Topological spaces, categorically

Dirk Hofmann dirk@mat.ua.pt

University of Aveiro

CT 2007

The talk is based on joint work with M.M. Clementino and W. Tholen.

Motivation

"The kinds of structures which actually arise in the practice of geometry and analysis are far from being 'arbitrary' . . . , as concentrated in the thesis that *fundamental* structures are themselves categories."

F. William Lawvere.

Metric spaces, generalized logic, and closed categories. *Rend. Sem. Mat. Fis. Milano*, 43:135–166 (1974), 1973. Also in: *Repr. Theory Appl. Categ.* 1:1–37, 2002.

Metric spaces,
$$(P_+ = [0, \infty]^{op}, +, 0)$$

X with $d: X \times X \longrightarrow P_+$ such that

$$0 \ge d(x,x), \qquad d(x,y) + d(y,z) \ge d(x,z).$$

Categories, $(Set, \times, 1)$

X with hom : $X \times X \longrightarrow Set$ such that

$$1 \longrightarrow \mathsf{hom}(x,x), \quad \mathsf{hom}(x,y) \times \mathsf{hom}(y,z) \longrightarrow \mathsf{hom}(x,z)$$

and ... (commutative diagrams in Set).

Metric spaces,
$$(P_{+} = [0, \infty]^{op}, +, 0)$$

X with $d: X \times X \longrightarrow P_{+}$ such that

$$0 \ge d(x,x), \qquad d(x,y) + d(y,z) \ge d(x,z).$$

Categories, $(Set, \times, 1)$

X with hom : $X \times X \longrightarrow Set$ such that

$$1 \longrightarrow hom(x, x), \quad hom(x, y) \times hom(y, z) \longrightarrow hom(x, z)$$

and ... (commutative diagrams in Set).

Ordered sets,
$$(2 = \{false, true\}, \&, true)$$

X with $\leq : X \times X \longrightarrow 2$ such that

true
$$\models (x \le x)$$
, $(x \le y \& y \le z) \models x \le z$.

Quantale

 $V = (V, \otimes, k)$ commutative unital quantale with $u \otimes_{-} \dashv hom(u, _{-})$.

Quantale

 $V = (V, \otimes, k)$ commutative unital quantale with $u \otimes_{-} \dashv hom(u, _{-})$.

V-Rel

▶ Objects: sets X, Y,...

Quantale

 $V = (V, \otimes, k)$ commutative unital quantale with $u \otimes_{-} \dashv hom(u, _{-})$.

V-Rel

- ▶ Objects: sets X, Y,...
- Morphisms: V-relations $r: X \times Y \longrightarrow V$; we write $r: X \longrightarrow Y$

Quantale

 $V = (V, \otimes, k)$ commutative unital quantale with $u \otimes_{-} \dashv hom(u, _{-})$.

V-Rel

- ▶ Objects: sets *X*, *Y*,...
- Morphisms: V-relations $r: X \times Y \longrightarrow V$; we write $r: X \longrightarrow Y$
- ► Composition: (with $s: Y \rightarrow Z$)

$$s \cdot r(x,z) = \bigvee_{y \in Y} r(x,y) \otimes s(y,z)$$

Quantale

 $V = (V, \otimes, k)$ commutative unital quantale with $u \otimes_{-} \dashv hom(u, _{-})$.

V-Rel

- ▶ Objects: sets X, Y,...
- Morphisms: V-relations $r: X \times Y \longrightarrow V$; we write $r: X \longrightarrow Y$
- ► Composition: (with $s: Y \rightarrow Z$)

$$s \cdot r(x,z) = \bigvee_{y \in Y} r(x,y) \otimes s(y,z)$$

▶ Involution: $r^{\circ}: Y \longrightarrow X$ where $r^{\circ}(y,x) = r(x,y)$ for $r: X \longrightarrow Y$.

Quantale

 $V = (V, \otimes, k)$ commutative unital quantale with $u \otimes_{-} \dashv hom(u, _{-})$.

V-Rel

- ▶ Objects: sets X, Y,...
- Morphisms: V-relations $r: X \times Y \longrightarrow V$; we write $r: X \longrightarrow Y$
- ► Composition: (with $s: Y \rightarrow Z$)

$$s \cdot r(x,z) = \bigvee_{y \in Y} r(x,y) \otimes s(y,z)$$

- ▶ Involution: $r^{\circ}: Y \longrightarrow X$ where $r^{\circ}(y, x) = r(x, y)$ for $r: X \longrightarrow Y$.
- ▶ For each Set-map $f: f \dashv f^{\circ}$.

V-Cat

V-categories

A V-category is a pair $(X, a : X \rightarrow X)$ such that

$$k \leq a(x,x)$$

$$a(x,y) \otimes a(y,z) \leq a(x,z)$$

respectively

$$id_X \le a$$

$$a \cdot a \le a$$

V-Cat

V-categories

A V-category is a pair $(X, a : X \longrightarrow X)$ such that

$$k \leq a(x,x)$$

$$a(x,y) \otimes a(y,z) \leq a(x,z)$$

respectively

$$id_X \le a$$

$$a \cdot a \leq a$$

V-functors

A V-functor $f:(X,a) \longrightarrow (Y,b)$ is a Set-map such that

$$a(x, x') \le b(f(x), f(x'))$$
 respectively $f \cdot a \le b \cdot f$.

M. Barr 1970

Topological spaces
$$2 = (2, \&, \text{true}), \quad \mathbb{U} = (U, e, m)$$

 $X \text{ with } \longrightarrow : UX \longrightarrow X \text{ such that}$
 $\text{true} \models (\dot{x} \longrightarrow x), \quad (\mathfrak{X} \longrightarrow \mathfrak{x} \& \mathfrak{x} \longrightarrow x) \models m_X(\mathfrak{X}) \longrightarrow x.$

Here \longrightarrow : $UX \longrightarrow X$ is naturally extended to \longrightarrow : $UUX \longrightarrow UX$.

M. Barr 1970

Topological spaces
$$2 = (2, \&, \text{true}), \quad \mathbb{U} = (U, e, m)$$

 $X \text{ with } \longrightarrow : UX \longrightarrow X \text{ such that}$
 $\text{true } \models (\dot{x} \longrightarrow x), \quad (\mathfrak{X} \longrightarrow \mathfrak{X} \& \mathfrak{X} \longrightarrow x) \models m_X(\mathfrak{X}) \longrightarrow x.$

Here \longrightarrow : $UX \longrightarrow X$ is naturally extended to \longrightarrow : $UUX \longrightarrow UX$.

In fact, $U : Set \longrightarrow Set$ can be extended to a functor $U : Rel \longrightarrow Rel$ such that e and m become oplax.

1. V-Cat is a monoidal closed category.

- 1. V-Cat is a monoidal closed category.
- 2. V = (V, hom) is a (complete) V-category.

- 1. V-Cat is a monoidal closed category.
- 2. V = (V, hom) is a (complete) V-category.
- 3. $\varphi: X \longrightarrow Y$ is a V-module iff $\varphi: X^{op} \otimes Y \longrightarrow V$ is a V-functor.

- 1. V-Cat is a monoidal closed category.
- 2. V = (V, hom) is a (complete) V-category.
- 3. $\varphi: X \longrightarrow Y$ is a V-module iff $\varphi: X^{op} \otimes Y \longrightarrow V$ is a V-functor.
- 4. In particular $a: X^{\operatorname{op}} \otimes X \longrightarrow V$ is a V-functor. Its mate $y = \lceil a \rceil : X \longrightarrow V^{X^{\operatorname{op}}}$ is fully faithful. More general, we have

$$[y(x),\varphi]=\varphi(x).$$

5. . . .

Topological theory

Definition

```
A topological theory \mathfrak T is a triple \mathfrak T=(\mathbb T,\mathsf V,\xi) consisting of a monad \mathbb T=(T,e,m), a quantale \mathsf V=(\mathsf V,\otimes,k) and a map \xi:T\mathsf V\longrightarrow\mathsf V such that
```

Topological theory

Definition

A topological theory $\mathfrak T$ is a triple $\mathfrak T=(\mathbb T,\mathsf V,\xi)$ consisting of a monad $\mathbb T=(T,e,m),$ a quantale $\mathsf V=(\mathsf V,\otimes,k)$ and a map $\xi:T\mathsf V\longrightarrow\mathsf V$ such that

$$\begin{split} &(M_{e}) \, id_{V} \leq \xi \cdot e_{V}, & (M_{m}) \quad \xi \cdot T \xi \leq \xi \cdot m_{V}, \\ &(Q_{\otimes}) \quad T(V \times V) \xrightarrow{\qquad T(\otimes) \qquad} TV \quad (Q_{k}) & T1 \xrightarrow{Tk} TV \\ &\langle \xi \cdot T \pi_{1}, \xi \cdot T \pi_{2} \rangle \bigg| \qquad \leq \qquad \bigg| \xi \qquad \qquad \bigg| \bigg| \qquad \leq \qquad \bigg| \xi \qquad \qquad \bigg| \\ &V \times V \xrightarrow{\qquad \otimes} V, & 1 \xrightarrow{\qquad k} V, \end{split}$$

 $(Q_{\setminus/})$ $(\xi_x)_X: P_y \longrightarrow P_y T$ is a natural transformation.

