Dualities for distributive spaces

Dirk Hofmann

Departamento de Matemática & CIDMA, Universidade de Aveiro, Portugal
http://www.mat.ua.pt/pessoais/dirk/
dirk@ua.pt

2011 Spring Southeastern AMS Sectional Meeting
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>For an ordered set X</td>
<td>For a topological space X</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
</tbody>
</table>

X ordered set: $x \leq x$, $(x \leq y \leq z) \Rightarrow (x \leq z)$
For an ordered set X

- $x \leq y$

For a topological space X

- $\xi \rightarrow x$

X top. space: $\hat{x} \rightarrow x$, $(\mathcal{X} \rightarrow \xi \rightarrow x) \Rightarrow (m_{X}(\mathcal{X}) \rightarrow x)$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
</tbody>
</table>

X top. space: $\mathcal{X} \to \xi \to x$, $(\mathcal{X} \to \xi \to x) \Rightarrow (m_X(\mathcal{X}) \to x)$ where $\mathcal{X} = \{A \subseteq X \mid x \in A\}$, $m_X(\mathcal{X}) = \{A \subseteq X \mid \mathcal{X} \in A^\#$

$A^\# = \{\xi \in UX \mid A \in \xi\}$.
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>For an ordered set X</td>
<td>For a topological space X</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
</tbody>
</table>

$= \text{morphism of type } X \to 2$

(Sierpiński space $2 = \{0, 1\}$ with $\{1\}$ closed)
For an ordered set X

$\ x \leq y$

up-closed subset

For a topological space X

$\xi \rightarrow x$

closed subset

$= \text{morphism of type } X \rightarrow 2$

(Sierpiński space $2 = \{0, 1\}$ with $\{1\}$ closed)

Example: $\uparrow x = \{y \in X \mid x \leq y\}$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
</tbody>
</table>

$= \text{morphism of type } X \rightarrow 2$

(Sierpiński space $2 = \{0, 1\}$ with $\{1\}$ closed)

Example: $\uparrow \xi = \{x \in X \mid \xi \rightarrow x\}$
<table>
<thead>
<tr>
<th>For an ordered set \mathcal{X}</th>
<th>For a topological space \mathcal{X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td></td>
</tr>
<tr>
<td>For an ordered set X</td>
<td>For a topological space X</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td></td>
</tr>
</tbody>
</table>

= morphism of type $X^{\text{op}} \to 2$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td></td>
</tr>
</tbody>
</table>

= morphism of type $X^{\text{op}} \rightarrow 2$ resp. $X \rightarrow 2^{\text{op}}$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td></td>
</tr>
</tbody>
</table>

$= \text{morphism of type } X^{op} \rightarrow 2 \text{ resp. } X \rightarrow 2^{op}$

Example: $\downarrow y = \{x \in X \mid x \leq y\}$
For an ordered set X

- $x \leq y$
 - up-closed subset
 - down-closed subset

For a topological space X

- $\xi \to x$
 - closed subset

= morphism of type $X^{\text{op}} \to 2$ resp. $X \to 2^{\text{op}}$

Example: $\downarrow x = \{\xi \in X \mid \xi \to x\} \subseteq UX$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td></td>
</tr>
</tbody>
</table>

Hence: $X^\text{op} = (UX, \tau)$
<table>
<thead>
<tr>
<th>For an ordered set \mathcal{X}</th>
<th>For a topological space \mathcal{X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td></td>
</tr>
</tbody>
</table>

Hence: $\mathcal{X}^{\text{op}} = (UX, \tau)$,
$\mathcal{A} \subseteq UX$ closed \iff $\mathcal{A} = \{\tau \mid \tau \supseteq f\}$ for some filter of opens $f \subseteq \mathcal{O}X$.

Note: The text contains repetition and possible redundancy, so the statement about \mathcal{X} being cocomplete is not really needed. The key point is the correspondence between up-closed and closed subsets under the duality.
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
</tbody>
</table>

Hence: $X^{\text{op}} = (UX, \tau)$,
$\mathcal{A} \subseteq UX$ closed \iff $\mathcal{A} = \{r \mid r \supseteq f\}$ for some filter of opens $f \subseteq \mathcal{O}X$.
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td></td>
</tr>
<tr>
<td>For an ordered set X</td>
<td>For a topological space X</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>For an ordered set X</td>
<td>For a topological space X</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td></td>
</tr>
<tr>
<td>For an ordered set X</td>
<td>For a topological space X</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>For an ordered set X</td>
<td>For a topological space X</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
</tbody>
</table>

$x \leq y$ whenever $\xi \to y$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
</tbody>
</table>

$x \leq y$ whenever $\hat{x} \rightarrow y$ ($\iff y \in \{x\}$)
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
</tbody>
</table>

Adjunction: for $f : X \rightarrow Y$ and $g : Y \rightarrow X$,
$f \dashv g \iff 1_X \leq g \cdot f \& f \cdot g \leq 1_Y \iff (Uf(\xi) \rightarrow y \iff \xi \rightarrow g(y))$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$x \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
</tbody>
</table>

Adjunction: for $f : X \rightarrow Y$ and $g : Y \rightarrow X$,
$f \dashv g \iff 1_X \leq g \cdot f \& f \cdot g \leq 1_Y \iff (Uf(\xi) \rightarrow y \iff \xi \rightarrow g(y))$
Fact: f left adjoint $\Rightarrow f$ preserves smallest limit points.
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td></td>
</tr>
<tr>
<td>For an ordered set X</td>
<td>For a topological space X</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>For an ordered set \mathcal{X}</td>
<td>For a topological space \mathcal{X}</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>For an ordered set X</td>
<td>For a topological space X</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>For an ordered set X</td>
<td>For a topological space X</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
</tbody>
</table>

In Ord: X cocomplete $\iff y_X : X \rightarrow 2^{X^{\text{op}}}$, $x \mapsto \downarrow x$ has left adjoint.
<table>
<thead>
<tr>
<th>For an ordered set \mathcal{X}</th>
<th>For a topological space \mathcal{X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
</tbody>
</table>

In Top: we wish to have a left adjoint of $y_{\mathcal{X}} : \mathcal{X} \rightarrow 2^{\mathcal{X}^{\text{op}}}$, $x \mapsto \downarrow x$.
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
</tbody>
</table>

In Top: we wish to have a left adjoint of $y_X : X \to 2^{X^{\text{op}}}$, $x \mapsto \downarrow x$.
Note: $\to : X^{\text{op}} \times X \to 2$ is continuous, X^{op} exponentiable.
<table>
<thead>
<tr>
<th>For an ordered set \mathcal{X}</th>
<th>For a topological space \mathcal{X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \mapsto x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete</td>
</tr>
</tbody>
</table>

