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The term Stone-type duality often refers to a dual equivalence between a category
of lattices or other partially ordered structures on one side and a category of topo-
logical structures on the other. This paper is part of a larger endeavour that aims
to extend a web of Stone-type dualities from ordered to metric structures and, more
generally, to quantale-enriched categories. In particular, we improve our previous
work and show how certain duality results for categories of [0, 1]-enriched Priest-
ley spaces and [0, 1]-enriched relations can be restricted to functions. In a broader
context, we investigate the category of quantale-enriched Priestley spaces and contin-
uous functors, with emphasis on those properties which identify the algebraic nature
of the dual of this category.
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1 Introduction

Naturally, the starting point of our investigation of Stone-type dualities is Stone’s classical 1936
duality result

(1.i) BooSp ∼ BAop

for Boolean algebras and homomorphisms together with its generalisation

Spec ∼ DLop
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to distributive lattices and homomorphisms obtained shortly afterwards in [Stone, 1938]. Here
BooSp denotes the category of Boolean spaces1 and continuous maps, and Spec the category of
spectral spaces and spectral maps (see also [Hochster, 1969]). In this paper we will often work
with Priestley spaces rather than with spectral spaces, and therefore consider the “equivalent
equivalence”

(1.ii) Priest ∼ DLop

discovered in [Priestley, 1970, 1972]. There are many ways to deduce the duality result (1.i)
from (1.ii), we mention here one possibly lesser-known argument: in [Brümmer et al., 1992] it
is observed that BA is the only epi-mono-firm epireflective full subcategory of DL, and, using
that in both BooSp and Priest the epimorphisms are precisely the surjective morphisms, an easy
calculation shows that BooSp is the only mono-epi-firm mono-coreflective full subcategory of
Priest.

Exactly 20 years later, Halmos gave an extension of (1.i) to categories of continuous relations
between Boolean spaces and hemimorphisms between Boolean algebras, and a similar generali-
sation of Priest ∼ DLop is described in [Cignoli et al., 1991]. Denoting by

• PriestDist the category of Priestley spaces and continuous monotone relations, by

• FinSup the category of finitely cocomplete partially ordered sets and finite suprema pre-
serving maps, and by

• FinSupDL the full subcategory of FinSup defined by all distributive lattices,

this result is expressed as

(1.iii) PriestDist ∼ FinSupop
DL.

We note that PriestDist is precisely the Kleisli category of the Vietoris monad H = (H,w , h) on
Priest, and that the functor PriestDist −→ FinSupop

DL is a lifting of the hom-functor PriestDist(−, 1)
into the one-element space. Furthermore, the two structures of a Priestley space — the par-
tial order and the compact Hausdorff topology — can be combined into a single topology: the
so-called downwards topology (see [Jung, 2004], for instance). In particular, the two-element
Priestley space 2 = {0 ≤ 1} produces the Sierpiński space 2 with {1} closed, whereby the
dual space 2op of 2 induces the topology on {0, 1} with {1} being the only non-trivial open
subset. With this notation, the elements of the Vietoris hyperspace HX of a Priestley space
X can be identified with continuous maps φ : X −→ 2, whereby arrows of type X −◦−→ 1 in
PriestDist correspond to spectral maps ψ : X −→ H1 ≃ 2op. In order to deduce the equivalence
(1.iii), it is important to establish that there are “enough” spectral maps ψ : X −→ 2op; in fact,
by definition, a partially ordered compact Hausdorff space X is Priestley whenever the cone
(ψ : X −→ 2op)ψ is point-separating and initial. Here it does not matter if we use 2 or 2op since
2 ≃ 2op in Priest; however, when moving to the quantale-enriched setting, the corresponding
property does not necessarily hold and therefore we must identify carefully if we refer to 2 or to
2op.

1Also designated as Stone spaces in the literature, see [Johnstone, 1986], for instance.
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Under the equivalence (1.iii), continuous monotone functions correspond precisely to homo-
morphisms of distributive lattices, therefore the equivalence Priest ∼ DLop is a direct conse-
quence of (1.iii). Furthermore, other well-known duality results can be obtained from (1.iii) in
a categorical way, we mention here the following examples.

• As (1.i) can be deduced from Priest ∼ DLop, Halmos’s duality

BooSpRel ∼ FinSupop
BA

between the category BooSpRel of Boolean spaces and Boolean relations and the category
FinSupBA of Boolean algebras and hemimorphisms (that is, the full subcategory of FinSup
defined by all Boolean algebras) can be deduced from (1.iii).

