
Object-Oriented Programming, Iouliia Skliarova

Scientific area: Science and Technology of Programming

Curricula: Integrated Master Degree in Electronic Engineering and
Telecommunications, Master Degree in Industrial Automation Engineering

Weekly load: 3 hours of classes

ECTS credits: 6

Code: 42531 (EET), 42521 (IAE)

The number of ECTS credit points assigned to a course does not tell you how
many hours you will spend in class. It gives an indication of the total number of
hours you are expected to spend on the course.

1 ECTS equals 25-30 hours of study. 6 ECTS equal 150-180 hours of study.

Work done during these hours includes: reading books, writing programs, studying
for the exam and attending classes.

Final grade = 0.1 × P1 + 0.2 × P2 + 0.2 × P3 + 0.3 × written test + 0.2 × classes

The evaluation of the course is of continuous type and incorporates several
intermediate tests and assessment of performance in the classroom.

The classes are not compulsory.

According to the Regulation of Studies of the University, at least 5 evaluation
moments must occur during the semester.

The student may choose to undertake evaluation through a final exam (this
decision has to be communicated in written form before October 1, 2014). If
the student wishes to waive his first choice he/she will have to communicate
the change at least 48 hours before the first evaluation moment. All the
students who do not exercise the option are automatically associated with the
continuous type of assessment.

• Bjarne Stroustrup, The Programming: Principles and Practice Using C++,
 2nd ed. Addison-Wesley Inc., 2014

• Bruce Eckel, Thinking in C++, 2nd edition, MindView, Inc., 2003

• Donald Knuth, The Art of Computer Programming: Volumes 1-4a,
 Addison Wesley, 2011

• Frank Carrano, Data Abstraction and Problem Solving with C++: Walls
 and Mirrors, 6th ed., Addison Wesley Inc., 2012

• Ivor Horton, Beginning Visual C++, Wrox Press, 2012

http://mindview.net/Books/TICPP/ThinkingInCPP2e.html

All programming languages provide abstractions because complexity of the
problems you are able to solve is directly related to the kind and quality of
abstractions.

Assembly language is an abstraction of the underlying machine.

Imperative languages (e.g. Fortran, C) are abstractions of assembly language.

Other kinds of languages, such as Lisp or Prolog, instead of modeling the
machine, try to model the problem to solve (as lists, in case of Lisp, or chains of
decisions, for Prolog).

Each of these approaches are good solutions to the particular class of problem
they were designed to solve, but are hardly suitable when you step outside of
that domain.

The object-oriented approach provides tools for the programmer to represent
elements (objects) in the problem space.

The representation is general enough that the programmer is not constrained to
any particular type of problem.

Object-oriented programming: describe the problem in terms of the problem,
rather than in terms of the computer where the solution will run.

A program is a collection of objects telling each other what to do by sending
messages.

Each object has its own memory made up of other objects.

Each object has a type (class). A class defines data (attributes that describe the
object) and methods (messages that the object can respond to).

Object is an instance of a class. You may create as many objects (instances of
a class) as you like. Every object of a class has the same behaviour but keeps
different data.

program

object 1
data

object 2
data

object 3
data

object 5
data

object 4
dataEach object is responsible for its

own initialization and clean-up!

Encapsulation

Inheritance

Polymorphism

Encapsulation – the ability to package data with functions creating a new data
type (class).

C++ allows a user to directly define types that behave in the same way as built-
in types. Such a type is often called an abstract data type, or user-defined type.

The requests that you can make for an object are defined by its interface.

Code that satisfies requests comprises the implementation.

Unified Modeling Language (UML)
– permits to represent graphically
classes and their relationships in a
program.

In C++ interface of an object is usually defined in a header file (*.h) and the
implementation – in the *.cpp file.

To use an object you do not need to know has it is implemented.

This is a service to users because they can easily see what’s important to them
and what they can ignore. Besides, the designer may change the internal
workings of the class without worrying about how it will affect the client
programmer.

=> Hide as much information as you can with access control!

black
box

object

Done! Do
something

Example:

Take a, with value 1, and b, with value 2, add them using
built-in capability of C and assign the result to the
variable c.

a = 1;
b = 2;
c = a + b;

C

Send to the object a, with value 1, a message “+” with
argument b, with value 2. The object a receives the
message, executes the requested action, creates a new
object, initializes it with the result and assigns the
object to c.

a = 1;
b = 2;
c = a + b;

C++

What for such complexity? To be able to process complex data!!!

Example:

Does not work because the C
compiler only “knows” how to
add numbers, while s1 and s2
are not numbers!

char s1[] = “This does not ";
char s2[] = “work!";

s1 + s2;

C

string s1 = “This does ";
string s2 = “work!";

s1 + s2;

C++
Works because the class string
includes a method for
processing the message “+”!

“A well-designed user-defined type differs from a built-in
type only in the way it is defined, not in the way it is used.”
(Bjarne Stroustrup, The C++ Programming Language, special edition, 2000, Addison-
Wesley Inc., p.8)

Inheritance – possibility to take the existing class, clone it, and then make
additions and modifications.

The original class is called the base or super or parent class.

The modified clone is called the derived or inherited or sub or child class.

Inheritance promotes code reutilization.

Figure

Circle Rectangle Triangle

Square

In UML diagrams
arrows point from
the derived classes
to the base class.

