
Object-Oriented Programming, Iouliia Skliarova

Often in a design, you want the base class to present only an interface for its
derived classes. That is, you don’t want anyone to actually create an object of the
base class, only to upcast to it so that its interface can be used.

This is accomplished by making that class abstract, which happens if you give it at
least one pure virtual function.

You can recognize a pure virtual function because it uses the virtual keyword and is
followed by = 0. If anyone tries to make an object of an abstract class, the compiler
prevents them.

virtual double Area () const = 0;

If a class only contains pure virtual functions, it is called pure abstract class.

When an abstract class is inherited, all pure virtual functions must be implemented, or
the inherited class becomes abstract as well.

Creating a pure virtual function allows you to put a member function in an interface
without being forced to provide a possibly meaningless body of code for that member
function. At the same time, a pure virtual function forces inherited classes to provide a
definition for it.

The compiler will reserve a slot for a pure virtual function in the VTABLE, but will not
put an address in that particular slot. Even if only one function in a class is declared as
pure virtual, the VTABLE is incomplete.

If the VTABLE for a class is incomplete, the compiler will not be able to create
instances of that class
 => service for the user:
 you ensure that the client programmer cannot misuse
 an abstract class.

Usually, pure virtual functions do not have definitions in the base class.

It’s however possible to provide a definition for a pure virtual function in the base class.

You’re still telling the compiler not to allow objects of that abstract base class, and the
pure virtual functions must still be defined in derived classes in order to create objects.
However, there may be a common piece of code that you want some or all of the
derived class definitions to call rather than duplicating that code in every function.

Pure virtual destructors are legal in Standard C++.

There are added constraints when using them:

1) you must provide a function body for the pure virtual destructor

2) when you inherit a class from one that contains a pure virtual destructor, you
are not required to provide a definition of a pure virtual destructor in the derived
class.

class Figure //abstract class
{
 //.................
public:
 virtual void draw() = 0;
 virtual void move(int, int) = 0;
 virtual void copy(int, int) = 0;
};

class Line: public Figure
{
 int x1, y1, x2, y2;
public:
 void draw();
 void move(int, int);
 void copy(int, int);
 //
};

class Circle : public Figure
{ int diameter;
 int cx, cy;
public:
 void draw();
 void move(int, int);
 void copy(int, int);
 //
};

Figure

Line Circle

Bruce Eckel, Thinking in C++, 2nd edition, MindView, Inc., 2003

=> Chapter 15

http://mindview.net/Books/TICPP/ThinkingInCPP2e.html

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7