• Combining PriestDist ∼ FinSupop
DL and Priest ∼ DLop gives immediately the duality result

for distributive lattices with an operator (see [Petrovich, 1996; Bonsangue et al., 2007]).

• The equivalence PriestDist ∼ FinSupop
DL has the surprising(?) consequence that PriestDist

is idempotent split complete. Hence, the idempotent split completion of BooSpRel can be
calculated as the full subcategory of PriestDist defined by all split subobjects of Boolean
spaces in PriestDist; likewise, the idempotent split completion of FinSupBA can be taken as
the full subcategory of FinSupDL defined by all split subobjects of Boolean algebras. Now,
in the former case, these split subobjects are precisely the so-called Esakia spaces (see
[Esakia, 1974]), and in the latter case precisely the co-Heyting algebras (see [McKinsey
and Tarski, 1946]). Putting these facts together, we obtain a relational version of Esakia
duality as described in [Hofmann and Nora, 2014].

The situation is depicted in Figure 1.

BooSp ∼ BAop Priest ∼ DLop

PriestDist ∼ FinSupop
DL

CoAlg(H) ∼ DLOop EsaDist ∼ FinSupop
HA EsaSp ∼ HAop

Figure 1: Stone type dualities

One might wish to consider all compact Hausdorff spaces in (1.i) instead of only the totally
disconnected ones. Then the two-element space and the two-element Boolean algebra still induce
naturally an adjunction

CompHaus BAop;
hom(−,2)

hom(−,2)

⊥

however, its restriction to the fixed subcategories is precisely (1.i) (for the pertinent notions
of duality theory we refer to [Dimov and Tholen, 1989; Porst and Tholen, 1991]). In fact,
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by definition, a compact Hausdorff space X is Boolean whenever the cone (f : X −→ 2)f is
point-separating and initial with respect to the forgetful CompHaus −→ Set.

In order to obtain a duality result for all compact Hausdorff spaces this way, one needs
to substitute the dualising object 2 by a cogenerator in CompHaus, for instance, by the unit
interval [0, 1] with the Euclidean topology. Accordingly, one typically considers other types of
algebras on the dual side; i.e. C∗-algebras instead of Boolean algebras. In contrast, our aim
is to develop a duality theory where one actually keeps the “type of algebras” in Figure 1 but
substitutes order by metric everywhere; that is, one considers [0,∞]-enriched categories instead
of 2-enriched categories (see [Lawvere, 1973]). Therefore one might attempt to create a network
of dual equivalences

CompHaus ∼ (??)op PosComp ∼ (??)op

PosCompDist ∼ (??)op

CoAlg(H) ∼ (??)op GEsaDist ∼ (??)op GEsaSp ∼ (??)op

Figure 2: Metric Stone type dualities

where each “question mark category” should be substituted by its metric counterpart of Figure 1,
or even better, a quantale-enriched counterpart. For instance, for a quantale V, instead of
DL one would expect a category of V-categories with all “finite” weighted limits and colimits
and satisfying some sort of “distributivity” condition. Moreover, these results should have the
property that, when choosing the quantale V = 2, we get the original picture of Figure 1 back.

Unfortunately, the last requirement does not make much sense . . . since the picture of Figure 2
is somehow inconsequential: both sides of the equivalences should be generalised to correspond-
ing metric or even quantale-enriched versions, in particular, partially ordered compact spaces
should be substituted by their metric versions. This requirement brings a new class of categories
into play: as shown in [Tholen, 2009], the ultrafilter monad extends naturally to V-Cat, and we
consider the category V-CatU of Eilenberg–Moore algebras and homomorphisms for the ultra-
filter monad U on V-Cat. For V = 2, these Eilenberg–Moore algebras are precisely Nachbin’s
(pre)ordered compact Hausdorff spaces. In this paper we denote the category of partially or-
dered compact Hausdorff spaces and monotone continuous maps by PosComp. For the Lawvere
quantale

←−−−
[0,∞]+ we obtain metric spaces equipped with a (somehow compatible) compact Haus-

dorff topology, these spaces should be thought of as natural generalisations of compact metric
spaces. We believe that these spaces are interesting in their own right as they allow to generalise
arguments from the theory of compact metric spaces (see also [Hofmann and Reis, 2018]). Fur-
thermore, the enriched Vietoris monad encodes at the same time the classical Hausdorff metric
and Vietoris topology (see [Hofmann and Nora, 2020]).

