
Object-Oriented Programming, Iouliia Skliarova

- is a design environment for creating, compiling, linking, debugiing and
testing programs.

• Editor – interactive environment for creating and editing source code
 (*.cpp, *.h).

• Compiler – converts source code into machine language, and detects
 and reports errors in the comppilation process (*.obj).

• Linker – combines the various modules generated by the compiler, adds
 required modules from program libraries and creates an executable file.

• Libraries – extend the C++ language by providing support to
 operations which are not part of the language.

• A project (.vcxproj) is a program of some kind.

• A solution (*.sln) stores all the information relating to a project.

• When you create a project, a solution is created automatically.

• When you have created a project along with its solution, you can add
 further projects to the same solution. One of those projects is marked as
 “StartUp”.

• Generally, each of your projects should have its own solution.

• A project name

• A list of all the source files

• A definition of what kind of program is to be built from the source files

• The options set for the editor, the compiler, the linker and other
 components of MVS

• The windows to be displayed when the project is opened

A project definition includes:

Select the File -> New ->
Project... menu option 1

2 Specify the project’s type,

its name and
location 3

Project configurations determine how your source code is to be processed
during the compile and link stages.

When you create a new solution, MVS will automatically create configurations
for producing two versions of your application.

One includes information which will help you to debug the program and is
called Debug.

The other, called Release, has no debug information included and has the code
optimization options for the compiler turned on to provide you with the most
efficient executable module.

You can choose which configuration of
your program to work with

• The Class View displays the classes defined
 in your project and will also show the
 contents of each class.

• We don’t have any classes in this
 application, so the view is empty.

• The Solution Explorer shows the source
 program files that make up your project.

• You can display the contents of any file by
 clicking on a file name. At the moment we have
 no source files.

• There are three groups of files: Header Files
 (definition of class interfaces), Resource Files
 (menus, icons, etc.) and Source Files (source
 code)

Select the Project -> Add
New Item... menu option 1

2 Select the file type
and enter the file
name

Editor window

Output window

Project
window

Enter the following code to First.cpp:

The line #include <iostream> includes the iostream header file which declares
objects that control data input/output in C++.

cout (console output) is an object that accepts all data bound for standard
output. To send data to standard output, you use the operator <<. With iostream
objects, the operator << means “send to.”

endl (end line) is a manipulator that terminates a line and flushes the buffer.

All of the Standard C++ libraries are wrapped in a single namespace, which is
std (for “standard”). The directive using namespace std; opens access to all the
elements declared in std namespace, including cout and endl.

To compile, link and execute your
program, press Ctrl-F5.

To execute the program step-by-step (not stepping into functions) press F10.

To execute the program step-by-step (stepping into functions) press F11.

To insert breakpoint select the code line and press F9.

Various debug options are available in the menu Debug.

Select the Project -> Add Class...
menu option

1

Specify the class type 2

These files declare two
functions: the default constructor
(CBook::CBook()) and the
destructor (CBook::~CBook()) .

Enter the class
name 3

4

Two files will be created
automatically: Book.h – with class
interface e Book.cpp with class
implementation.

Add to the class CBook two data members: the
year of publication (m_uYear) and the title
(m_sTitle).

5

The Standard C++ string class is designed to take care of (and hide) all the low-level
manipulations of character arrays that were previously required of the C programmer.

To use strings you include the C++ header file <string>. The string class is in the
namespace std.

Because of operator overloading, the syntax for using strings is quite intuitive. For
instance, you can assign to any string object using ‘=’. This replaces the previous
contents of the string with whatever is on the right-hand side, and you don’t have to
worry about what happens to the previous contents – that’s handled automatically for
you. To combine strings you simply use the ‘+’ operator, which also allows
you to combine character arrays with strings.

The values of m_uYear and m_sTitle are not defined. These data members must be
initialized. The initialization is performed by a special function called the constructor.

If a class has a constructor, the compiler automatically calls that constructor at the point
an object is created, before client programmers can get their hands on the object.

The class constructor has the same name as the name of the class. Like any function,
the constructor can have arguments to allow you to specify how an object is created
and give it initialization values.

Constructors and destructors return nothing.

Let us add the following intitialization code to the constructor: 6

Let us include a member function to the
class CBook:

void Print();

7

8
This function can be
implemented as follows
(do not forget to include
the iostream header file):

At the moment the class CBook has the following members: 9

The results should be the
following:

11

Finally, the main function is modified so
as to test the CBook class.

10

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