In Top: we wish to have a left adjoint of $y_\mathcal{X} : \mathcal{X} \to 2^{\mathcal{X}^{\text{op}}}$, $x \mapsto \downarrow x$. Note: $\to : \mathcal{X}^{\text{op}} \times \mathcal{X} \to 2$ is continuous, \mathcal{X}^{op} exponentiable.
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete</td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td></td>
</tr>
</tbody>
</table>

$\mathbb{D} = (D, y, m)$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete</td>
</tr>
<tr>
<td>down-set monad \mathcal{D}</td>
<td></td>
</tr>
</tbody>
</table>

$\mathcal{D} = (D, y, m)$, where $DX = 2^{X^{\text{op}}}$,

$y_X : X \to DX, \ x \mapsto \downarrow x$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \mapsto \chi$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete</td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td></td>
</tr>
</tbody>
</table>

$\mathbb{D} = (D, y, m)$, where $DX = 2^{X^{\text{op}}}$,

$y_X : X \rightarrow DX$, $x \mapsto \downarrow x$, and

$m_X : DDX \rightarrow DX$, $\mathcal{A} \mapsto \bigcup \mathcal{A}$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete</td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td></td>
</tr>
</tbody>
</table>

$\mathbb{D} = (D, y, m)$, where $DX = 2^{X^{\text{op}}}$,

$y_X : X \rightarrow DX$, $x \mapsto \downarrow x$, and

$m_X : DDX \rightarrow DX$, $\mathcal{A} \mapsto \bigcup \mathcal{A} = \{ x \in X \mid y_X(x) \in \mathcal{A} \}$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete</td>
</tr>
<tr>
<td>cocomplete</td>
<td></td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td></td>
</tr>
</tbody>
</table>

For Top: $X \mapsto 2^{X^{\text{op}}}$

$y_X : X \to 2^{X^{\text{op}}}$

$m_X(\Psi) = \{ \xi \in UX \mid Uy_X(\xi) \in \Psi \}$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete</td>
</tr>
<tr>
<td>cocomplete</td>
<td></td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td></td>
</tr>
</tbody>
</table>

For Top: $X \hookrightarrow 2^{X^{\text{op}}} \simeq FX$ with basic opens $A^{\#} = \{f \mid A \in f\}$ (A open)

$y_X : X \to 2^{X^{\text{op}}}$

$m_X(\Psi) = \{\xi \in UX \mid Uy_X(\xi) \in \Psi\}$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \mapsto x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td></td>
</tr>
<tr>
<td>cocomplete</td>
<td></td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td></td>
</tr>
</tbody>
</table>

For Top: $X \mapsto 2^{X^{\text{op}}} \simeq FX$ with basic opens $A^\# = \{f \mid A \in f\}$ (A open)

$y_X : X \to 2^{X^{\text{op}}} \simeq FX$, $x \mapsto O(x)$

$m_X(\Psi) = \{\xi \in UX \mid Uy_X(\xi) \in \Psi\}$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete</td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td></td>
</tr>
</tbody>
</table>

For Top: $X \mapsto 2^{X^{\text{op}}} \simeq FX$ with basic opens $A^\# = \{f \mid A \in f\}$ (A open)

$y_X : X \rightarrow 2^{X^{\text{op}}} \simeq FX$, $x \mapsto \mathcal{O}(x)$

$m_X(\Psi) = \{\xi \in UX \mid U y_X(\xi) \in \Psi\}$ resp. $\{A \mid A^\# \in \Psi\}$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete</td>
</tr>
<tr>
<td>cocomplete</td>
<td>filter monad \mathbb{F}</td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td></td>
</tr>
</tbody>
</table>

For Top: $X \mapsto 2^{X^{\text{op}}} \simeq FX$ with basic opens $A^\# = \{ f \mid A \in f \}$ (A open)

$y_X : X \to 2^{X^{\text{op}}} \simeq FX$, $x \mapsto O(x)$

$m_X(\Psi) = \{ \xi \in UX \mid U y_X(\xi) \in \Psi \}$ resp. $\{ A \mid A^\# \in \Psi \}$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>continuous lattice</td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td>filter monad \mathbb{F}</td>
</tr>
<tr>
<td>For an ordered set X</td>
<td>For a topological space X</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>continuous lattice</td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td>filter monad \mathbb{F}</td>
</tr>
</tbody>
</table>

\mathbb{F} is of Kock–Zöberlein type:
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>continuous lattice</td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td>filter monad \mathbb{F}</td>
</tr>
</tbody>
</table>

\mathbb{F} is of Kock–Zöberlein type: $(Fy_X \leq y_{FX})$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>continuous lattice</td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td>filter monad \mathbb{F}</td>
</tr>
</tbody>
</table>

\mathbb{F} is of Kock–Zöberlein type: $(Fy_X \leq y_{FX})$

X algebra $\iff y_X$ right adjoint, X T_0 $\iff \alpha \cdot y_X = 1_X$.
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>continuous lattice</td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td>filter monad \mathbb{F}</td>
</tr>
<tr>
<td>non-empty down-closed subset</td>
<td></td>
</tr>
<tr>
<td>directed down-closed subset</td>
<td></td>
</tr>
<tr>
<td>For an ordered set X</td>
<td>For a topological space X</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>continuous lattice</td>
</tr>
<tr>
<td>cocomplete</td>
<td></td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td>filter monad \mathbb{F}</td>
</tr>
<tr>
<td>non-empty down-closed subset</td>
<td></td>
</tr>
<tr>
<td>directed down-closed subset</td>
<td></td>
</tr>
</tbody>
</table>

For $A \subseteq X$ down-closed
For an ordered set X

- $x \leq y$
- up-closed subset
- down-closed subset
- upper bound
- supremum
- cocomplete
- cocomplete
- down-set monad \mathbb{D}
- non-empty down-closed subset
- directed down-closed subset

For a topological space X

- $\xi \to x$
- closed subset
- filter of opens
- limit point
- smallest limit point
- cocomplete (but not really)
- continuous lattice
- filter monad \mathbb{F}

For $A \subseteq X$ down-closed

$$\text{Up}(X) \to 2, \quad B \mapsto \left[\exists x \in X . x \in A \land x \in B \right] = \left[A \cap B \neq \emptyset \right]$$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>continuous lattice</td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td>filter monad \mathbb{F}</td>
</tr>
<tr>
<td>non-empty down-closed subset</td>
<td></td>
</tr>
<tr>
<td>directed down-closed subset</td>
<td></td>
</tr>
</tbody>
</table>