In analogy with the ordered case, we call an U-algebra Priestley whenever the cone of all
homomorphisms X −→ Vop in V-CatU is point-separating and initial. In [Hofmann and Nora,
2018] we made an attempt to create at least parts of this picture, for continuous quantale
structures on the lattice V = [0, 1]. In particular, we showed that the Kleisli category of the

4



Vietoris monad on PosComp can be fully embedded into a category of monoids of finitely co-
complete [0, 1]-categories and lax homomorphisms, and we were able to identify the image of
this embedding. For the enriched Vietoris monad, the situation is even better, we obtained a
full embedding of its Kleisli category into a category of finitely cocomplete [0, 1]-categories —
no monoid structure needed anymore. In Section 3 we build upon this result and show how this
embedding can be restricted to the category of enriched Priestley spaces and homomorphisms.

The classical duality results of Stone and Priestley tell us in particular that BooSpop and
Priestop are finitary varieties. It is known since the late 1960’s that CompHausop is also a variety,
not finitary but with rank ℵ1 (see [Duskin, 1969; Gabriel and Ulmer, 1971]); however, this fact
might not be obvious from the classical Gelfand duality result

CompHausop ∼ C∗-Alg

stating the equivalence between CompHausop and the category C∗-Alg of commutative C⋆-
algebras and homomorphisms. Nonetheless, it can be deduced “abstractly” from the following
well-known results.

Theorem 1.1. A cocomplete category is equivalent to a quasivariety if and only if it has a
regular projective regular generator.

Proof. See, for instance, [Adámek, 2004, Theorem 3.6].

Theorem 1.2. A category is a variety if and only if it is a quasivariety and has effective
equivalence relations.

Proof. See, for instance, [Borceux, 1994, Theorem 4.4.5]

Surprisingly, a similar investigation of PosCompop was initiated only recently: in [Hofmann
et al., 2018] we show that PosCompop is a ℵ1-ary quasivariety, and in [Abbadini, 2019; Abbadini
and Reggio, 2020] it is shown that PosCompop is indeed a ℵ1-ary variety. In Section 4 we
investigate the category V-Priest of V-enriched Priestley spaces and morphisms, with emphasis
on those properties which identify V-Priestop as some kind of algebraic category. In particular,
for certain quantales V, we characterise the ℵ1-copresentable objects in V-Priest and show that
V-Priest is locally ℵ1-copresentable.

2 Quantale-enriched Priestley spaces

In this section we recall the notions of quantale-enriched category and its generalisation to
compact Hausdorff spaces, which eventually leads to the notion of quantale-enriched Priestley
space already studied in [Hofmann and Nora, 2018, 2020]. We recall some of the basic definitions
and properties, for more information we refer to [Kelly, 1982; Lawvere, 1973; Tholen, 2009]. For
a nice introduction to quantale and quantaloid-enriched categories we refer to [Stubbe, 2014].

Definition 2.1. A quantale V = (V,⊗, k) is a complete lattice V equipped with a commutative
monoid structure ⊗, with identity k, so that, for each u ∈ V,

u⊗− : V −→ V has a right adjoint hom(u,−) : V −→ V.
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Definition 2.2. Let V = (V,⊗, k) be a quantale.

1. A V-category is a pair (X, a) consisting of a set X and a map a : X ×X −→ V satisfying

k ≤ a(x, x) and a(x, y)⊗ a(y, z) ≤ a(x, z),

for all x, y, z ∈ X. Furthermore, a V-category (X, a) is called separated whenever

(k ≤ a(x, y) and k ≤ a(y, x)) =⇒ x = y,

for all x, y ∈ X.

2. A V-functor f : (X, a) −→ (Y, b) between V-categories is a map f : X −→ Y such that

a(x, x′) ≤ b(f(x), f(x′)),

for all x, x′ ∈ X.

3. Finally, V-categories and V-functors define the category V-Cat, and its full subcategory
defined by separated V-categories is denoted by V-Catsep.

We note that there is a canonical forgetful functor V-Cat −→ Set sending the V-category
(X, a) to the set X. For every V-category X = (X, a), the dual V-category Xop is defined as
Xop = (X, a◦) where

a◦(x, y) = a(y, x),

for all x, y ∈ X. In fact, this construction defines a functor (−)op : V-Cat −→ V-Cat commuting
with the forgetful functor to Set.

Examples 2.3. Below we list some of the principal examples, for more details we refer, for
instance, to [Hofmann and Reis, 2018].

