
Object-Oriented Programming, Iouliia Skliarova

 static variables and objects

 static members (data and functions)

 controlling linkage

In C++ the keyword static has two basic meanings:

1. Allocated once at a fixed address; that is, the object is created in a special

static data area rather than on the stack. This is the concept of static
storage.

2. Local to a particular translation unit. Here, static controls the visibility of a
name, so that name cannot be seen outside the translation unit or class.
This also describes the concept of linkage, which determines what names
the linker will see.

 compare1 (400);
 compare1 (-40);

positive
negative

void compare1 (int a)
{
 static int max;
 if (a > max) cout << "positive" << endl;
 else cout << "negative" << endl;
}

Initialization to 0
(for built-in types)

When you create a local variable inside a function, the compiler allocates (on stack)
storage for that variable each time the function is called.

If you want to retain a value between function calls, you declare that variable as
static. The storage for this variable is not on the stack but instead in the program’s
static data area. This variable is initialized only once, the first time the function is
called.

void compare2 (int a)
{
 static A max;
 /* … */
}

class A
{
 /* … */
};

Initialization requires
availability of the
default constructor

1. Static objects are allocated in the program’s static data area.

2. Static objects are guaranteed to be initialized before being used.

3. User-defined types must be initialized with constructor calls. Thus, if
you don’t specify constructor arguments when you define the static
object, the class must have a default constructor.

4. Destructors for static objects are called when main() exits or when the
Standard C library function exit() is explicitly called.

5. Global objects are always constructed before main() is entered and
destroyed as main() exits.

6. If a function containing a local static object is never called, the
constructor for that object is never executed, so the destructor is also not
executed.

You can create static member functions that, like static data members, work for
the class as a whole rather than for a particular object of a class.

A static member has no this!

Non-static member functions have full access to all static data members.

A static member function cannot be const nor virtual!

class CStatic
{ static int s_nInstances;
public:
 //...
 static int GetCount();
};

int CStatic::GetCount()
{
 return s_nInstances;
}

cout << CStatic::GetCount() << endl;
CStatic s3 = s2;
cout << s2.GetCount() << endl;

A static member function cannot access ordinary data members, only static
data members, and can only call other static member functions.

static A obj;

Global variables and ordinary functions have external linkage (i.e. at link time
a name is visible to the linker everywhere, external to the translation unit
where the name was defined).

There are times when you’d like to limit the visibility of a name. You might like
to have a variable at file scope so all the functions in that file can use it, but
you don’t want functions outside that file to see or access that variable, or to
inadvertently cause name clashes with identifiers outside the file.

An object or function name at file scope that is explicitly declared static is
local to its translation unit (the cpp file where the declaration occurs). That
name has internal linkage. This means that you can use the same name in
other translation units without a name clash.

class X
{ int m_nInt;
public:
 X();
};

static int number = 5;

static void ff (int a)
{ /*…*/
};

/*…*/

class Y
{ int m_nInt;
public:
 Y();
};

static int number = 100;

static void ff (int a)
{ /*…*/
};

/*…*/

If you remove the static keyword, the linker will report an error!

int main()
{
 X x1;
 Y y1;
 return 0;
}

namespace my_globals_1
{
 int a = 3;
 A aa(10);
}

int main(int argc, char* argv[])
{
 cout << my_globals_1::a << endl;
 using namespace my_globals_2;
 cout << a;
 return 0;
}

namespace my_globals_2
{
 int a = 6;
 A aa(20);
}

The names of global functions, global variables, and classes are in a single
global name space. The static keyword gives you some control over this by
allowing you to give variables and functions internal linkage. But in a large
project, lack of control over the global name space can cause problems.

You can subdivide the global name space into more manageable pieces using
the namespace feature of C++. The namespace keyword puts the names
of its members in a distinct space.

A namespace definition can appear only at global scope, or nested within another
namespace.

No terminating semicolon is necessary after the closing brace of a namespace
definition.

A namespace definition can be “continued” over multiple header files.

A namespace name can be aliased to another name, so you don’t have to type
an unwieldy name created by a library vendor.

You cannot create an instance of a namespace as you can with a class.

class X
{
 int m_nInt;
public:
 X();
};

int number = 5;

void ff (int a)
{ cout << a+number; }

X::X() : m_nInt(number)
{ ff(m_nInt); }

namespace my
{
 class Y
 {
 int m_nInt;
 public:
 Y();
 };
}

namespace my
{
 int number = 100;
 void ff (int a)
 { cout << a+number; }
}

my::Y::Y() : m_nInt(number)
{ ff(m_nInt); }

int main()
{
 X x1;
 my::Y y1;
 return 0;
}

Scope resolution operator

namespace ui = user_interface_block;
int main()
{
 ui::Y y1;
 user_interface_block::Y y2;

 return 0;
}

A namespace name can be aliased to another name:

namespace N
{
 int x = 6; int y;
 A a1(20); A a2(20);

 class character
 {
 char m_ch;
 public:
 character (char c)
 { m_ch = c; }
 void print () const;
 };
}

void N::character::print() const
{ cout << m_ch; }

int main(void)
{
 cout << N::x << endl;
 using N::y;
 cout << y << endl;
 using namespace N;
 cout << a1.GetInt();
 character ch1('f');
}

1. Scope resolution operator
2. A using directive
3. A using declaration

Bruce Eckel, Thinking in C++, 2nd edition, MindView, Inc., 2003

=> Chapter 10

http://mindview.net/Books/TICPP/ThinkingInCPP2e.html

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