For $A \subseteq X$ down-closed resp. $\xi \in FX$ ($= A \subseteq UX$ closed):

$\text{Up}(X) \rightarrow 2, \quad B \mapsto [\exists x \in X . \, x \in A \; \& \; x \in B] = [A \cap B \neq \emptyset]$

$\text{Cl}(X) \rightarrow 2, \quad B \mapsto [\exists \xi \in UX . \, \xi \in A \; \& \; \xi \in UB] = [A \cap UB \neq \emptyset]$
For an ordered set X

<table>
<thead>
<tr>
<th>$x \leq y$</th>
<th>up-closed subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>down-closed subset</td>
<td></td>
</tr>
<tr>
<td>upper bound</td>
<td></td>
</tr>
<tr>
<td>supremum</td>
<td></td>
</tr>
<tr>
<td>cocomplete</td>
<td></td>
</tr>
<tr>
<td>cocomplete</td>
<td></td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td></td>
</tr>
<tr>
<td>non-empty down-closed subset</td>
<td></td>
</tr>
<tr>
<td>directed down-closed subset</td>
<td></td>
</tr>
</tbody>
</table>

For a topological space X

<table>
<thead>
<tr>
<th>$\xi \rightarrow x$</th>
<th>closed subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>filter of opens</td>
<td></td>
</tr>
<tr>
<td>limit point</td>
<td></td>
</tr>
<tr>
<td>smallest limit point</td>
<td></td>
</tr>
<tr>
<td>cocomplete (but not really)</td>
<td></td>
</tr>
<tr>
<td>continuous lattice</td>
<td></td>
</tr>
<tr>
<td>filter monad \mathbb{F}</td>
<td></td>
</tr>
<tr>
<td>proper filter of opens</td>
<td></td>
</tr>
</tbody>
</table>

For $A \subseteq X$ down-closed resp. $\xi \in FX$ ($= A \subseteq UX$ closed):

$\text{Up}(X) \rightarrow 2$, $B \mapsto \exists x \in X. x \in A \land x \in B = [A \cap B \neq \emptyset]$

$\text{Cl}(X) \rightarrow 2$, $B \mapsto \exists \xi \in UX. \xi \in A \land \xi \in UB = [A \cap UB \neq \emptyset]$
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>continuous lattice</td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td>filter monad \mathbb{F}</td>
</tr>
<tr>
<td>non-empty down-closed subset</td>
<td>proper filter of opens</td>
</tr>
<tr>
<td>directed down-closed subset</td>
<td>prime filter of opens</td>
</tr>
<tr>
<td>For an ordered set X</td>
<td>For a topological space X</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>$x \leq y$</td>
<td>$\xi \rightarrow x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>continuous lattice</td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td>filter monad \mathcal{F}</td>
</tr>
<tr>
<td>non-empty down-closed subset</td>
<td>proper filter of opens</td>
</tr>
<tr>
<td>directed down-closed subset</td>
<td></td>
</tr>
</tbody>
</table>

Completely distributive:
Em Ord: X (cd) $\iff y_X \vdash \text{Sup}_X \vdash t$,.
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>continuous lattice</td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td>filter monad \mathcal{F}</td>
</tr>
<tr>
<td>non-empty down-closed subset</td>
<td>proper filter of opens</td>
</tr>
<tr>
<td>directed down-closed subset</td>
<td>prime filter of opens</td>
</tr>
</tbody>
</table>

Completely distributive:

Em Ord: X (cd) $\iff y_X \vdash \operatorname{Sup}_X \vdash t$, $\operatorname{CDOrd}_{\text{sup}} \simeq \operatorname{kar}(\text{Rel})$.
<table>
<thead>
<tr>
<th>For an ordered set X</th>
<th>For a topological space X</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \leq y$</td>
<td>$\xi \to x$</td>
</tr>
<tr>
<td>up-closed subset</td>
<td>closed subset</td>
</tr>
<tr>
<td>down-closed subset</td>
<td>filter of opens</td>
</tr>
<tr>
<td>upper bound</td>
<td>limit point</td>
</tr>
<tr>
<td>supremum</td>
<td>smallest limit point</td>
</tr>
<tr>
<td>cocomplete</td>
<td>cocomplete (but not really)</td>
</tr>
<tr>
<td>cocomplete</td>
<td>continuous lattice</td>
</tr>
<tr>
<td>down-set monad \mathbb{D}</td>
<td>filter monad \mathbb{F}</td>
</tr>
<tr>
<td>non-empty down-closed subset</td>
<td>proper filter of opens</td>
</tr>
<tr>
<td>directed down-closed subset</td>
<td></td>
</tr>
</tbody>
</table>

Completely distributive:

Em Ord: X (cd) $\iff y_X \vdash \text{Sup}_X \vdash t$, $\text{CDOrd}_{\text{sup}} \simeq \text{kar}(\text{Rel})$.

Em Top: X (cd) $\iff y_X \vdash \text{Sup}_X \vdash t$, $\text{CDTop}_{\text{sup}} \simeq ???$.
We will consider $\mathbb{T} = (T, y, m)$ being
- the filter monad \mathbb{F} on Top.
We will consider $\mathbb{T} = (T, y, m)$ being
- the filter monad \mathbb{F} on Top.
- the proper filter monad \mathbb{F}_1 on Top.

Theorem (Rosebrugh and Wood, 2004).
For a monad D on a category C where idempotents split:
$$\text{kar}(C_D) \cong \text{Spl}(C_D).$$
$(X, \alpha) \in \text{Spl}(C_D)$ whenever $\alpha \cdot t = 1_X$ for some homomorphism $t: X \to DX$ ($\iff X$ is projective wrt. those homomorphisms which split in C)
We will consider $\mathbb{T} = (T, y, m)$ being
- the filter monad \mathbb{F} on Top.
- the proper filter monad \mathbb{F}_1 on Top.
- the prime filter monad \mathbb{F}_ω on Top.

Theorem (Rosebrugh and Wood, 2004).
For a monad \mathbb{D} on a category \mathbb{C} where idempotents split:
\[
\text{kar}(\mathbb{C} \mathbb{D}) \cong \text{Spl}(\mathbb{C} \mathbb{D}).
\]
\[\text{(X,}\alpha) \in \text{Spl}(\mathbb{C} \mathbb{D}) \text{ whenever } \alpha \cdot t = 1_X \text{ for some homom. } t : X \to \mathbb{D}X\]
\[
\text{(}\iff X \text{ is projective wrt. those homomorphisms which split in } \mathbb{C}.)}
We will consider $T = (T, y, m)$ being
- the filter monad \mathbb{F} on Top.
- the proper filter monad \mathbb{F}_1 on Top.
- the prime filter monad \mathbb{F}_ω on Top.
- the completely prime filter monad \mathbb{F}_Ω on Top.