1. The trivial quantale 1 = {∗} where k = ⊤. Then 1-Cat = Set.

2. The two element chain 2 = {0 ≤ 1} with ⊗ = & and k = 1. Then 2-Cat ∼ Ord.

3. The extended real half line
←−−−
[0,∞] ordered by the “greater or equal” relation ⩾ and

• the tensor product given by addition +, denoted by
←−−−
[0,∞]+;

• or with ⊗ = max, denoted as
←−−−
[0,∞]∧.

Then
←−−−
[0,∞]+-Cat ∼ Met is the category of (generalised) metric spaces and non-expansive

maps and
←−−−
[0,∞]∧-Cat ∼ UMet is the category of (generalised) ultrametric spaces and

non-expansive maps.

4. The unit interval [0, 1] with the “greater or equal” relation ⩾ and the tensor u ⊕ v =
min{1, u+ v}, denoted as

←−−
[0, 1]⊕. Then

←−−
[0, 1]⊕-Cat ∼ BMet is the category of (generalised)

bounded-by-one metric spaces and non-expansive maps.

5. The unit interval [0, 1] with the usual order ⩽ and ⊗ = ∧ the minimum, or ⊗ = ∗ the
usual multiplication, or ⊗ = ⊙ the Łukasiewicz sum defined by u⊙ v = max{0, u+ v− 1}.
Then [0, 1]∧-Cat ∼ UMet, [0, 1]∗-Cat ∼ Met, and [0, 1]⊙-Cat ∼ BMet.
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Example 2.4. The notion of probabilistic metric space goes back to [Menger, 1942]. Here a
probabilistic metric on a set X is a map d : X × X × [0,∞] −→ [0, 1], where d(x, y, t) = u

means that u is the probability that the distance from x to y is less then t. Similar to a classic
metric, such a map is required to satisfy the following conditions:

0. d(x, y,−) : [0,∞] −→ [0, 1] is left continuous,

1. d(x, x, t) = 1 for t > 0,

2. d(x, y, r) ∗ d(y, z, s) ≤ d(x, z, r + s),

3. d(x, y, t) = 1 = d(y, x, t) for all t > 0 implies x = y,

4. d(x, y, t) = d(y, x, t) for all t,

5. d(x, y,∞) = 1.

The complete lattice

D = {f : [0,∞] −→ [0, 1] | f(t) =
∨
s<t

f(s) for all t ∈ [0,∞]}

becomes a quantale with multiplication

(f ⊗ g)(t) =
∨

r+s⩽t
f(r) ∗ g(s),

for f, g ∈ D, and unit the map κ : [0,∞] −→ [0, 1] with κ(0) = 0 and κ(t) = 1 for t > 0. In the
formula above, one may substitute the multiplication ∗ by any other tensor ⊗ : [0, 1]× [0, 1] −→
[0, 1].

Then a probabilistic metric can be seen as a map d : X × X −→ D, and conditions (1) and
(2) read as

κ ≤ d(x, x) and d(x, y)⊗ d(y, z) ≤ d(x, z).

Hence D-Cat ∼ ProbMet is the category of (generalised) probabilistic metric spaces and non-
expansive maps.

Before adding a topological component to the theory of V-categories, we collect some well-
known properties of V-categories and V-functors. For the relevant notions of categorical topology
we refer to [Adámek et al., 1990].

Theorem 2.5. The canonical forgetful functor V-Cat −→ Set is topological. Here a cone
(fi : (X, a) −→ (Xi, ai))i∈I in V-Cat is initial with respect to V-Cat −→ Set if and only if,
for all x, y ∈ X,

a(x, y) =
∧
i∈I

ai(fi(x), fi(y)).

Therefore V-Cat has concrete limits and colimits and a (surjective, initial monocone)-factorisation
system; moreover, V-Cat −→ Set has a right adjoint Set −→ V-Cat (indiscrete structures) and
a left adjoint D : Set −→ V-Cat (discrete structures). Furthermore, a morphism f : (X, a) −→
(Y, b) in V-Cat is

1. a monomorphism if and only if f is injective,
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2. a regular monomorphism if and only if f is an embedding with respect to V-Cat −→ Set,
that is, f is injective and a(x, y) = b(f(x), f(y)) for all x, y ∈ X,

3. an epimorphism if and only if f is surjective.

Proposition 2.6. The V-category V = (V, hom) is injective with respect to embeddings and,
for every V-category X, the cone (f : X −→ V)f is initial with respect to the forgetful functor
V-Cat −→ Set.