• $\mathfrak{I}_V = (\mathbb{I}, V, id_V)$ is a strict topological theory.

- $\mathfrak{I}_{V} = (\mathbb{I}, V, id_{V})$ is a strict topological theory.
- $\mathcal{U}_2 = (\mathbb{U}, 2, \xi_2)$ is a strict topological theory.

- $\mathfrak{I}_{V} = (\mathbb{I}, V, id_{V})$ is a strict topological theory.
- $\mathcal{U}_2 = (\mathbb{U}, 2, \xi_2)$ is a strict topological theory.
- $\mathcal{U}_{P_{+}} = (\mathbb{U}, P_{+}, \xi_{P_{+}})$ is a strict topological theory, where

$$\xi_{\mathsf{P}_{\!+}}: \mathit{U}\mathsf{P}_{\!+} \longrightarrow \mathsf{P}_{\!+}, \ \ \mathfrak{x} \longmapsto \inf\{v \in \mathsf{P}_{\!+} \mid \mathfrak{x} \in \mathit{T}([0,v])\}.$$

- $ightharpoonup \Im_V = (\mathbb{I}, V, id_V)$ is a strict topological theory.
- $U_2 = (\mathbb{U}, 2, \xi_2)$ is a strict topological theory.
- $\mathcal{U}_{P_+} = (\mathbb{U}, P_+, \xi_{P_+})$ is a strict topological theory, where

$$\xi_{\mathsf{P}_{\!+}}:U\mathsf{P}_{\!+}\longrightarrow\mathsf{P}_{\!+},\ \ \mathfrak{x}\longmapsto\inf\{v\in\mathsf{P}_{\!+}\mid\mathfrak{x}\in T([0,v])\}.$$

 $ightharpoonup T_V = (\mathbb{T}, V, \xi_V)$ where T satisfies (BC), V is (ccd) and

$$\xi_{\mathsf{V}}: \mathsf{TV} \longrightarrow \mathsf{V}, \ \ \mathfrak{x} \longmapsto \bigvee \{v \in \mathsf{V} \mid \mathfrak{x} \in \mathsf{T}(\uparrow v)\}.$$

- $\mathfrak{I}_{V} = (\mathbb{I}, V, id_{V})$ is a strict topological theory.
- $U_2 = (\mathbb{U}, 2, \xi_2)$ is a strict topological theory.
- $ightharpoonup \mathcal{U}_{P_+} = (\mathbb{U}, P_+, \xi_{P_+})$ is a strict topological theory, where

$$\xi_{\mathsf{P}_{\!+}}:U\mathsf{P}_{\!+}\longrightarrow\mathsf{P}_{\!+},\ \ \mathfrak{x}\longmapsto\inf\{v\in\mathsf{P}_{\!+}\mid\mathfrak{x}\in T([0,v])\}.$$

 $ightharpoonup T_V = (\mathbb{T}, V, \xi_V)$ where T satisfies (BC), V is (ccd) and

$$\xi_{\mathsf{V}}: \mathsf{TV} \longrightarrow \mathsf{V}, \ \ \mathfrak{x} \longmapsto \bigvee \{v \in \mathsf{V} \mid \mathfrak{x} \in \mathsf{T}(\uparrow v)\}.$$

ho $\mathcal{L}_{\mathsf{V}}^{\otimes} = (\mathbb{L}, \mathsf{V}, \xi_{\otimes})$ is a strict topological theory where

$$\xi_{\otimes}: LV \longrightarrow V, \ (v_1, \ldots, v_n) \longmapsto v_1 \otimes \ldots \otimes v_n.$$

Extending $T : Set \longrightarrow Set$ to V-Rel

We define $T_{\varepsilon}: V\text{-Rel} \longrightarrow V\text{-Rel}$ as follows:

Extending $T : Set \longrightarrow Set$ to V-Rel

We define $T_{\varepsilon}: V\text{-Rel} \longrightarrow V\text{-Rel}$ as follows:

Given $r: X \times Y \longrightarrow V$, we put

$$T_{\xi}r: TX \times TY \longrightarrow V$$

$$(\mathfrak{x}, \mathfrak{y}) \longmapsto \bigvee \left\{ \xi \cdot Tr(\mathfrak{w}) \mid \mathfrak{w} \in T(X \times Y), \mathfrak{w} \longmapsto \mathfrak{x}, \mathfrak{y} \right\},$$

that is,

Properties of T_{ε}

Theorem

The following statements hold.

1. For each V-relation $r: X \longrightarrow Y$, $T_{\xi}(r^{\circ}) = T_{\xi}(r)^{\circ}$.

Properties of T_{ε}

Theorem

The following statements hold.

- 1. For each V-relation $r: X \longrightarrow Y$, $T_{\varepsilon}(r^{\circ}) = T_{\varepsilon}(r)^{\circ}$.
- 2. For each function $f: X \longrightarrow Y$, $Tf \le T_{\xi}f$ and $Tf^{\circ} \le T_{\xi}f^{\circ}$.

Properties of T_{ξ}

Theorem

The following statements hold.

- 1. For each V-relation $r: X \longrightarrow Y$, $T_{\xi}(r^{\circ}) = T_{\xi}(r)^{\circ}$.
- 2. For each function $f: X \longrightarrow Y$, $Tf \le T_{\xi}f$ and $Tf^{\circ} \le T_{\xi}f^{\circ}$.
- 3. $T_{\xi}s \cdot T_{\xi}r \leq T_{\xi}(s \cdot r)$ provided that T satisfies (BC), and $T_{\xi}s \cdot T_{\xi}r \geq T_{\xi}(s \cdot r)$ provided that $(Q_{\otimes}^{=})$ holds.

Properties of T_{ξ}

Theorem

The following statements hold.

- 1. For each V-relation $r: X \longrightarrow Y$, $T_{\xi}(r^{\circ}) = T_{\xi}(r)^{\circ}$.
- 2. For each function $f: X \longrightarrow Y$, $Tf \le T_{\xi}f$ and $Tf^{\circ} \le T_{\xi}f^{\circ}$.
- 3. $T_{\varepsilon}s \cdot T_{\varepsilon}r \leq T_{\varepsilon}(s \cdot r)$ provided that T satisfies (BC), and $T_{\varepsilon}s \cdot T_{\varepsilon}r \geq T_{\varepsilon}(s \cdot r)$ provided that $(Q_{\otimes}^{=})$ holds.
- 4. The natural transformations e and m become op-lax, that is, for every V-relation $r: X \longrightarrow Y$ we have the inequalities:

T-Rel

▶ objects: sets *X*, *Y*, . . .

T-Rel

- ▶ objects: sets *X*, *Y*, ...
- ▶ morphisms: \Im -relations $a: X \longrightarrow Y$, i.e. V-relations $a: TX \longrightarrow Y$.

T-Rel

- ▶ objects: sets *X*, *Y*, . . .
- ▶ morphisms: \Im -relations $a: X \longrightarrow Y$, i.e. V-relations $a: TX \longrightarrow Y$.
- The Kleisli convolution of a : X → Y and b : Y → Z is defined as

$$b \circ a = b \cdot T_{\xi} a \cdot m_{X}^{\circ}.$$

T-Rel

- ▶ objects: sets X, Y, ...
- ▶ morphisms: \mathfrak{T} -relations $a: X \longrightarrow Y$, i.e. V-relations $a: TX \longrightarrow Y$.
- The Kleisli convolution of a : X → Y and b : Y → Z is defined as

$$b \circ a = b \cdot T_{\xi} a \cdot m_{\chi}^{\circ}.$$

Some properties

We have

► $a \circ e_X^{\circ} \ge a$ and $e_Y^{\circ} \circ a \ge a$.