Theorem (Rosebrugh and Wood, 2004).
For a monad D on a category C where idempotents split:

$$\text{kar}(C_D) \cong \text{Spl}(C_D).$$

$(X, \alpha) \in \text{Spl}(C_D)$ whenever $\alpha \cdot t = 1$ X for some homom. $t: X \to DX$ $(\iff X$ is projective wrt. those homomorphisms which split in $C)$
We will consider $\mathbb{T} = (T, y, m)$ being

- the filter monad \mathbb{F} on Top.
- the proper filter monad \mathbb{F}_1 on Top.
- the prime filter monad \mathbb{F}_ω on Top.
- the completely prime filter monad \mathbb{F}_Ω on Top.

Theorem (Rosebrugh and Wood, 2004). For a monad \mathbb{D} on a category \mathbb{C} where idempotents split: $\text{kar}(\mathbb{C}_\mathbb{D}) \simeq \text{Spl}(\mathbb{C}^{\mathbb{D}})$.

$(X, \alpha) \in \text{Spl}(\mathbb{C}^{\mathbb{D}})$ whenever $\alpha \cdot t = 1_X$ for some homomorphism $t : X \to DX$.

$(\iff X$ is projective wrt. those homomorphisms which split in $\mathbb{C})$

\[
\begin{array}{ccc}
A & \longrightarrow & B \\
\uparrow & & \downarrow \\
X & \longrightarrow & \\
\end{array}
\]
We will consider $\mathbb{T} = (T, y, m)$ being
- the filter monad \mathbb{F} on Top.
- the proper filter monad \mathbb{F}_1 on Top.
- the prime filter monad \mathbb{F}_ω on Top.
- the completely prime filter monad \mathbb{F}_Ω on Top.

Theorem (Rosebrugh and Wood, 2004). *For a monad \mathbb{D} on a category \mathcal{C} where idempotents split:* $\text{kar}(\mathcal{C}_\mathbb{D}) \simeq \text{Spl}(\mathcal{C}_\mathbb{D})$.

$(X, \alpha) \in \text{Spl}(\mathcal{C}_\mathbb{D})$ whenever $\alpha \cdot t = 1_X$ for some homomorphism $t : X \to DX$

(\iff X is projective wrt. those homomorphisms which split in \mathcal{C})

Theorem (Gleason, 1954). *The projective compact Hausdorff spaces are precisely the extremely disconnected ones.*

Recall: $\text{CompHaus} \simeq \text{Set}^\mathcal{U}$, X extremely disconnected whenever \overline{A} open for every open $A \subseteq X$.
Let X be a topological space.
Let X be a topological space.

Theorem. X is \mathbb{F}_ω-algebra $\iff X$ is sober, core-compact, stable.

Let X be a topological space.

1. $U \ll V$ if every prime filter f with $U \in f$ has a limit point in V.
2. X is **core-compact** if $U \in \mathcal{O}(x) \Rightarrow \exists \ V \in \mathcal{O}(x)$ with $U \ll V$.
3. X is **stable** if $U_i \ll V_i \Rightarrow (\bigcap_{i=1}^{n} V_i) \ll (\bigcap_{i=1}^{n} U_i)$.

Theorem. X is \mathbb{F}_ω-algebra \iff X is sober, core-compact, stable.

Let X be a topological space.

Proposition. X is a \mathbb{F}_ω-algebra $\iff X$ is T_0, has “suprema” of prime filters, and $f \mapsto \text{Sup } f$ is continuous.

1. $U \ll V$ if every prime filter f with $U \in f$ has a limit point in V.
2. X is **core-compact** if $U \in O(x) \Rightarrow \exists V \in O(x)$ with $U \ll V$.
3. X is **stable** if $U_i \ll V_i \Rightarrow (\bigcap_{i=1}^n V_i) \ll (\bigcap_{i=1}^n U_i)$.

Theorem. X is \mathbb{F}_ω-algebra $\iff X$ is sober, core-compact, stable.

Let X be a topological space.

Proposition. X is a \mathbb{F}_ω-algebra $\iff X$ is T_0, has “suprema” of prime filters, and $f \mapsto \text{Sup } f$ is continuous.

1. $U \ll V$ if every prime filter f with $U \in f$ has a limit point in V.
2. X is core-compact if $U \in \mathcal{O}(x) \Rightarrow \exists V \in \mathcal{O}(x)$ with $U \ll V$.
3. X is stable if $U_i \ll V_i \Rightarrow (\bigcap_{i=1}^n V_i) \ll (\bigcap_{i=1}^n U_i)$.

Lemma. For X core-compact:

X is stable $\iff \lim f$ is irreducible for all f prime.

Theorem. X is \mathbb{F}_ω-algebra $\iff X$ is sober, core-compact, stable.

Let X be a topological space.

Proposition. X is a T_α-algebra \iff X is T_0, has “suprema” of α-filters, and $f \mapsto \text{Sup} f$ is continuous.

1. $U \ll V$ if every prime filter \mathfrak{f} with $U \in \mathfrak{f}$ has a limit point in V.
2. X is core-compact if $U \in \mathcal{O}(x) \Rightarrow \exists V \in \mathcal{O}(x)$ with $U \ll V$.
3. X is stable if $U_i \ll V_i \Rightarrow (\bigcap_{i=1}^n V_i) \ll (\bigcap_{i=1}^n U_i)$.

Lemma. For X core-compact:

X is stable \iff lim \mathfrak{f} is irreducible for all \mathfrak{f} prime.

Theorem. X is \mathbb{F}_ω-algebra \iff X is sober, core-compact, stable.

Let X be a topological space.

Proposition. X is a \mathbb{T}-algebra \iff X is T_0, has “suprema” of α-filters, and $f \mapsto \text{Sup } f$ is continuous.

1. $U \ll_{\mathbb{T}} V$ if every $f \in TX$ with $U \in f$ has a limit point in V.
2. X is \mathbb{T}-core-compact if $U \in \mathcal{O}(x) \Rightarrow \exists V \in \mathcal{O}(x)$ with $V \ll_{\mathbb{T}} U$.
3. X is \mathbb{T}-stable if $V_i \ll_{\mathbb{T}} U_i \Rightarrow (\bigcap_{i=1}^n V_i) \ll_{\mathbb{T}} (\bigcap_{i=1}^n U_i)$.