Remark 2.7. Since (−)op : V-Cat −→ V-Cat is a concrete isomorphism, Proposition 2.6 applies
also to the V-category Vop in lieu of V.

In the remainder of this section we assume that the lattice V is completely distributive, we
refer to [Wood, 2004] for the definition and an extensive discussion of properties of this notion.
In particular, under this assumption it is useful to consider the totally below relation ≪ on
the lattice V, which is defined by v ≪ u whenever

u ≤
∨
A =⇒ v ∈ ↓A,

for every subset A of V.

Assumption 2.8. The underlying lattice of the quantale V is completely distributive.

Remark 2.9. Regarding the various topologies on V we have the following facts, for more infor-
mation see [Gierz et al., 2003].

1. The Lawson topology on the completely distributive lattice V is compact Hausdorff. With
respect to this topology, as shown in [Gierz et al., 2003, Proposition VII-3.10], an ultrafilter
v in V converges to

ξ(v) =
∧
A∈v

∨
A ∈ V.

Moreover, the Scott topology respectively its dual topology have the following conver-
gences:

Scott topology: v→ x ⇐⇒ ξ(v) ≥ x,
Dual of Scott topology: v→ x ⇐⇒ ξ(v) ≤ x.

2. By [Gierz et al., 2003, Lemma VII-2.7] and [Gierz et al., 2003, Proposition VII-2.10], the
Lawson topology of V coincides with the Lawson topology of Vop, and the set

{↑u | u ∈ V} ∪ {↓u | u ∈ V}

is a subbasis for the closed sets of this topology which is known as the interval topology.

3. The sets
↑v = {u ∈ V | v ≤ u} (v ∈ V)

form a subbase for the closed sets of the dual of the Scott topology of V (see [Gierz et al.,
2003, Proposition VI-6.24]). We denote (the convergence of) this topology by ξ≤.
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4. The convergence ξ : UV −→ V together with the ultrafilter monad U = (U,m, e) and the
quantale V defines a topological theory in the sense of [Hofmann, 2007], and therefore
allows for an extension of the ultrafilter monad U = (U,m, e) on Set to a monad on V-Cat
(see [Tholen, 2009]).

Definition 2.10. We denote the corresponding Eilenberg–Moore category V-CatU by V-CatCH,
and refer to its objects as V-categorical compact Hausdorff spaces (see also [Hofmann and
Reis, 2018]). In more detail, a V-categorical compact Hausdorff space is a triple (X, a, α) where

• (X, a) is a V-category and

• α : UX −→ X is the convergence of a compact Hausdorff topology on X such that
α : (UX,Ua) −→ (X, a) is a V-functor.

Example 2.11. The triple V = (V,hom, ξ) is a V-categorical compact Hausdorff space. More-
over, for a V-categorical compact Hausdorff space X = (X, a, α), also Xop = (X, a◦, α) is a
V-categorical compact Hausdorff space.

Example 2.12. As it is pointed out in [Tholen, 2009], 2-categorical compact Hausdorff spaces
are precisely Nachbin’s ordered compact Hausdorff spaces.

Example 2.13. For V =
←−−−
[0,∞]+, we designate V-categorical compact Hausdorff spaces as

metric compact Hausdorff spaces. As already pointed out in [Hofmann and Reis, 2018],
these spaces can be considered as generalisations of compact metric spaces, i.e. metric spaces
where the induced topology is compact. For instance, [Hofmann and Reis, 2018, Corollary 4.21]
implies that the underlying metric of a metric compact Hausdorff space is Cauchy-complete,
generalising the classic result that every compact metric space is Cauchy-complete. In other
words, one can deduce Cauchy-completeness of a metric space (X, a) by exhibiting a compatible
compact Hausdorff topology, one does not need to consider the induced topology.

Example 2.14. For the trivial quantale V = 1, 1-CatCH ≃ CompHaus.

Proposition 2.15. For a quantale V, the sets

{u ∈ V | v ≪ u} (v ∈ V)

form a subbase for its Scott topology.

Proof. We start by proving that for every v ∈ V the set {u ∈ V | v ≪ u} is open. Let v be an
ultrafilter in V that converges to u ∈ V such that v ≪ u. The properties of the totally below
relation guarantee that there exists w ∈ V such that v ≪ w ≪ u. Then, by Remark 2.9 (1),
for every A ∈ v, u ≤

∨
A. Hence, for every A ∈ v there exists a ∈ A such that w ≤ a. Therefore,

for every A ∈ v,
A ∩ {u ∈ V | v ≪ u} ≠ ∅.