T-Rel

- ▶ objects: sets X, Y, ...
- Morphisms: T-relations a : X → Y, i.e. V-relations a : TX → Y.
- The Kleisli convolution of a : X → Y and b : Y → Z is defined as

$$b \circ a = b \cdot T_{\varepsilon} a \cdot m_{\chi}^{\circ}$$
.

Some properties

We have

- ► $a \circ e_X^{\circ} \ge a$ and $e_Y^{\circ} \circ a \ge a$.
- ▶ $a \circ (b \circ c) \ge a \circ b \circ c \le (a \circ b) \circ c$.

Kleisli convolution

T-Rel

- ▶ objects: sets X, Y, ...
- ▶ morphisms: \mathfrak{T} -relations $a: X \longrightarrow Y$, i.e. V-relations $a: TX \longrightarrow Y$.
- The Kleisli convolution of a : X → Y and b : Y → Z is defined as

$$b \circ a = b \cdot T_{\xi} a \cdot m_{X}^{\circ}.$$

Some properties

We have

- ► $a \circ e_X^{\circ} \ge a$ and $e_Y^{\circ} \circ a \ge a$.
- ▶ $a \circ (b \circ c) \ge a \circ b \circ c \le (a \circ b) \circ c$.
- ▶ If T is a strict theory, then Kleisli convolution is associative.

We call $a: X \longrightarrow Y$ unitary if $e_Y^{\circ} \circ a = a$ and $a \circ e_X^{\circ} = a$.

We call $a: X \longrightarrow Y$ unitary if $e_Y^{\circ} \circ a = a$ and $a \circ e_X^{\circ} = a$.

We consider now

$$(\ _{\text{-}})_{\#}: \text{V-Rel} \longrightarrow \mathfrak{T}\text{-Rel}, \quad r: X \longrightarrow Y \longmapsto r_{\#} = e_{Y} \cdot \textit{T}_{\xi} r: X \longrightarrow Y$$

We call $a: X \longrightarrow Y$ unitary if $e_Y^{\circ} \circ a = a$ and $a \circ e_X^{\circ} = a$.

We consider now

$$(-)_{\#}: V\text{-Rel} \longrightarrow \mathfrak{T}\text{-Rel}, \quad r: X \longrightarrow Y \longmapsto r_{\#} = e_{Y} \cdot T_{\xi}r: X \longrightarrow Y$$

We have

 $\blacktriangleright (1_Y)_\# \circ a = e_Y^\circ \circ a \text{ and } a \circ (1_X)_\# = a \circ e_X^\circ.$

We call $a: X \longrightarrow Y$ unitary if $e_Y^{\circ} \circ a = a$ and $a \circ e_X^{\circ} = a$.

We consider now

$$(\ _{\text{-}})_{\#}: \text{V-Rel} \longrightarrow \text{\mathfrak{T}-Rel}, \quad r: X \longrightarrow Y \longmapsto r_{\#} = e_{Y} \cdot {\textit{T_{ξ}}} r: X \longrightarrow Y$$

We have

- $\blacktriangleright (1_Y)_\# \circ a = e_Y^\circ \circ a \text{ and } a \circ (1_X)_\# = a \circ e_X^\circ.$
- $ightharpoonup r_{\#}$ is unitary.

We call $a: X \longrightarrow Y$ unitary if $e_Y^{\circ} \circ a = a$ and $a \circ e_X^{\circ} = a$.

We consider now

$$(-)_{\#}: V\text{-Rel} \longrightarrow \mathfrak{T}\text{-Rel}, \quad r: X \longrightarrow Y \longmapsto r_{\#} = e_{Y} \cdot T_{\xi}r: X \longrightarrow Y$$

We have

- $(1_Y)_{\#} \circ a = e_Y^{\circ} \circ a \text{ and } a \circ (1_X)_{\#} = a \circ e_X^{\circ}.$
- $ightharpoonup r_{\#}$ is unitary.
- ► T satisfies (BC) \Rightarrow $s_{\#} \circ r_{\#} \leq (s \cdot r)_{\#}$.

T-Cat

T-category

A \mathcal{T} -category is a pair $(X, a: TX \longrightarrow X)$ such that $k \leq a(e_X(x), x), \quad T_{\varepsilon}a(\mathfrak{X}, \mathfrak{x}) \otimes a(\mathfrak{x}, x) \leq a(m_X(\mathfrak{X}), x)$ respectively $\mathrm{id}_X \leq a \cdot e_X, \quad a \cdot T_{\varepsilon}a \leq a \cdot m_X$ respectively $e_Y^{\circ} \leq a, \quad a \circ a \leq a.$

T-Cat

T-category

A \mathfrak{T} -category is a pair $(X, a : TX \longrightarrow X)$ such that

$$k \leq a(e_X(x),x), \quad T_{\varepsilon}a(\mathfrak{X},\mathfrak{x})\otimes a(\mathfrak{x},x) \leq a(m_X(\mathfrak{X}),x)$$
 respectively
$$\mathrm{id}_X \leq a \cdot e_X, \quad a \cdot T_{\varepsilon}a \leq a \cdot m_X$$
 respectively
$$e_X^{\circ} \leq a, \quad a \circ a \leq a.$$

T-functor

A map $f:(X,a)\longrightarrow (Y,b)$ is a $\mathfrak T$ -functor if $a(x,x)\leq b(Tf(x),f(x)) \qquad \text{respectively} \qquad f\cdot a\leq b\cdot Tf.$

► For each quantale V, \mathcal{I}_{V} -Cat \cong V-Cat.

- ▶ For each quantale V, \mathcal{I}_{v} -Cat $\cong V$ -Cat.
- ▶ In particular, \mathcal{I}_2 -Cat \cong Ord and \mathcal{I}_{P_+} -Cat \cong Met.

- ▶ For each quantale V, \mathcal{I}_{v} -Cat $\cong V$ -Cat.
- ▶ In particular, \mathcal{I}_2 -Cat \cong Ord and $\mathcal{I}_{P_{\perp}}$ -Cat \cong Met.
- ▶ \mathcal{U}_2 -Cat \cong Top.

- ▶ For each quantale V, \mathcal{I}_{v} -Cat $\cong V$ -Cat.
- ▶ In particular, \mathcal{I}_2 -Cat \cong Ord and \mathcal{I}_{P_1} -Cat \cong Met.
- ▶ \mathcal{U}_2 -Cat \cong Top.
- $\blacktriangleright \ \mathcal{U}_{\underline{P}_{\!\!\!\perp}}\text{-Cat}\cong \mathsf{App}.$

- ▶ For each quantale V, \mathcal{I}_{v} -Cat $\cong V$ -Cat.
- ▶ In particular, \mathcal{I}_2 -Cat \cong Ord and $\mathcal{I}_{P_{\!\perp}}$ -Cat \cong Met.
- ▶ \mathcal{U}_2 -Cat \cong Top.
- $ightharpoonup \mathcal{U}_{P_{\!\scriptscriptstyle\perp}}\text{-Cat}\cong\mathsf{App}.$
- $ightharpoonup \mathcal{L}_{\mathsf{V}}^{\otimes}\text{-Cat}\cong\mathsf{V}\text{-MultiCat}.$

- ► For each quantale V, \mathcal{I}_{v} -Cat \cong V-Cat.
- ▶ In particular, \mathcal{I}_2 -Cat \cong Ord and $\mathcal{I}_{P_{\perp}}$ -Cat \cong Met.
- ▶ \mathcal{U}_2 -Cat \cong Top.
- $ightharpoonup \mathcal{U}_{P_{\!\scriptscriptstyle\perp}}\text{-Cat}\cong \mathsf{App}.$
- $ightharpoonup \mathcal{L}_{v}^{\otimes}$ -Cat \cong V-MultiCat.

From now on we consider a strict theory $\mathfrak{T} = (\mathbb{T}, \mathsf{V}, \xi)$.

We have an embedding $Set^{\mathbb{T}} \hookrightarrow \mathfrak{T}\text{-Cat}$ and put $|X| = (TX, m_X)$.

