
handlers immediately follow the try block and are denoted by the keyword
catch.

try
{
 CVector v(3);
 v[10] = 7;
}
catch(MyError& e)
{
 //handle the exception of type MyError
}

The handlers must appear directly after the try block. If an exception is thrown,
the exception handling mechanism goes hunting for the first handler with an
argument that matches the type of the exception. Then it enters that catch
clause, and the exception is considered handled.

try
{
 // Code that may generate exceptions
}
catch(type1& id1)
{ // Handle exceptions of type1
}
catch(type2& id2)
{ // Handle exceptions of type2
}
catch(type3& id3)
{ // Handle exceptions of type3
}

// Normal execution resumes here...

To avoid that an additional
copy of the exception is
done, it is better to catch
exceptions by reference.

class Except1 {};
class Except2
{
 public:
 Except2(const Except1&) {}
};

void f() { throw Except1(); }

Automatic type conversion does not work with exceptions.

int main()
{
 try
 {
 f();
 }
 catch (Except2&)
 {
 cout << "Except2";
 }
 catch (Except1&)
 {
 cout << "Except1";
 }
}

This exception handler
will be activated

catch(...)
{
 cout << "an exception was thrown" << endl;
}

A handler catch(...) will catch any exception:

If none of the exception handlers following a particular try block matches an
exception, that exception moves to the next-higher context, that is, the function
or try block surrounding the try block that failed to catch the exception.

If no handler at any level catches the exception, it is “uncaught” or “unhandled”
(programming error!). If an exception is uncaught, the special function
terminate() is called which will call the function abort().

The function abort() immediately exits the program with no calls to the
normal termination procedures (which means that destructors for global and
static objects might not be called).

The function terminate() is also called when a local object destructor
launches an exception during stack unwinding.

Thus, a destructor that throws an exception or causes one to be thrown is a
design error.

Bruce Eckel, Thinking in C++, 2nd edition, MindView, Inc., 2003

=> Volume 2, chapter 7

http://mindview.net/Books/TICPP/ThinkingInCPP2e.html

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