We show now that the sets {u ∈ V | v ≪ u} (v ∈ V) induce the convergence of the Scott
topology. Let w be an element of V and v and ultrafilter on V such that, for every v ≪ w in V,
the set {u ∈ V | v ≪ u} belongs to v. Then, since V is completely distributive, we have

w =
∨
v≪w

v ≤
∨
A∈v

∧
A = ξ(v).
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Remark 2.16. For a point-separating cone (fi : (X, a, α) −→ (Xi, ai, αi))i∈I in V-CatCH, the
following assertions are equivalent, for details see [Tholen, 2009].

(i) For all x, y ∈ X, a(x, y) =
∧
i∈I

ai(fi(x), fi(y)).

(ii) (f : (X, a, α) −→ (Xi, ai, αi))i∈I is initial with respect to V-CatCH −→ CompHaus.

(iii) (f : (X, a, α) −→ (Xi, ai, αi))i∈I is initial with respect to V-CatCH −→ Set.

In the sequel we will simply say “initial” when referring to either of these forgetful functors. We
also note that a cone (fi : (X, a, α) −→ (Xi, ai, αi))i∈I is point-separating if and only if it is a
monocone in V-CatCH.

Theorem 2.17. The category V-CatCH is monadic over V-Cat and topological over CompHaus,
hence V-CatCH is complete and cocomplete and has a (surjective, initial monocone)-factorisation
system.

Proof. See [Tholen, 2009].

Definition 2.18. A V-categorical compact Hausdorff space X is called Priestley whenever the
cone V-CatCH(X,Vop) is point-separating and initial with respect to V-CatCH −→ CompHaus.

Example 2.19. For V = 2, the notion of Priestley space coincides with the classical one.

Remark 2.20. By definition, the V-categorical compact Hausdorff space Vop is Priestley. More-
over, every finite separated V-categorical compact Hausdorff space is Priestley.

We denote the full subcategory of V-CatCH defined by all Priestley spaces by V-Priest. Due to
well-known facts about factorisation structures for cones (see [Adámek et al., 1990, Section 16]),
we have the following:

Proposition 2.21. The full subcategory V-Priest of V-CatCH is reflective.

We denote the left adjoint of the inclusion functor V-Priest −→ V-CatCH by π0 : V-CatCH −→
V-Priest.

Proof. For each X in V-CatCH, its reflection X −→ π0(X) into V-Priest is given by the (surjec-
tive, initial monocone)-factorisation of the cone (φ : X −→ Vop)φ of all morphisms from X to
Vop in V-CatCH.

X π0(X) Vop

φ

φ̃

To show that this construction defines indeed a left adjoint to V-Priest −→ V-CatCH, consider
f : X −→ Y in V-CatCH where Y is Priestley. Then, for every φ : Y −→ Vop, there is some
arrow φ̃ : π0(X) −→ Vop making the diagram

(2.i)
X π0(X)

Y Vop

f φ̃

φ
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commute. Since the top arrow of (2.i) is surjective and the cone (φ : Y −→ Vop)φ is point-
separating and initial, there is a diagonal arrow f̄ : π0(X) −→ Y in (2.i) making in particular
the diagram

X π0(X)

Y

f

f̄

commute.

Corollary 2.22. The category V-Priest is complete and cocomplete.

We already observed in [Hofmann and Nora, 2020, Remark 4.52] that a monocone in V-Priest is
initial with respect to V-Priest −→ Set if and only if it is initial with respect to V-CatCH −→ Set
(the same argument as in the proof of [Hofmann and Nora, 2020, Theorem A.6] applies here). At
this moment we do not know whether, for instance, every separated metric compact Hausdorff
space is Priestley. However, since [0, 1]op is an initial cogenerator in PosComp (see [Nachbin,
1965, Theorem 1] and [Jung, 2004, Lemma 2.2]), we have the following fact.

Proposition 2.23. The inclusion functor PosComp −→ [0, 1]-CatCH corestricts to PosComp −→
[0, 1]-Priest.

3 Duality theory for enriched Priestley spaces: concretely

Based on quantale-enriched categories instead of order structures, in [Hofmann and Nora, 2018]
we started to develop a theory which extends Stone-type dualities from Priestley spaces first to
all partially ordered compact spaces, and eventually to Priestley spaces enriched in the complete
lattice [0, 1] with a continuous quantale structure ⊗ : [0, 1]× [0, 1] −→ [0, 1] with neutral element
1. In both cases, the strategy is to

1. establish first an embedding of a category of spaces and continuous relations (in technical
terms: Kleisli categories for the Hausdorff respectively Vietoris monad) into a category of
finitely (co)complete V-categories, and then

2. to identify on both sides those morphisms that correspond to functions between spaces.