We have an embedding $\operatorname{Set}^{\mathbb{T}} \hookrightarrow \mathfrak{T}\text{-Cat}$ and $\operatorname{put} |X| = (TX, m_X)$. We have $(_{-})_{\#} \dashv S$ where

$$\begin{array}{ll} \mathsf{S}: \mathfrak{T}\text{-}\mathsf{Cat} \longrightarrow \mathsf{V}\text{-}\mathsf{Cat}, & (\ _{\!\!\!-}\!\!)_{\#}: \mathsf{V}\text{-}\mathsf{Cat} \longrightarrow \mathfrak{T}\text{-}\mathsf{Cat}. \\ & (X,a) \longmapsto (X,a\cdot e_X) & X=(X,r) \longmapsto X_{\#}=(X,r_{\#}) \end{array}$$

We have an embedding $\operatorname{Set}^{\mathbb{T}} \hookrightarrow \mathfrak{T}\text{-}\operatorname{Cat}$ and $\operatorname{put} |X| = (TX, m_X)$. We have $(\ _{\! -})_{\#} \dashv \operatorname{S}$ where

S:
$$\mathbb{T}\text{-Cat} \longrightarrow V\text{-Cat},$$
 $(_)_{\#}: V\text{-Cat} \longrightarrow \mathbb{T}\text{-Cat}.$ $(X,a) \longmapsto (X,a\cdot e_X)$ $X=(X,r) \longmapsto X_{\#}=(X,r_{\#})$

T_c induces an endofunctor

$$T_{\varepsilon}: V\text{-Cat} \longrightarrow V\text{-Cat}, \qquad (X, r) \longmapsto (TX, T_{\varepsilon}r)$$

We have an embedding $\operatorname{Set}^{\mathbb{T}} \hookrightarrow \mathfrak{T}\text{-}\operatorname{Cat}$ and put $|X| = (TX, m_X)$. We have $(_)_{\#} \dashv S$ where

$$\begin{array}{ll} \mathsf{S}: \mathfrak{T}\text{-}\mathsf{Cat} \longrightarrow \mathsf{V}\text{-}\mathsf{Cat}, & (\ _{\cdot})_{\#}: \mathsf{V}\text{-}\mathsf{Cat} \longrightarrow \mathfrak{T}\text{-}\mathsf{Cat}. \\ & (X,a) \longmapsto (X,a \cdot e_X) & X = (X,r) \longmapsto X_{\#} = (X,r_{\#}) \end{array}$$

 T_{ε} induces an endofunctor

$$T_{\varepsilon}: V\text{-Cat} \longrightarrow V\text{-Cat}, \qquad (X, r) \longmapsto (TX, T_{\varepsilon}r)$$

and we have

$$V-Cat \xrightarrow{T_{\xi}} V-Cat$$

where M : \Im -Cat \longrightarrow V-Cat, $(X,a) \longmapsto (TX, T_{\varepsilon}a \cdot m_X^{\circ})$.

We define

$$hom_{\xi}: TV \times V \longrightarrow V, (v, v) \longmapsto hom(\xi(v), v).$$

Then $V = (V, hom_{\xi})$ is a \mathfrak{T} -category.

We define

$$hom_{\xi}: TV \times V \longrightarrow V, (v, v) \longmapsto hom(\xi(v), v).$$

Then $V = (V, hom_{\xi})$ is a \mathfrak{T} -category.

Some maps

1. $\wedge : V^I \longrightarrow V$ is a \mathfrak{T} -functor.

We define

$$\mathsf{hom}_{\xi}: \mathsf{TV} \times \mathsf{V} \longrightarrow \mathsf{V}, \ (\mathfrak{v}, \mathsf{v}) \longmapsto \mathsf{hom}(\xi(\mathfrak{v}), \mathsf{v}).$$

Then $V = (V, hom_{\xi})$ is a \mathfrak{T} -category.

Some maps

- 1. $\wedge : V^I \longrightarrow V$ is a \mathfrak{T} -functor.
- 2. $hom(v,_{-}): V \longrightarrow V$ is a \mathfrak{T} -functor for each $v \in V$ which satisfies $\xi \cdot Tv \ge v \cdot !$.

We define

$$hom_{\xi}: TV \times V \longrightarrow V, (v, v) \longmapsto hom(\xi(v), v).$$

Then $V = (V, hom_{\xi})$ is a \mathfrak{T} -category.

Some maps

- 1. $\wedge : V^I \longrightarrow V$ is a \mathfrak{T} -functor.
- 2. $hom(v,_{-}): V \longrightarrow V$ is a \mathfrak{T} -functor for each $v \in V$ which satisfies $\xi \cdot Tv \ge v \cdot !$.
- 3. $v \otimes_{-} : V \longrightarrow V$ is a \mathfrak{T} -functor for each $v \in V$ which satisfies $\xi \cdot Tv \leq v \cdot !$.

Compatible monoidal structures on V

We assume that a monoidal structure (V, \oplus, I) on V is given such that

- 1. $(u_1 \oplus v_1) \otimes (u_2 \oplus v_2) \leq (u_1 \otimes u_2) \oplus (v_1 \otimes v_2)$,
- 2. $l \otimes l \leq l$ and $k \leq k \oplus k$,

Compatible monoidal structures on V

We assume that a monoidal structure (V, \oplus, I) on V is given such that

- 1. $(u_1 \oplus v_1) \otimes (u_2 \oplus v_2) \leq (u_1 \otimes u_2) \oplus (v_1 \otimes v_2)$,
- 2. $l \otimes l \leq l$ and $k \leq k \oplus k$,

3.
$$T(V \times V) \xrightarrow{T(\oplus)} TV$$
 and $T1 \xrightarrow{TI} TV$
 $\langle \xi \cdot T\pi_1, \xi \cdot T\pi_2 \rangle \Big|_{\bigoplus} \ge \Big|_{\xi} \Big|_{\xi} \Big|_{\downarrow} \xi$
 $V \times V \xrightarrow{\oplus} V$, $1 \xrightarrow{I} V$.

Compatible monoidal structures on V

We assume that a monoidal structure (V, \oplus, I) on V is given such that

- 1. $(u_1 \oplus v_1) \otimes (u_2 \oplus v_2) \leq (u_1 \otimes u_2) \oplus (v_1 \otimes v_2)$,
- 2. $l \otimes l \leq l$ and $k \leq k \oplus k$,

- $ightharpoonup \oplus = \otimes$ (since \Im is strict).
- $\blacktriangleright \oplus = \land$.

Monoidal structures on V-Rel

Extending ⊕ to V-Rel

- ▶ For sets X and Y we put $X \oplus Y = X \times Y$.
- For V-relations $r: X \longrightarrow X'$ and $s: Y \longrightarrow Y'$ we define $r \oplus s: X \times Y \longrightarrow X' \times Y'$ by

$$r \oplus s((x,y),(x',y')) = r(x,x') \oplus s(y,y').$$

Then \oplus : V-Rel \times V-Rel \longrightarrow V-Rel is a lax functor, is associative and with $I: 1 \longrightarrow 1$ as neutral element.

Monoidal structures on V-Rel

Extending ⊕ to V-Rel

- ▶ For sets X and Y we put $X \oplus Y = X \times Y$.
- For V-relations $r: X \longrightarrow X'$ and $s: Y \longrightarrow Y'$ we define $r \oplus s: X \times Y \longrightarrow X' \times Y'$ by

$$r \oplus s((x,y),(x',y')) = r(x,x') \oplus s(y,y').$$

Then \oplus : V-Rel \times V-Rel \longrightarrow V-Rel is a lax functor, is associative and with $I: 1 \longrightarrow 1$ as neutral element.

Of course, we obtain a monoidal structure on V-Cat where $(X, a) \oplus (Y, b) = (X \times Y, a \oplus b)$ with neutral element E = (1, l).

I. Moerdijk, 1999

Hopf monad

A Hopf monad on a monoidal category E is a monad $\mathbb{T}=(T,e,m)$ on E equipped with a natural transformation

$$\tau: T(_{-} \otimes _{-}) \longrightarrow T(_{-}) \otimes T(_{-})$$

and a map $\theta: T(N) \longrightarrow N$ such that ...

I. Moerdijk, 1999

Hopf monad

A Hopf monad on a monoidal category E is a monad $\mathbb{T} = (T, e, m)$ on E equipped with a natural transformation

$$\tau: T(_{-} \otimes _{-}) \longrightarrow T(_{-}) \otimes T(_{-})$$

and a map $\theta: T(N) \longrightarrow N$ such that ...

Theorem

There is a bijective correspondence between such structures τ , θ on $\mathbb T$ and liftings of the monoidal structure on $\mathsf E$ to $\mathsf E^{\mathbb T}$.