Lemma. For X core-compact:
X is stable \iff lim f is irreducible for all f prime.

Theorem. X is \mathbb{F}_ω-algebra \iff X is sober, core-compact, stable.

Let X be a topological space.

Proposition. X is a \mathbb{T}-algebra $\iff X$ is T_0, has “suprema” of α-filters, and $f \mapsto \text{Sup } f$ is continuous.

1. $U \ll_T V$ if every $f \in TX$ with $U \in f$ has a limit point in V.
2. X is \mathbb{T}-core-compact if $U \in \mathcal{O}(x) \Rightarrow \exists V \in \mathcal{O}(x)$ with $V \ll_T U$.
3. X is \mathbb{T}-stable if $V_i \ll_T U_i \Rightarrow (\bigcap_{i=1}^{n} V_i) \ll_T (\bigcap_{i=1}^{n} U_i)$.

Lemma. For X \mathbb{T}-core-compact:

X is \mathbb{T}-stable \iff lim f is irreducible for all $f \in TX$.

Theorem. X is \mathbb{F}_ω-algebra $\iff X$ is sober, core-compact, stable.

Let \(X \) be a topological space.

Proposition. \(X \) is a \(\mathbb{T} \)-algebra \(\iff \) \(X \) is \(T_0 \), has “suprema” of \(\alpha \)-filters, and \(f \mapsto \text{Sup } f \) is continuous.

1. \(U \ll_{\mathbb{T}} V \) if every \(f \in TX \) with \(U \in f \) has a limit point in \(V \).
2. \(X \) is \(\mathbb{T} \)-core-compact if \(U \in \mathcal{O}(x) \Rightarrow \exists \ V \in \mathcal{O}(x) \) with \(V \ll_{\mathbb{T}} U \).
3. \(X \) is \(\mathbb{T} \)-stable if \(V_i \ll_{\mathbb{T}} U_i \Rightarrow (\bigcap_{i=1}^{n} V_i) \ll_{\mathbb{T}} (\bigcap_{i=1}^{n} U_i) \).

Lemma. For \(X \) \(\mathbb{T} \)-core-compact:
\(X \) is \(\mathbb{T} \)-stable \(\iff \) \(\lim f \) is irreducible for all \(f \in TX \).

Theorem. \(X \) is \(\mathbb{T} \)-algebra \(\iff \) \(X \) is sober, \(\mathbb{T} \)-core-compact, \(\mathbb{T} \)-stable.

Let X be a \mathbb{T}-algebra with structure $\text{Sup} : TX \to X$.

X is called \mathbb{T}-disconnected if $\mu(A)$ is open, for every $A \in \mathcal{O}_X$.
Let X be a \mathbb{T}-algebra with structure $\text{Sup} : TX \rightarrow X$.

- For $A \in \mathcal{O}X$: $\mu(A) = \{x \in X \mid x = \text{Sup}(f) \text{ for some } f \in TX, A \in f\}$.

X is called \mathbb{T}-disconnected if $\mu(A)$ is open, for every $A \in \mathcal{O}X$.
Let X be a \mathbb{T}-algebra with structure $\text{Sup}: TX \to X$.

- For $A \in \mathcal{O}X$: $\mu(A) = \{x \in X \mid x = \text{Sup}(f) \text{ for some } f \in TX, A \in f\}$.
- X is called \mathbb{T}-disconnected if $\mu(A)$ is open, for every $A \in \mathcal{O}X$.
Let X be a \mathbb{T}-algebra with structure $\text{Sup} : TX \to X$.

- For $A \in \mathcal{O}X$: $\mu(A) = \{x \in X \mid x = \text{Sup}(f) \text{ for some } f \in TX, A \in f\}$.
- X is called \mathbb{T}-disconnected if $\mu(A)$ is open, for every $A \in \mathcal{O}X$.

For $A, B \in \mathcal{O}X$ and $(A_i)_{i \in I}$ a family of opens, $\#(I) < \alpha \in \{0, 1, \omega, \Omega\}$:

1. $A \subseteq \mu(A)$.
2. If $A \subseteq B$, then $\mu(A) \subseteq \mu(B)$.
3. $\mu(\bigcup_{i \in I} A_i) \subseteq \bigcup_{i \in I} \mu(A_i)$
4. $A \cap \mu(B) \subseteq \mu(A \cap B)$.
5. If X is \mathbb{T}-disconnected, then $\mu\mu(A) \subseteq \mu(A)$.
6. If X is \mathbb{T}-disconnected, then $\mu(A \cap B) = \mu(A) \cap \mu(B)$.
Let X be a \mathbb{T}-algebra with structure $\text{Sup} : TX \to X$.

- For $A \in \mathcal{O}X$: $\mu(A) = \{x \in X | x = \text{Sup}(f) \text{ for some } f \in TX, A \in f\}$.
- X is called \mathbb{T}-disconnected if $\mu(A)$ is open, for every $A \in \mathcal{O}X$.

Lemma. If $t \vdash \text{Sup}$, then $t(x) = \{A \in \mathcal{O}X | x \in \mu(A)\}$.
Let \(X \) be a \(\mathbb{T} \)-algebra with structure \(\text{Sup} : TX \to X \).

- For \(A \in \mathcal{O}X \): \(\mu(A) = \{ x \in X \mid x = \text{Sup}(f) \text{ for some } f \in TX, A \in f \} \).
- \(X \) is called \(\mathbb{T} \)-disconnected if \(\mu(A) \) is open, for every \(A \in \mathcal{O}X \).

Lemma. If \(t \dashv \text{Sup} \), then \(t(x) = \{ A \in \mathcal{O}X \mid x \in \mu(A) \} \).

- If \(t \dashv \text{Sup} \), then \(\mu(A) = t^{-1}(A\#) \).
Let X be a T-algebra with structure $\text{Sup} : TX \to X$.

- For $A \in \mathcal{OX}$: $\mu(A) = \{x \in X \mid x = \text{Sup}(f) \text{ for some } f \in TX, A \in f\}$.
- X is called T-disconnected if $\mu(A)$ is open, for every $A \in \mathcal{OX}$.

Lemma. If $t \dashv \text{Sup}$, then $t(x) = \{A \in \mathcal{OX} \mid x \in \mu(A)\}$.

- If $t \dashv \text{Sup}$, then $\mu(A) = t^{-1}(A\#)$.
- If X is T-disconnected, then $t(x) := \{A \in \mathcal{OX} \mid x \in \mu(A)\}$ defines a continuous map $t : X \to TX$.
Let X be a \mathbb{T}-algebra with structure $\text{Sup} : TX \to X$.