3. Finally, we would also like to identify the image of the embedding functor.

We have largely achieved these goals for the case of partially ordered compact spaces. However,
for enriched Priestley spaces (and enriched relations) we were only able to provide the first
step. In this section we contribute to the second step and show how to restrict the embedding
result for enriched relations to categories of functions, for the Łukasiewicz quantale [0, 1]⊙. To
provide the context, we recall the relevant results for partially ordered compact spaces and the
embedding result for enriched relations.

In analogy with classic Halmos-type dualities for Boolean and Priestley spaces, our starting
point is the category [0, 1]⊙-FinSup of finitely cocomplete [0, 1]⊙-categories and [0, 1]⊙-functors
that preserve finite weighted colimits and the Vietoris monad H = (H,w , h) on the category
PosComp of partially ordered compact Hausdorff spaces and monotone continuous maps.
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Remark 3.1. More information on power constructions in topology can be found in [Schalk,
1993a,b]. In our previous work [Hofmann and Nora, 2018; Hofmann et al., 2019] we used the
notationV instead ofH; however, in this paper we think of the classic Vietoris topology [Vietoris,
1922] as an extension of the Hausdorff metric and reserve the designation V for the monad based
on presheafs X −→ V rather than subsets A ⊆ X.

We obtain the commutative diagram

PosCompH [0, 1]⊙-FinSupop

PosComp

C

C=hom(−,[0,1]op)

of functors. However, unlike the functor C = hom(−, 1) : PriestH −→ FinSupop in the classical
case, the functor C : PosCompH −→ [0, 1]⊙-FinSupop is not fully faithful, as the next example
shows.

Example 3.2. As observed in [Hofmann and Nora, 2018, Example 6.16], for every u ∈ [0, 1],
the map u ⊙ − : [0, 1] −→ [0, 1] is a morphism in [0, 1]⊙-FinSup sending 1 to u. On the other
hand, there are only two morphisms of type 1 −◦−→ 1 in PosCompH.

Therefore we have to consider further structure on the right-hand side. The starting point is
the following observation.

Theorem 3.3. The category [0, 1]⊙-FinSup has a bimorphism representing monoidal structure.

Proof. See [Kelly, 1982, Section 6.5].

This leads us to the category
Mon([0, 1]⊙-FinSup)

of monoids and homomorphisms in [0, 1]⊙-FinSup with respect to the above-mentioned monoidal
structure and with neutral element the top-element, and to the category

LaxMon([0, 1]⊙-FinSup)

with the same objects as Mon([0, 1]⊙-FinSup), but now with morphisms those of [0, 1]⊙-FinSup
that preserve the monoid structure laxly:

Φ(ψ1 ⊗ ψ2) ≤ Φ(ψ1)⊗ Φ(ψ2).

We obtain the commutative diagram

PosCompH LaxMon([0, 1]⊙-FinSup)op

PosComp

C

⊤
⊣

C=hom(−,[0,1]op)

of functors represented by solid arrows, and the monad morphism j = (jX)X induced by C is
given by the family of maps

12



jX : HX −→ [CX, [0, 1]], A 7−→ ΦA,

with ΦA : CX −→ [0, 1], ψ 7−→ supx∈A ψ(x).

Theorem 3.4. The functor

C : PosCompH −→ LaxMon([0, 1]⊙-FinSup)op

is fully faithful.

Proof. The assertion follows from the fact that the monad morphism j is an isomorphism, see
[Hofmann and Nora, 2018, Theorem 6.14].

To be able to restrict Theorem 3.4 to PosComp, we have the following two results.

Proposition 3.5. Let X be in PosComp and A ⊆ X closed and upper. Then A is irreducible if
and only if ΦA satisfies

ΦA(1) = 1 and ΦA(ψ1 ⊗ ψ2) = ΦA(ψ1)⊗ ΦA(ψ2).

Proof. See [Hofmann and Nora, 2018, Proposition 6.7].

Corollary 3.6. Let φ : X −◦−→ Y be a morphism in PosCompH. Then φ is a function if and
only if Cφ is a morphism in Mon([0, 1]⊙-FinSup).