Here:

$$(X, \alpha) \otimes (Y, \beta) = (X \otimes Y, (\alpha \otimes \beta) \cdot \tau_{X,Y}).$$

Lax Hopf monad

With $\tau_{X,Y}: T(X\times Y) \longrightarrow TX\times TY$ and $!:T1 \longrightarrow 1$, in our situation we have

$$T(X \oplus Y) \xrightarrow{\tau_{X,Y}} TX \oplus TY \qquad \text{and} \qquad T1 \xrightarrow{!} 1$$

$$T_{\xi}(r \oplus s) \downarrow \qquad \leq \qquad \downarrow T_{\xi}r \oplus T_{\xi}s \qquad \qquad T_{\xi}l \downarrow \qquad \leq \qquad \downarrow l$$

$$T(X' \oplus Y') \xrightarrow{\tau_{X',Y'}} TX' \oplus TY' \qquad \qquad T1 \xrightarrow{!} 1$$

making (T_{ε}, e, m) a lax Hopf monad on V-Rel.

Extending \oplus to \Im -Rel...

Let $r: X \longrightarrow X'$ and $s: Y \longrightarrow Y'$ be \mathfrak{T} -relations. We put $X \boxplus Y = X \times Y$ and define $r \boxplus s: X \times Y \longrightarrow X' \times Y'$ as

$$r \boxplus s = (r \oplus s) \cdot \tau_{X,Y}.$$

and $l_1: 1 \longrightarrow 1$ as the composite $T1 \stackrel{!}{\longrightarrow} 1 \stackrel{!}{\longrightarrow} 1$.

Extending \oplus to \Im -Rel...

Let $r: X \longrightarrow X'$ and $s: Y \longrightarrow Y'$ be \mathfrak{T} -relations. We put $X \boxplus Y = X \times Y$ and define $r \boxplus s: X \times Y \longrightarrow X' \times Y'$ as

$$r \boxplus s = (r \oplus s) \cdot \tau_{X,Y}.$$

and $l_1: 1 \longrightarrow 1$ as the composite $T1 \stackrel{!}{\longrightarrow} 1 \stackrel{/}{\longrightarrow} 1$. Then

- $(r' \boxplus s') \circ (r \boxplus s) \leq (r' \circ r) \boxplus (s' \circ s).$

Extending \oplus to \Im -Rel...

Let $r: X \longrightarrow X'$ and $s: Y \longrightarrow Y'$ be \mathfrak{T} -relations. We put $X \boxplus Y = X \times Y$ and define $r \boxplus s: X \times Y \longrightarrow X' \times Y'$ as

$$r \boxplus s = (r \oplus s) \cdot \tau_{X,Y}.$$

and $l_1: 1 \longrightarrow 1$ as the composite $T1 \stackrel{!}{\longrightarrow} 1 \stackrel{/}{\longrightarrow} 1$. Then

- $\triangleright e_X^\circ \boxplus e_Y^\circ \ge e_{X\times Y}^\circ,$
- $(r' \boxplus s') \circ (r \boxplus s) \leq (r' \circ r) \boxplus (s' \circ s).$

For $(_{-})_{\#}: V\text{-Rel} \longrightarrow \mathfrak{T}\text{-Rel}$ we have

- $\qquad (r \oplus r')_{\#} \leq r_{\#} \boxplus r'_{\#}.$
- ► $I_\# \leq I_!$.

... and to T-Cat

Theorem

Each monoidal structure (V, \oplus, I) on V compatible with $\mathfrak T$ defines a monoidal structure on $\mathfrak T$ -Cat where $(X,a)\oplus (Y,b)=(X\times Y,a\boxplus b)$ with neutral element $E=(1,I_!)$.

\dots and to \mathfrak{T} -Cat

Theorem

Each monoidal structure (V, \oplus, I) on V compatible with $\mathfrak T$ defines a monoidal structure on $\mathfrak T$ -Cat where $(X,a)\oplus (Y,b)=(X\times Y,a\boxplus b)$ with neutral element $E=(1,I_!)$.

For $(_{-})_{\#}: V\text{-Cat} \longrightarrow \mathfrak{I}\text{-Cat}$ we have $\mathfrak{I}\text{-functors}$ $(X \oplus Y)_{\#} \longrightarrow X_{\#} \oplus Y_{\#}$ and $E_{\#} \longrightarrow E$.

\dots and to \mathfrak{T} -Cat

Theorem

Each monoidal structure (V, \oplus, I) on V compatible with $\mathfrak T$ defines a monoidal structure on $\mathfrak T$ -Cat where $(X,a)\oplus (Y,b)=(X\times Y,a\boxplus b)$ with neutral element $E=(1,I_!)$.

- For $(_{-})_{\#}: V\text{-Cat} \longrightarrow \mathfrak{T}\text{-Cat}$ we have $\mathfrak{T}\text{-functors}$ $(X \oplus Y)_{\#} \longrightarrow X_{\#} \oplus Y_{\#} \quad \text{and} \quad E_{\#} \longrightarrow E.$
- ► For S : \mathfrak{T} -Cat \longrightarrow V-Cat we have \mathfrak{T} -isomorphisms $S(X \oplus Y) \longrightarrow S(X) \oplus S(Y) \quad \text{and} \quad S(E) \longrightarrow E.$

\dots and to \mathfrak{T} -Cat

Theorem

Each monoidal structure (V, \oplus, I) on V compatible with $\mathfrak T$ defines a monoidal structure on $\mathfrak T$ -Cat where $(X,a)\oplus (Y,b)=(X\times Y,a\boxplus b)$ with neutral element $E=(1,I_!)$.

- For $(_{-})_{\#}: V\text{-Cat} \longrightarrow \mathfrak{T}\text{-Cat}$ we have $\mathfrak{T}\text{-functors}$ $(X \oplus Y)_{\#} \longrightarrow X_{\#} \oplus Y_{\#} \quad \text{and} \quad E_{\#} \longrightarrow E.$
- ► For S : \mathfrak{T} -Cat \longrightarrow V-Cat we have \mathfrak{T} -isomorphisms $S(X \oplus Y) \longrightarrow S(X) \oplus S(Y) \quad \text{and} \quad S(E) \longrightarrow E.$
- For M : $\mathfrak{T}\text{-Cat} \longrightarrow V\text{-Cat}$ we have $\mathfrak{T}\text{-functors}$ $\tau_{X,Y}: \mathsf{M}(X \oplus Y) \longrightarrow \mathsf{M}(X) \oplus \mathsf{M}(Y)$ and $!: \mathsf{M}(E) \longrightarrow E$.

Closedness of T-Gph

Assume now that $u \oplus_{-} : V \to V$ has right adjoint $u \multimap_{-} : V \to V$.

Closedness of T-Gph

Assume now that $u \oplus _: V \to V$ has right adjoint $u \multimap _: V \to V$.

Let
$$X=(X,a),\ Y=(Y,b)$$
 be \Im -graphs. Then
$$X\multimap Y=\{f:X\longrightarrow Y\mid f:X\oplus G\longrightarrow Y\text{ is a }\Im\text{-functor}\}$$
 (where $G=(1,e_X^\circ)$)

Closedness of T-Gph

Assume now that $u \oplus_{-} : V \to V$ has right adjoint $u \multimap_{-} : V \to V$.

Let
$$X = (X, a)$$
, $Y = (Y, b)$ be \mathfrak{T} -graphs. Then

$$X \multimap Y = \{f : X \longrightarrow Y \mid f : X \oplus G \longrightarrow Y \text{ is a } T\text{-functor}\}$$

(where $G = (1, e_X^{\circ})$) with structure

$$a \multimap b(\mathfrak{p}, h) = \bigwedge_{\substack{\mathfrak{q} \in T(X \times (X \multimap Y)), x \in X}} (a(T\pi_X(\mathfrak{q}), x) \multimap b(T\operatorname{ev}(\mathfrak{q}), h(x))).$$

is a \mathcal{T} -graph as well. In fact, $X \oplus_{-} \dashv X \multimap_{-}$.

Lemma

Lemma

Theorem

 (V, \oplus, I) closed, strictly compatible with $T; X = (X, a) \in T$ -Cat.

- 1. $a \multimap b$ is transitive for each \mathfrak{T} -category Y = (Y, b) if
- $(*) \bigvee_{\mathfrak{x}\in TX} (T_{\xi}a(\mathfrak{X},\mathfrak{x})\oplus u)\otimes (a(\mathfrak{x},x_0)\oplus v)\geq a(m_X(\mathfrak{X}),x_0)\oplus (u\otimes v).$

Lemma

Theorem

 (V, \oplus, I) closed, strictly compatible with $T; X = (X, a) \in T$ -Cat.