- For $A \in \mathcal{O}X$: $\mu(A) = \{ x \in X \mid x = \text{Sup}(f) \text{ for some } f \in TX, A \in f \}$.
- X is called \mathbb{T}-disconnected if $\mu(A)$ is open, for every $A \in \mathcal{O}X$.

Lemma. If $t \dashv \text{Sup}$, then $t(x) = \{ A \in \mathcal{O}X \mid x \in \mu(A) \}$.

- If $t \dashv \text{Sup}$, then $\mu(A) = t^{-1}(A\#)$.
- If X is \mathbb{T}-disconnected, then $t(x) := \{ A \in \mathcal{O}X \mid x \in \mu(A) \}$ defines a continuous map $t : X \to TX$.

Lemma. If X is \mathbb{T}-disconnected, then t is a \mathbb{T}-homomorphism.
Let X be a \mathbb{T}-algebra with structure $\text{Sup} : TX \rightarrow X$.

- For $A \in \mathcal{O}X$: $\mu(A) = \{x \in X \mid x = \text{Sup}(f) \text{ for some } f \in TX, A \in f\}$.
- X is called \mathbb{T}-disconnected if $\mu(A)$ is open, for every $A \in \mathcal{O}X$.

Lemma. If $t \dashv \text{Sup}$, then $t(x) = \{A \in \mathcal{O}X \mid x \in \mu(A)\}$.

- If $t \dashv \text{Sup}$, then $\mu(A) = t^{-1}(A\#)$.
- If X is \mathbb{T}-disconnected, then $t(x) := \{A \in \mathcal{O}X \mid x \in \mu(A)\}$ defines a continuous map $t : X \rightarrow TX$.

Lemma. If X is \mathbb{T}-disconnected, then t is a \mathbb{T}-homomorphism.

Lemma. If X is \mathbb{T}-disconnected, then $\text{Sup}(t(x)) = x$.
Let X be a \mathbb{T}-algebra with structure $\text{Sup} : TX \to X$.

- For $A \in \mathcal{O}X$: $\mu(A) = \{x \in X \mid x = \text{Sup}(f) \text{ for some } f \in TX, A \in f\}$.
- X is called \mathbb{T}-disconnected if $\mu(A)$ is open, for every $A \in \mathcal{O}X$.

\textbf{Lemma.} If $t \vdash \text{Sup}$, then $t(x) = \{A \in \mathcal{O}X \mid x \in \mu(A)\}$.

- If $t \vdash \text{Sup}$, then $\mu(A) = t^{-1}(A#)$.
- If X is \mathbb{T}-disconnected, then $t(x) := \{A \in \mathcal{O}X \mid x \in \mu(A)\}$ defines a continuous map $t : X \to TX$.

\textbf{Lemma.} If X is \mathbb{T}-disconnected, then t is a \mathbb{T}-homomorphism.

\textbf{Lemma.} If X is \mathbb{T}-disconnected, then $\text{Sup}(t(x)) = x$.

\textbf{Theorem.} X is \mathbb{T}-distributive \iff X is \mathbb{T}-disconnected.
About $\text{kar}(C_T) \simeq \text{Spl}(C^T)$
About $\text{kar}(C_T) \simeq \text{Spl}(C^T)$

- idempotent:

\[
\begin{array}{ccc}
X & \xrightarrow{e} & X \\
\downarrow & & \downarrow \\
\Downarrow & & \Downarrow \\
\end{array}
\]

$e \cdot e = e$
About \(\text{kar}(C_T) \cong \text{Spl}(C_T) \)

- idempotent:

\[
\begin{align*}
 & \quad \quad \quad E \\
 r & \quad \rightarrow & s \\
 \quad \quad \quad X & \quad \rightarrow & X \\
 \quad \quad \quad e & \quad \rightarrow & X \\
\end{align*}
\]

\[r \cdot s = 1_E \quad \quad e \cdot e = e \]
About $\text{kar}(C^T) \simeq \text{Spl}(C^T)$

- idempotent:

\[
\begin{array}{c}
\xymatrix{ & E
 \ar[dl]_r
 \ar[dr]^s \\
X & X
 \ar[r]^{1_E} & X \\
X & X
 \ar[ur]_e
}
\end{array}
\]

$r \cdot s = 1_E$

$e \cdot e = e$
About $\text{kar}(C_T) \simeq \text{Spl}(C^T)$

- idempotent:

\[
\begin{array}{ccc}
 & E & \\
 r & s & \\
 X & \xrightarrow{e} & X \xrightarrow{\frac{1}{e}} X \\
 e & & e \cdot e = e
\end{array}
\]

\[r \cdot s = 1_E\]

- idempotents split in C whenever all are of this form.
About $\text{kar}(C_T) \simeq \text{Spl}(C^T)$

- idempotent: \[\begin{array}{ccc}
 & E & \\
 r \downarrow & & s \downarrow \\
 X & \xrightarrow{e} & X \\
 1 \quad e \downarrow & & e \downarrow \\
 e \quad & X & \\
\end{array} \]

\[r \cdot s = 1_E \]
\[e \cdot e = e \]

- idempotents split in C whenever all are of this form.
- idempotents split completion can be calculated as follows:
About $\text{kar}(\mathbb{C}_T) \simeq \text{Spl}(\mathbb{C}_T)$

- idempotent: \[E \xrightarrow{r} s \] \[r \cdot s = 1_E \]

\[X \xrightarrow{e} X \xrightarrow{1} X \]
\[e \cdot e = e \]

- idempotents split in \mathbb{C} whenever all are of this form.

- idempotents split completion can be calculated as follows:
 - embed \mathbb{C} fully into a category X where idempotents split,
About \(\text{kar}(C_T) \simeq \text{Spl}(C^T) \)

- idempotent:

 \[
 \begin{array}{ccc}
 & E & \\
 r & \downarrow & s \\
 X & \rightarrow & X \overset{1}{\rightarrow} X \\
 e & \downarrow & e \\
 & X & \\
 \end{array}
 \]

 \[r \cdot s = 1_E \]

- idempotents split in \(C \) whenever all are of this form.

- idempotents split completion can be calculated as follows:
 - embed \(C \) fully into a category \(X \) where idempotents split,
 - then the idempotents split completion of \(C \) is "the closure of \(C \) in \(X \)".

\[X \in \overline{C} : \iff X \text{ splits an idempotent in } C \iff X \text{ is a split subobject of some object in } C \]
About $\text{kar}(C_T) \simeq \text{Spl}(C_T^T)$

- idempotent:
 \[\begin{array}{ccc}
 & & E \\
 & r & \\
 X & \xrightarrow{e} & X \\
 & s & \\
 & \downarrow 1 & \downarrow e \\
 & & X
 \end{array} \quad r \cdot s = 1_E \\
 e \cdot e = e

- idempotents split in C whenever all are of this form.