A non-OOP compiler executes early binding. It means the compiler generates a
call to a specific function name, and the linker resolves this call to the absolute
address of the code to be executed.
In OOP, the concept of late binding is applied. When you send a message to an
object, the code being called isn’t determined until runtime. The compiler does
ensure that the function exists and performs type checking on the arguments
and return value, but it doesn’t know the exact code to execute.
To perform late binding, the C++ compiler inserts a special bit of code in lieu of
the absolute call. This code calculates the address of the function body, using
information stored in the object.

Square

Figure
draw()

Circle
draw()

Rectangle
draw()

Triangle
draw()

1960s – Simula-67 – designed in the Norwegian Computing Center in Oslo
(classes, objects, inheritance).

1970-1980s – Smalltalk – developed at Xerox PARC (possibility to create and
modify classes dynamically).

1990s – C++ – designed by Bjarne Stroustrup at Bell Labs. C+ is a language in
which new and different features are built on top of an existing syntax – the C
language.

Eiffel, Delphi, Objective-C, Oberon, Actor, Object Pascal, Java, C#, etc...

1970s – Algol 68 (operator overloading).

1980s – Ada (exception handling, generics).

ISO/IEC 14882 – the first international standard appeared in 1998.

1980s – C – subset of C++.

The standard was revised in 2003, 2007 e 2011 (C++11).

Namespaces – are used to avoid name conflicts.

using namespace std;

Comments – end of line comment // is implemented in C++ (in addition to /*...*/).

// this is a comment

NULL pointers – in C++ all zero values are coded as 0.

New syntax for casts – C++ introduces new cast constructions to convert one
type to another.

double d = 5.6;
int i = static_cast<int>(d);

Void parameter list – in C++ an empty parameter list is interpreted as the
absence of any parameter.

void f();
void f(void);

Header files – for standard C++ libraries the file extension.h is not used. The
libraries that have been inherited from C are used by prepending a “c” before
the name.
#include <iostream>
#include <cmath>

Definition of local variables – in C++ local variables can be created at any
position in the code.

Function overloading – in C++ it is possible to define functions having identical
names provided the function differ in their parameter lists.
double sum (double a, double b);
int sum (int a, int b);

Default function arguments – in C++ it is possible to provide default arguments
when defining a function.

int func (int a = 3, int b = 5);

for (int i = 0; i < 10; i++)

func(10, 10);
func(8);
func();

Typedef – is still allowed in C++ but no longer necessary when used as a
prefix in union, struct or enum definitions.

struct my_struct
{ int a;
 double b;
};
my_struct s;

Structs with functions – in C++ it is allowed to define functions as part of a struct.
struct my_struct
{ int a;
 double b;
 double calc();
};

Type bool – C++ defines a new built-in data type which can have only two
values: true or false.
bool flag = false;

Each object has a type.

Each object is an instance of a class.

Class = Type.

Definition of a class:

class CBook
{
public:
 //public data and methods

private:
 //private data and methods
};

Access specifiers – determine who can use the definitions that follow:

public – means the following definitions are available to everyone.

private – means that no one can access those definitions except you, the
creator of the type, inside member functions of that type.

protected – will be explained later.

By defauld, all class members are private.

Class
creator

Client
programmer

“Hiding the implementation reduces program bugs.”
(Bruce Eckel, Thinking in C++, 2nd edition, 2000, MindView, Inc.)

black
box

Class creator must be able to change the hidden portion at will without
worrying about the impact to anyone else.

http://mindview.net/Books/TICPP/ThinkingInCPP2e.html

In C++, initialization is too important to leave to the client programmer.

The class designer can guarantee initialization of every object by providing a
special function called the constructor.

If a class has a constructor, the compiler automatically calls that constructor at
the point an object is created.

The class constructor has the same name as the name of the class. Like any
function, the constructor can have arguments to allow you to specify how an
object is created and give it initialization values.

Constructors return nothing.

class CBook
{
public:
 CBook(std::string title, unsigned year);
 ~CBook(void);

 void Print();
private:
 unsigned m_uYear;
 std::string m_sTitle;
};

Cbook::CBook(std::string title, unsigned year)
{
 m_uYear = year;
 m_sTitle = title;
}

CBook::~CBook(void)
{
}

void CBook::Print()
{
 using namespace std;
 cout << "Title: " << m_sTitle << "; Year: " <<
 m_uYear << endl;
}

Cleanup is as important as initialization and is therefore guaranteed with the
destructor.

The syntax for the destructor is similar to that for the constructor: the class name
is used for the name of the function, preceded by a leading tilde (~). In addition,
the destructor never has any arguments.

The destructor is called automatically by the compiler when the object goes out of
scope.

CBook::~CBook(void)
{
 using namespace std;
 cout << "Destructor" << endl;
}

• Everything is an object.
• Computations are performed by objects that exchange messages among
 themselves and perform actions.
• Each object has its own memory that consists of other objects.
• Each object is an instance of a class.
• A class defines the type and behaviour associated with objects.
• All objects of a class are constructed in the same manner and
 perform the same actions.
• Classes may be arranged in a class hierarchy in which derived classes
 inherit data and behaviour of the base classes.
• All classes have at least one constructor.
• Every class has a destructor.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