- 1. a \multimap b is transitive for each \uppi -category Y = (Y, b) if
- $(*) \bigvee_{\mathfrak{x}\in TX} (T_{\xi}a(\mathfrak{X},\mathfrak{x})\oplus u)\otimes (a(\mathfrak{x},x_0)\oplus v)\geq a(m_X(\mathfrak{X}),x_0)\oplus (u\otimes v).$
- 2. If $a \multimap hom_{\xi}$ is transitive, then (*) for all $\mathfrak{X} \in T^2X$, $x_0 \in X$ and $u, v \in V$ with $\xi \cdot Tu = u \cdot !$ and $\xi \cdot Tv \leq v \cdot !$.

Corollary

Consider $\oplus = \otimes$. Let X = (X, a) be a \Im -category. Then

- 1. If $a \cdot T_{\xi} a = a \cdot m_X$, then hom(a, b) is transitive for each \mathfrak{T} -category Y = (Y, b).
- 2. $a \cdot T_{\varepsilon} a = a \cdot m_X$ provided that $hom(a, hom_{\xi})$ is transitive.

Corollary

Consider $\oplus = \otimes$. Let X = (X, a) be a \Im -category. Then

- 1. If $a \cdot T_{\varepsilon} a = a \cdot m_X$, then hom(a, b) is transitive for each \mathfrak{T} -category Y = (Y, b).
- 2. $a \cdot T_{\varepsilon} a = a \cdot m_X$ provided that $hom(a, hom_{\varepsilon})$ is transitive.
- 3. Each Eilenberg-Moore algebra (X, α) is closed in \mathfrak{T} -Cat.

Corollary

Consider $\oplus = \otimes$. Let X = (X, a) be a \Im -category. Then

- 1. If $a \cdot T_{\varepsilon} a = a \cdot m_X$, then hom(a, b) is transitive for each \mathfrak{T} -category Y = (Y, b).
- 2. $a \cdot T_{\varepsilon} a = a \cdot m_X$ provided that $hom(a, hom_{\varepsilon})$ is transitive.
- 3. Each Eilenberg-Moore algebra (X, α) is closed in \mathfrak{T} -Cat.
- 4. If $Te_X \cdot e_X = m_X^{\circ} \cdot e_X$, then $X_{\#} = (X, r_{\#})$ is closed for each V-category X = (X, r).

▶ Degree of compactness: $comp(X) = \bigwedge_{x \in TX} \bigvee_{x \in X} a(x, x)$.

- ▶ Degree of compactness: $comp(X) = \bigwedge_{x \in TX} \bigvee_{x \in X} a(x, x)$.
- ► X is \oplus -compact if $comp(X) \ge I$

- ▶ Degree of compactness: $comp(X) = \bigwedge_{x \in TX} \bigvee_{x \in X} a(x, x)$.
- ► X is \oplus -compact if comp $(X) \ge I$

Theorem

Let X = (X, a) be a \mathfrak{T} -category. TFAE.

- (i). X is ⊕-compact.
- (ii). $\bigvee : (X \multimap V) \longrightarrow V$ is a Υ -functor (where $X \oplus _ \dashv X \multimap _$).
- (iii). $\gamma: |X|_I \longrightarrow V$, $\mathfrak{x} \longmapsto \bigvee_{x \in X} a(\mathfrak{x}, x)$ is a \mathfrak{T} -functor.

- ▶ Degree of compactness: comp(X) = $\bigwedge_{x \in TX} \bigvee_{x \in X} a(x, x)$.
- ► X is \oplus -compact if $comp(X) \ge I$

Theorem

Let X = (X, a) be a \mathfrak{T} -category. TFAE.

- (i). X is ⊕-compact.
- (ii). $\bigvee : (X \multimap V) \longrightarrow V$ is a Υ -functor (where $X \oplus _ \dashv X \multimap _$).
- (iii). $\gamma: |X|_I \longrightarrow V$, $\mathfrak{x} \longmapsto \bigvee_{x \in X} a(\mathfrak{x}, x)$ is a \mathfrak{T} -functor.

Corollary

A \mathcal{T} -category X = (X, a) is \oplus -compact iff $\pi_Y : Y \oplus X \longrightarrow Y$ is closed for each \mathcal{T} -category Y = (Y, b).

T-modules

A $\operatorname{\mathcal{T}\text{-module}} \varphi: (X,a) {\:\longrightarrow\:\:} (Y,b)$ is a $\operatorname{\mathcal{T}\text{-relation}} \varphi: X {\:\longrightarrow\:\:} Y$ such that

$$b\circ\varphi\leq\varphi$$

and

$$\varphi \circ \mathbf{a} \leq \varphi$$
.

T-modules

A $\operatorname{\mathcal{T} ext{-}module} \varphi: (X,a) \longrightarrow (Y,b)$ is a $\operatorname{\mathcal{T} ext{-}relation} \varphi: X \longrightarrow Y$ such that

$$b \circ \varphi \le \varphi$$
 and $\varphi \circ a \le \varphi$.

Each \mathfrak{T} -functor $f:(X,a)\longrightarrow (Y,b)$ defines \mathfrak{T} -modules $f_*\dashv f^*$:

$$f_*: (X, a) \xrightarrow{} (Y, b); f_*(x, y) = b(Tf(x), y)$$

$$f^*: (Y,b) \xrightarrow{\bullet} (X,a); f^*(\mathfrak{y},x) = b(\mathfrak{y},f(x))$$

T-modules

A $\operatorname{\mathcal{T} ext{-}module} \varphi: (X,a) \longrightarrow (Y,b)$ is a $\operatorname{\mathcal{T} ext{-}relation} \varphi: X \longrightarrow Y$ such that

$$b \circ \varphi \le \varphi$$
 and $\varphi \circ a \le \varphi$.

Each \mathfrak{T} -functor $f:(X,a)\longrightarrow (Y,b)$ defines \mathfrak{T} -modules $f_*\dashv f^*$:

$$f_*: (X,a) \xrightarrow{} (Y,b); f_*(x,y) = b(Tf(x),y)$$

$$f^*: (Y,b) \xrightarrow{\bullet} (X,a); f^*(\mathfrak{y},x) = b(\mathfrak{y},f(x))$$

 $f:(X,a)\longrightarrow (Y,b)$ is fully faithful iff $a=(\mathrm{id}_X)_*=f^*\circ f_*$.

Liftings and extensions

In V-Rel

For $\psi: X \longrightarrow Z$, the composition maps

$$_{-}\cdot \psi: \mathsf{V-Rel}(Z,Y) \longrightarrow \mathsf{V-Rel}(X,Y)$$
 and $\psi\cdot_{-}: \mathsf{V-Rel}(Y,X) \longrightarrow \mathsf{V-Rel}(Y,Z)$

have respective right adjoints

Liftings and extensions

In T-Rel

For $\psi: X \longrightarrow Z$, the composition maps $_ \circ \psi$ still has a right adjoint but $\psi \circ _$ in general not.

Liftings and extensions

In T-Rel

For $\psi: X \longrightarrow Z$, the composition maps $_\circ \psi$ still has a right adjoint but $\psi \circ _$ in general not. We pass from

Modules as functors

The dual \mathfrak{T} -category X^{op} of X=(X,a) is defined as

$$X^{\operatorname{op}} = (\mathsf{M}(X)^{\operatorname{op}})_{\#}.$$

Modules as functors

The dual \mathfrak{T} -category X^{op} of X = (X, a) is defined as

$$X^{\operatorname{op}} = (M(X)^{\operatorname{op}})_{\#}.$$

Theorem

For \mathfrak{I} -categories (X,a) and (Y,b), and a \mathfrak{I} -relation $\psi: X \longrightarrow Y$, the following assertions are equivalent.

- i. $\psi: (X,a) \longrightarrow (Y,b)$ is a \mathcal{T} -module.
- ii. Both $\psi : |X| \otimes Y \longrightarrow V$ and $\psi : X^{op} \otimes Y \longrightarrow V$ are \Im -functors.

Let
$$X=(X,a)$$
 and $Y=(Y,b)$ be \mathfrak{T} -categories. We consider
$$\alpha_{Y,X}:\mathfrak{T}\text{-}\mathsf{Cat}(Y,X)\longrightarrow\mathfrak{T}\text{-}\mathsf{Map}(Y,X).$$

$$f\longmapsto f_*$$

Let
$$X = (X, a)$$
 and $Y = (Y, b)$ be \mathfrak{T} -categories. We consider

$$\alpha_{Y,X}: \operatorname{T-Cat}(Y,X) \longrightarrow \operatorname{T-Map}(Y,X).$$

$$f \longmapsto f_*$$

We call a \mathfrak{T} -category X

▶ L-separated if $\alpha_{Y,X}$ is injective, for all \mathfrak{T} -categories Y.