- idempotents split completion can be calculated as follows:
 - embed C fully into a category X where idempotents split,
 - then the idempotents split completion of C is “the closure of C in X”.

\[X \in \overline{C} : \iff X \text{ splits an idempotent in } C \iff X \text{ is a split subobject of some object in } C \]

Example: $C_T \xrightarrow{\cdot \cdot \cdot} C^T_T$

\[\begin{array}{ccc}
 & & C_T \\
 & \downarrow & \\
 C_T & \xrightarrow{\cdot \cdot \cdot} & C^T_T
 \end{array} \]
About $\text{kar}(C_T) \simeq \text{Spl}(C^T)$

- idempotent:

\[E \xrightarrow{r} X \xrightarrow{e} X \xrightarrow{1} X \xrightarrow{e} X \]
\[e \cdot e = e \quad r \cdot s = 1_E \]

- idempotents split in C whenever all are of this form.

- idempotents split completion can be calculated as follows:

 1. embed C fully into a category X where idempotents split,
 2. then the idempotents split completion of C is “the closure of C in X”.

\[X \in \overline{C} : \iff X \text{ splits an idempotent in } C \]
\[\iff X \text{ is a split subobject of some object in } C \]

Example:

\[
\begin{array}{ccc}
C_T & \to & C^T \\
\downarrow & & \downarrow \\
\overline{C_T} & \to & \overline{C}^T
\end{array}
\]

$\overline{C_T} \simeq \text{Spl}(C^T)$
About $\text{kar}(C_{\mathbb{T}}) \simeq \text{Spl}(C^\mathbb{T})$, $\mathbb{T} = \mathbb{F}_\alpha$, $\alpha \in \{0, 1, \omega, \Omega\}$, $C = \text{Top}$.
About $\text{kar}(C_T) \simeq \text{Spl}(C_T^\top)$, $T = \mathbb{F}_\alpha$, $\alpha \in \{0, 1, \omega, \Omega\}$, $C = \text{Top}$.

T is also induced by $\text{SLat}^{\text{op}}_{\wedge, \alpha} \Rightarrow \xrightarrow{\eta} \xrightarrow{\mathcal{O}} \xleftarrow{\mathcal{O}} \xleftarrow{\varepsilon} \text{Top}$,
About $\text{kar}(C_T) \simeq \text{Spl}(C^T)$, $\mathbb{T} = F_\alpha$, $\alpha \in \{0, 1, \omega, \Omega\}$, $C = \text{Top}$.

\mathbb{T} is also induced by $\text{SLat}^{\text{op}}_{\land, \alpha} \nabla \xrightarrow{\eta} \xleftarrow{\epsilon} \text{Top}$, which gives fully faithful $\mathcal{O} : \text{Top}_T \to \text{SLat}^{\text{op}}_{\land, \alpha}$.
About $\text{kar}(C_T) \simeq \text{Spl}(C^T)$, $T = F_\alpha$, $\alpha \in \{0, 1, \omega, \Omega\}$, $C = \text{Top}$.

T is also induced by $\text{SLat}^{\text{op}}_{\land, \alpha} \xrightarrow{\eta} \xleftarrow{\varepsilon} \text{Top}$, $\text{Top} \xrightarrow{\mathcal{O}} \xleftarrow{\mathcal{F}_\alpha} \text{SLat}^{\text{op}}_{\land, \alpha}$.

which gives fully faithful $\mathcal{O} : \text{Top}_T \rightarrow \text{SLat}^{\text{op}}_{\land, \alpha}$.

Lemma. $L \in \overline{\text{Top}_T} \iff L$ is a frame, $\text{hom}(L, 2)$ separates points.
About \(\text{kar}(C_T) \cong \text{Spl}(C^T) \), \(T = F_\alpha, \alpha \in \{0, 1, \omega, \Omega\} \), \(C = \text{Top} \).

\(T \) is also induced by \(\text{SLat}^{\text{op}}_{\land, \alpha} \xrightarrow{\eta} \xleftarrow{\phi} \xrightarrow{\epsilon} \text{Top} \),

which gives fully faithful \(\phi : \text{Top}_T \rightarrow \text{SLat}^{\text{op}}_{\land, \alpha} \).

Lemma. \(L \in \overline{\text{Top}}_T \iff L \) is a frame, \(\text{hom}(L, 2) \) separates points.

Theorem. \(\text{Frm}^{\text{op}}_{\land, \alpha} \cong \text{Spl}(\text{Top}^{F_\alpha}) \). Furthermore, a topological space \(X \) is \(F_\alpha \)-distributive if and only if \(X \) is the \(\alpha \)-filter space of a frame.
About \(\text{kar}(C_T) \simeq \text{Spl}(C^T) \), \(T = F_\alpha, \ \alpha \in \{0, 1, \omega, \Omega\}, \ C = \text{Top} \).

\(T \) is also induced by \(\text{SLat}^{\text{op}}_{\land, \alpha} \xrightarrow{\eta} F_\alpha \xrightarrow{\epsilon} \text{Top} \),

which gives fully faithful \(\mathcal{O} : \text{Top}_T \to \text{SLat}^{\text{op}}_{\land, \alpha} \).

Lemma. \(L \in \overline{\text{Top}_T} \iff L \) is a frame, \(\text{hom}(L, 2) \) separates points.

Theorem. \(\text{Frm}^{\text{op}}_{\land, \alpha} \simeq \text{Spl}(\text{Top}^{F_\alpha}) \). Furthermore, a topological space \(X \) is \(F_\alpha \)-distributive if and only if \(X \) is the \(\alpha \)-filter space of a frame.

\(\alpha = \Omega \): Duality between spatial frames and sober spaces.
About \(\text{kar}(C_T) \simeq \text{Spl}(C^T) \), \(T = F_\alpha \), \(\alpha \in \{0, 1, \omega, \Omega\} \), \(C = \text{Top} \).

\(T \) is also induced by \(\text{SLat}^{\text{op}}_{\wedge, \alpha} \xrightarrow{\eta} \xleftarrow{O} \xrightarrow{F_\alpha} \xleftarrow{\varepsilon} \text{Top} \), which gives fully faithful \(O : \text{Top}_T \to \text{SLat}^{\text{op}}_{\wedge, \alpha} \).

Lemma. \(L \in \overline{\text{Top}}_T \iff L \) is a frame, \(\text{hom}(L, 2) \) separates points.

Theorem. \(\text{Frm}^{\text{op}}_{\wedge, \alpha} \simeq \text{Spl}(\text{Top}^{F_\alpha}) \). Furthermore, a topological space \(X \) is \(F_\alpha \)-distributive if and only if \(X \) is the \(\alpha \)-filter space of a frame.

\(\alpha = \Omega \): Duality between spatial frames and sober spaces.

\(\alpha = \omega \): Restriction of Priestley duality to frames and f-spaces.

About \(\text{kar}(C_T) \simeq \text{Spl}(C^T) \), \(T = \mathbb{F}_\alpha \), \(\alpha \in \{0, 1, \omega, \Omega\} \), \(C = \text{Top} \).

\(T \) is also induced by \(\text{SLat}^{\text{op}}_{\land, \alpha} \xrightarrow{\eta} \xrightarrow{F_\alpha} \xleftarrow{\mathcal{O}} \text{Top} \),

which gives fully faithful \(\mathcal{O} : \text{Top}_T \rightarrow \text{SLat}^{\text{op}}_{\land, \alpha} \).

Lemma. \(L \in \overline{\text{Top}}_T \iff L \) is a frame, \(\text{hom}(L, 2) \) separates points.

Theorem. \(\text{Frm}^{\text{op}}_{\land, \alpha} \simeq \text{Spl}(\text{Top}^{\mathbb{F}_\alpha}) \). Furthermore, a topological space \(X \) is \(\mathbb{F}_\alpha \)-distributive if and only if \(X \) is the \(\alpha \)-filter space of a frame.

\(\alpha = \Omega \) : Duality between spatial frames and sober spaces.

\(\alpha = \omega \) : Restriction of Priestley duality to frames and f-spaces.

\(\alpha = 0 \) : \(\text{Frm}_{\land}^{\text{op}} \simeq \text{CDTop}_{\text{sup}} \)
About $\text{kar}(C_T) \simeq \text{Spl}(C^T)$, $T = F_\alpha$, $\alpha \in \{0, 1, \omega, \Omega\}$, $C = \text{Top}$.

T is also induced by $\text{SLat}_{\land, \alpha}^{\text{op}} \xrightarrow{\eta} F_\alpha \xleftarrow{\varepsilon} \text{Top}$, which gives fully faithful $\mathcal{O} : \text{Top}_T \to \text{SLat}_{\land, \alpha}^{\text{op}}$.

Lemma. $L \in \overline{\text{Top}_T} \iff L$ is a frame, $\text{hom}(L, 2)$ separates points.

Theorem. $\text{Frm}_{\land, \alpha}^{\text{op}} \simeq \text{Spl}(\text{Top}_{F_\alpha})$. Furthermore, a topological space X is F_α-distributive if and only if X is the α-filter space of a frame.

$\alpha = \Omega$: Duality between spatial frames and sober spaces.

$\alpha = \omega$: Restriction of Priestley duality to frames and f-spaces.

$\alpha = 0$: $\text{Frm}_{\land}^{\text{op}} \simeq \text{CDTop}_{\text{sup}}$, hence

$$\text{Leftadjoints}(\text{Frm}_{\land}) \simeq \text{Rightadjoints}(\text{CDTop}_{\text{sup}})$$
About \text{kar}(C_T) \simeq \text{Spl}(C^{\mathbb{T}})\ , \ \mathbb{T} = \mathcal{F}_\alpha, \ \alpha \in \{0,1,\omega,\Omega\}, \ C = \text{Top}.

\mathbb{T} is also induced by \ SLat^{\text{op}}_{\land,\alpha} \xrightarrow{\eta} \xleftarrow{\mathcal{O}} \xrightarrow{\mathcal{F}_\alpha} \xleftarrow{\varepsilon} \text{Top},

which gives fully faithful \ \mathcal{O} : \text{Top}_\mathbb{T} \rightarrow \text{SLat}_{\land,\alpha}^{\text{op}}.

\textbf{Lemma.} \ L \in \overline{\text{Top}}_\mathbb{T} \iff \ L \ is \ a \ frame, \ \text{hom}(L,2) \ separates \ points.

\textbf{Theorem.} \ \text{Frm}_{\land,\alpha}^{\text{op}} \simeq \text{Spl}(\text{Top}^{\mathcal{F}_\alpha})\ . \ Furthermore, \ a \ topological \ space \ X \ is \ \mathcal{F}_\alpha\text{-distributive \ if \ and \ only \ if \ X \ is \ the} \ \alpha\text{-filter \ space \ of \ a \ frame.}

\alpha = \Omega \ : \ \text{Duality \ between \ spatial \ frames \ and \ sober \ spaces.}

\alpha = \omega \ : \ \text{Restriction \ of \ Priestley \ duality \ to \ frames \ and \ f-spaces.}

\alpha = 0 \ : \ \text{Frm}_{\land}^{\text{op}} \simeq \text{CDTop}^{\text{sup}}, \ hence

\text{Frm} \simeq \text{Leftadjoints}(\text{Frm}_{\land}) \simeq \text{Rightadjoints}(\text{CDTop}_{\text{sup}}^{\text{sup}})
About $\text{kar}(C_T) \simeq \text{Spl}(C^T)$, $T = \mathbb{F}_\alpha$, $\alpha \in \{0, 1, \omega, \Omega\}$, $C = \text{Top}$.

T is also induced by $\text{SLat}^{\text{op}}_{\land, \alpha} \ni \eta \xrightarrow{\mathcal{O}} F_\alpha \xleftarrow{\varepsilon} \text{Top}$, which gives fully faithful $\mathcal{O} : \text{Top}_T \to \text{SLat}^{\text{op}}_{\land, \alpha}$.

Lemma. $L \in \overline{\text{Top}}_T \iff L$ is a frame, $\text{hom}(L, 2)$ separates points.

Theorem. $\text{Frm}^{\text{op}}_{\land, \alpha} \simeq \text{Spl}(\text{Top}^{\mathbb{F}_\alpha})$. Furthermore, a topological space X is \mathbb{F}_α-distributive if and only if X is the α-filter space of a frame.

$\alpha = \Omega$: Duality between spatial frames and sober spaces.

$\alpha = \omega$: Restriction of Priestley duality to frames and f-spaces.

$\alpha = 0$: $\text{Frm}^{\text{op}}_{\land} \simeq \text{CDTop}_{\text{sup}}$, hence

$$\text{Frm} \simeq \text{Leftadjoints(} \text{Frm}_{\land}) \simeq \text{Rightadjoints(} \text{CDTop}_{\text{sup}}) \simeq \text{CDTop}.$$