Let X = (X, a) and Y = (Y, b) be \mathcal{T} -categories. We consider

$$\alpha_{Y,X} : \operatorname{T-Cat}(Y,X) \longrightarrow \operatorname{T-Map}(Y,X).$$

$$f \longmapsto f_*$$

We call a \mathfrak{T} -category X

- ▶ L-separated if $\alpha_{Y,X}$ is injective, for all \mathfrak{T} -categories Y.
- ▶ L-complete if $\alpha_{Y,X}$ is surjective, for all \mathfrak{T} -categories Y.

Let X = (X, a) and Y = (Y, b) be \mathcal{T} -categories. We consider

$$\alpha_{Y,X} : \text{T-Cat}(Y,X) \longrightarrow \text{T-Map}(Y,X).$$

$$f \longmapsto f_*$$

We call a \mathfrak{T} -category X

- ▶ L-separated if $\alpha_{Y,X}$ is injective, for all \mathfrak{T} -categories Y.
- ▶ L-complete if $\alpha_{Y,X}$ is surjective, for all \mathfrak{T} -categories Y.

Note: It is enough to consider $Y = G = (1, e_1^{\circ})$.

Let X = (X, a) and Y = (Y, b) be \mathcal{T} -categories. We consider

$$\alpha_{Y,X} : \operatorname{T-Cat}(Y,X) \longrightarrow \operatorname{T-Map}(Y,X).$$

$$f \longmapsto f_*$$

We call a \mathfrak{T} -category X

- ▶ L-separated if $\alpha_{Y,X}$ is injective, for all \mathfrak{T} -categories Y.
- ▶ L-complete if $\alpha_{Y,X}$ is surjective, for all \mathfrak{T} -categories Y.

Note: It is enough to consider $Y = G = (1, e_1^{\circ})$.

Examples

In Met: L-complete=Cauchy-complete.

Let X = (X, a) and Y = (Y, b) be \mathcal{T} -categories. We consider

$$\alpha_{Y,X} : \operatorname{T-Cat}(Y,X) \longrightarrow \operatorname{T-Map}(Y,X).$$

$$f \longmapsto f_*$$

We call a \mathfrak{T} -category X

- ▶ L-separated if $\alpha_{Y,X}$ is injective, for all \mathfrak{T} -categories Y.
- ▶ L-complete if $\alpha_{Y,X}$ is surjective, for all \mathfrak{T} -categories Y.

Note: It is enough to consider $Y = G = (1, e_1^{\circ})$.

Examples

- In Met: L-complete=Cauchy-complete.
- In Top: L-complete=weakly sober.

Let X be a topological space. Then

▶ $M(X) = (UX, \leq)$ where $\mathfrak{x} \leq \mathfrak{y}$ if $\overline{\mathfrak{x}} \subseteq \mathfrak{y}$.

Let *X* be a topological space. Then

- ▶ $M(X) = (UX, \leq)$ where $\mathfrak{x} \leq \mathfrak{y}$ if $\overline{\mathfrak{x}} \subseteq \mathfrak{y}$.
- $ightharpoonup \varphi : 1 \xrightarrow{\ \ \ \ } X$ is essentially a closed subset $A \subseteq X$.

Let *X* be a topological space. Then

- ▶ $M(X) = (UX, \leq)$ where $\mathfrak{x} \leq \mathfrak{y}$ if $\overline{\mathfrak{x}} \subseteq \mathfrak{y}$.
- $ightharpoonup \varphi : 1 \xrightarrow{\ \ \ } X$ is essentially a closed subset $A \subseteq X$.
- ▶ $\psi: X \longrightarrow 1$ is essentially a Zariski- and down-closed subset $\mathcal{A} \subseteq UX$.

Let *X* be a topological space. Then

- ▶ $M(X) = (UX, \leq)$ where $\mathfrak{x} \leq \mathfrak{y}$ if $\overline{\mathfrak{x}} \subseteq \mathfrak{y}$.
- $ightharpoonup \varphi : 1 \xrightarrow{\ \ \ } X$ is essentially a closed subset $A \subseteq X$.
- ▶ $\psi: X \xrightarrow{} 1$ is essentially a Zariski- and down-closed subset $\mathcal{A} \subseteq UX$.

Let *X* be a topological space. Then

- ▶ $M(X) = (UX, \leq)$ where $\mathfrak{x} \leq \mathfrak{y}$ if $\overline{\mathfrak{x}} \subseteq \mathfrak{y}$.
- $ightharpoonup \varphi : 1 \xrightarrow{\ \ \ \ \ } X$ is essentially a closed subset $A \subseteq X$.
- ▶ $\psi: X \xrightarrow{} 1$ is essentially a Zariski- and down-closed subset $\mathcal{A} \subseteq UX$.

Therefore

$$\varphi$$
 is left adjoint $\iff \exists \mathfrak{x} \in UX . (A \in \mathfrak{x} \& \mathfrak{x} \to A)$
 $\iff A$ is irreducible.

Let *X* be a topological space. Then

- ▶ $M(X) = (UX, \leq)$ where $\mathfrak{x} \leq \mathfrak{y}$ if $\overline{\mathfrak{x}} \subseteq \mathfrak{y}$.
- $ightharpoonup \varphi : 1 \xrightarrow{\ \ \ \ \ } X$ is essentially a closed subset $A \subseteq X$.
- ▶ $\psi: X \xrightarrow{} 1$ is essentially a Zariski- and down-closed subset $\mathcal{A} \subseteq UX$.

Therefore

$$\varphi$$
 is left adjoint $\iff \exists \mathfrak{x} \in UX . (A \in \mathfrak{x} \& \mathfrak{x} \to A)$
 $\iff A$ is irreducible.

and

$$\varphi$$
 is representable by $x \iff A = \overline{\{x\}}$.

The Yoneda Lemma

For a
$$\mathfrak{T}$$
-category $X = (X, a)$, both

$$a: |X| \otimes X \longrightarrow V$$

and

 $a: X^{\operatorname{op}} \otimes X \longrightarrow V$

are T-functors.

The Yoneda Lemma

For a \mathcal{T} -category X = (X, a), both

 $a: |X| \otimes X \longrightarrow V$

and

 $a: X^{\operatorname{op}} \otimes X \longrightarrow V$

are \mathfrak{T} -functors. Hence we have the Yoneda functor $y:X\longrightarrow \mathsf{V}^{|X|}$ (and – less important – also $y_w:X\longrightarrow \mathsf{V}^{X^{\mathrm{op}}}$).

The Yoneda Lemma

For a
$$\mathcal{T}$$
-category $X = (X, a)$, both

$$a: |X| \otimes X \longrightarrow V$$

and

 $a: X^{\operatorname{op}} \otimes X \longrightarrow V$

are \mathfrak{T} -functors. Hence we have the Yoneda functor $y:X\longrightarrow V^{|X|}$ (and – less important – also $y_w:X\longrightarrow V^{X^{\mathrm{op}}}$).

Theorem

Let X = (X, a) be a \mathfrak{T} -category. Then

1. For all
$$x \in TX$$
 and $\psi \in V^{|X|}$, $\llbracket Ty(x), \psi \rrbracket \le \psi(x)$.

The Yoneda Lemma

For a
$$\mathfrak{T}$$
-category $X = (X, a)$, both

$$a: |X| \otimes X \longrightarrow V$$

and

$$a: X^{\operatorname{op}} \otimes X \longrightarrow V$$

are \mathfrak{T} -functors. Hence we have the Yoneda functor $y:X\longrightarrow V^{|X|}$ (and – less important – also $y_w:X\longrightarrow V^{X^{\mathrm{op}}}$).

Theorem

Let X = (X, a) be a \mathfrak{T} -category. Then

- 1. For all $x \in TX$ and $\psi \in V^{|X|}$, $\llbracket Ty(x), \psi \rrbracket \leq \psi(x)$.
- 2. Let $\psi \in V^{|X|}$. Then

$$\forall x \in TX . \psi(x) \leq \llbracket Ty(x), \psi \rrbracket \iff \psi : X^{op} \longrightarrow V \text{ is a \mathbb{T}-functor.}$$

We put
$$\hat{X} = (\hat{X}, \hat{a})$$
 where

$$\hat{X} = \{ \psi \in V^{|X|} \mid \psi : X^{op} \longrightarrow V \text{ is a } T\text{-functor} \}$$

considered as a subcategory of $V^{|X|}$.

If T1 = 1, we have a fully faithful functor $y : X \longrightarrow \hat{X}$.

We put $\hat{X} = (\hat{X}, \hat{a})$ where

$$\hat{X} = \{ \psi \in V^{|X|} \mid \psi : X^{op} \longrightarrow V \text{ is a } \mathcal{T}\text{-functor} \}$$

considered as a subcategory of $V^{|X|}$.

If T1 = 1, we have a fully faithful functor $y: X \longrightarrow \hat{X}$.

Remarks

▶ In V-Cat we have $\hat{X} = V^{X^{op}}$.

We put $\hat{X} = (\hat{X}, \hat{a})$ where

$$\hat{X} = \{ \psi \in V^{|X|} \mid \psi : X^{op} \longrightarrow V \text{ is a } \mathcal{T}\text{-functor} \}$$

considered as a subcategory of $V^{|X|}$.

If T1 = 1, we have a fully faithful functor $y: X \longrightarrow \hat{X}$.

Remarks

- In V-Cat we have $\hat{X} = V^{X^{op}}$.
- ► However, $y_w : X \longrightarrow V^{X^{op}}$ is not fully faithful in Top.

We put $\hat{X} = (\hat{X}, \hat{a})$ where

$$\hat{X} = \{ \psi \in V^{|X|} \mid \psi : X^{op} \longrightarrow V \text{ is a } T\text{-functor} \}$$

considered as a subcategory of $V^{|X|}$.

If T1 = 1, we have a fully faithful functor $y : X \longrightarrow \hat{X}$.

Remarks

- In V-Cat we have $\hat{X} = V^{X^{op}}$.
- ► However, $y_w : X \longrightarrow V^{X^{op}}$ is not fully faithful in Top.

From now on we assume T1 = 1.

Definition

Let X = (X, a) be a \mathfrak{T} -category. For $M \subseteq X$ we define

$$\overline{M} = \{ x \in X \mid i^* \circ x_* \dashv x^* \circ i_* \}.$$

and call \overline{M} the L-closure of M.

Definition

Let X = (X, a) be a \mathfrak{T} -category. For $M \subseteq X$ we define

$$\overline{M} = \{ x \in X \mid i^* \circ x_* \dashv x^* \circ i_* \}.$$

and call \overline{M} the L-closure of M.

Theorem

Then the following assertions are equivalent.

- i. $x \in \overline{M}$.
- ii. For all \mathfrak{T} -functors $\varphi, \psi: X \longrightarrow Y$ with L-separated codomain: if $\varphi|_{M} = \psi|_{M}$, then $\varphi(x) = \psi(x)$.
- iii. For all \mathfrak{T} -functors $\varphi, \psi: X \longrightarrow V$: if $\varphi|_M = \psi|_M$, then $\varphi(x) = \psi(x)$.

Further properties

▶ $f: X \longrightarrow Y$ is L-dense iff $f_* \circ f^* = (id_Y)_* = b$.

Further properties

- ▶ $f: X \longrightarrow Y$ is L-dense iff $f_* \circ f^* = (id_Y)_* = b$.
- ▶ *X* L-complete, $M \subseteq X$ L-closed $\Rightarrow M$ is L-complete.

Further properties

- ▶ $f: X \longrightarrow Y$ is L-dense iff $f_* \circ f^* = (id_Y)_* = b$.
- ▶ *X* L-complete, $M \subseteq X$ L-closed $\Rightarrow M$ is L-complete.
- ▶ X L-separated, $M \subseteq X$ L-complete $\Rightarrow M$ is L-closed.

Further properties

- ▶ $f: X \longrightarrow Y$ is L-dense iff $f_* \circ f^* = (id_Y)_* = b$.
- ▶ *X* L-complete, $M \subseteq X$ L-closed $\Rightarrow M$ is L-complete.
- ▶ X L-separated, $M \subseteq X$ L-complete $\Rightarrow M$ is L-closed.
- \hat{X} is closed in $V^{|X|}$.

Further properties

- ▶ $f: X \longrightarrow Y$ is L-dense iff $f_* \circ f^* = (id_Y)_* = b$.
- ▶ *X* L-complete, $M \subseteq X$ L-closed $\Rightarrow M$ is L-complete.
- ▶ X L-separated, $M \subseteq X$ L-complete $\Rightarrow M$ is L-closed.
- \hat{X} is closed in $V^{|X|}$.

Proposition

 $\psi \in \hat{X}$ is a right adjoint \mathfrak{T} -module if and only if $\psi \in \overline{y[X]}$.

Further properties

- $f: X \longrightarrow Y$ is L-dense iff $f_* \circ f^* = (id_Y)_* = b$.
- ▶ *X* L-complete, $M \subseteq X$ L-closed $\Rightarrow M$ is L-complete.
- ▶ X L-separated, $M \subseteq X$ L-complete $\Rightarrow M$ is L-closed.
- \triangleright \hat{X} is closed in $V^{|X|}$.

Proposition

 $\psi \in \hat{X}$ is a right adjoint \mathfrak{T} -module if and only if $\psi \in \overline{y[X]}$.

Proof.

$$\ldots \varphi = (\operatorname{id}_X)_* \hookrightarrow \psi$$
 and observe that $\varphi(x) = \hat{a}(e_{\hat{X}}(\psi) y(x))$ and $\xi \cdot T \varphi(\mathfrak{x}) = T_{\xi} \hat{a}(Te_{\hat{X}} \cdot e_{\hat{X}}(\psi), Ty(\mathfrak{x})) \ldots \quad \Box$

We put $\tilde{X} = \overline{y[X]}$, then $y: X \longrightarrow \tilde{X}$ is fully faithful and dense.

We put $\tilde{X} = \overline{y[X]}$, then $y: X \longrightarrow \tilde{X}$ is fully faithful and dense.

Theorem

The following assertions are equivalent.

- i. X is L-complete.
- ii. X is injective with respect to fully faithful dense \Im -functor.
- iii. $y: X \longrightarrow \tilde{X}$ has a left inverse \mathfrak{T} -functor $R: \tilde{X} \longrightarrow X$, i.e. $R \cdot y \cong \mathrm{id}_X$.

We put $\tilde{X} = \overline{y[X]}$, then $y: X \longrightarrow \tilde{X}$ is fully faithful and dense.

Theorem

The following assertions are equivalent.

- i. X is L-complete.
- ii. X is injective with respect to fully faithful dense \Im -functor.
- iii. $y: X \longrightarrow \tilde{X}$ has a left inverse \mathfrak{T} -functor $R: \tilde{X} \longrightarrow X$, i.e. $R \cdot y \cong \mathrm{id}_X$.

▶ V is injective w.r.t. fully faithful 𝒯-functors.

We put $\tilde{X} = \overline{y[X]}$, then $y: X \longrightarrow \tilde{X}$ is fully faithful and dense.

Theorem

The following assertions are equivalent.

- i. X is L-complete.
- ii. X is injective with respect to fully faithful dense \mathfrak{T} -functor.
- iii. $y: X \longrightarrow \tilde{X}$ has a left inverse \mathfrak{T} -functor $R: \tilde{X} \longrightarrow X$, i.e. $R \cdot y \cong \mathrm{id}_X$.

- ▶ V is injective w.r.t. fully faithful 𝒯-functors.
- ► X with $a \cdot T_{\varepsilon} a = a \cdot m_X$, Y L-complete $\Rightarrow Y^X$ L-complete.

We put $\tilde{X} = \overline{y[X]}$, then $y: X \longrightarrow \tilde{X}$ is fully faithful and dense.

Theorem

The following assertions are equivalent.

- i. X is L-complete.
- ii. X is injective with respect to fully faithful dense \mathfrak{T} -functor.
- iii. $y: X \longrightarrow \tilde{X}$ has a left inverse \mathfrak{T} -functor $R: \tilde{X} \longrightarrow X$, i.e. $R \cdot y \cong \mathrm{id}_X$.

- ▶ V is injective w.r.t. fully faithful 𝒯-functors.
- ► X with $a \cdot T_{\varepsilon} a = a \cdot m_X$, Y L-complete $\Rightarrow Y^X$ L-complete.
- ▶ $V^{|X|}$, \hat{X} , \tilde{X} are L-complete.