Proof. See [Hofmann and Nora, 2018, Corollary 6.8].

Therefore we conclude:

Theorem 3.7. The functor

C : PosCompH −→ LaxMon([0, 1]⊙-FinSup)op

of Theorem 3.4 restricts to a fully faithful functor

C : PosComp −→ Mon([0, 1]⊙-FinSup)op.

Proof. See [Hofmann and Nora, 2018, Corollary 6.15].

As we already observed in [Hofmann and Nora, 2018], we obtain results closer to the classical
case by also enriching the topological side; that is, by considering enriched Priestley spaces
and the enriched Vietoris monad V = (V,w , h). The latter is introduced in [Hofmann, 2014]
in the context of U-categories and U-functors, for a topological theory U = (U,V, ξ) based on
the ultrafilter monad U = (U,m, e). For an overview of the background theory we refer to
[Hofmann, 2014, Section 1], to understand the content of this section it is enough to know the
following facts.

• An U-category (X, a) is given by a set X and a map a : UX × X −→ V satisfying two
axioms similar to the ones of a V-category.

• The category of U-categories and U-functors is denoted as U-Cat.
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• By combining the internal hom and the convergence ξ : UV −→ V, the quantale V becomes
an U-category where (v, v) 7−→ hom(ξ(v), v).

• The underlying set of VX is the set

{all U-functors φ : X −→ V}.

• Finally, in Remark 3.10 we provide an elementary description of the Kleisli category of the
monad V = (V,w , h), restricted to V-categorical compact Hausdorff spaces.

Examples 3.8. For V = 2, U-categories correspond to topological spaces and U-functors to
continuous maps (see [Barr, 1970]). The topological space 2 is the Sierpiński space with {1}
closed, and VX is the lower Vietoris space. On the other hand, for the multiplication ∗ on [0, 1],
an U-category is essentially an approach space (see [Lowen, 1997]), thanks to the isomorphism
of quantales [0, 1]∗ ≃

←−−−
[0,∞]+.

Theorem 3.9. The monad V = (V,w , h) on U⊙-Cat restricts to [0, 1]⊙-CatCH and [0, 1]⊙-Priest.

Proof. See [Hofmann, 2014, Theorem 4.20] and [Hofmann and Nora, 2018, Corollary 9.7].

Remark 3.10. By [Hofmann, 2014, Section 8], the Kleisli category of the monad V = (V,w , h)
on [0, 1]⊙-CatCH is equivalent to the category with

• objects all [0, 1]⊙-categorical compact Hausdorff spaces,

• and a morphism φ : (X, a0, α) −◦−→ (Y, b0, β) is a [0, 1]⊙-distributor φ : (X, a0) −→ (Y, b0)
so that the diagram

UX UY

X Y

o
Uφ

oa0·α o b0·β

o
φ

of [0, 1]⊙-distributors commutes.

In the sequel we will freely use this perspective, in particular, the functor

[0, 1]⊙-CatCH −→ ([0, 1]⊙-CatCH)
V

sends f : (X, a0, α) −→ (Y, b0, β) to f∗ = b0 · f : (X, a0, α) −◦−→ (Y, b0, β). More general, a map
f : X −→ Y between [0, 1]⊙-categorical compact Hausdorff spaces (X, a0, α) and (Y, b0, β) is a
morphism f : (X, a0, α) −→ (Y, b0, β) in [0, 1]⊙-CatCH if and only if f∗ = b0 · f is a morphism
f∗ : (X, a0, α) −◦−→ (Y, b0, β) in ([0, 1]⊙-CatCH)

V
.

Now we come back to our study of dualities. In this setting, we obtain the commutative
diagram

[0, 1]⊙-Priest
V

[0, 1]⊙-FinSupop

[0, 1]⊙-Priest

C

⊤
⊣

C=hom(−,[0,1]op)
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of functors represented by solid arrows. We stress that here the functor

C : [0, 1]⊙-Priest
V
−→ [0, 1]⊙-FinSupop

is a lifting of the hom-functor hom(−, 1). The X-component of the induced monad morphism j

is given by

jX : VX −→ [CX, [0, 1]], (φ : 1 −◦−→ X) 7−→
(
ψ 7→ ψ · φ =

∨
x∈X

(ψ(x)⊗ φ(x))
)
.

Similarly to Theorem 3.4, we have:

Theorem 3.11. The functor

C : [0, 1]⊙-Priest
V
−→ [0, 1]⊙-FinSupop

is fully faithful.

Proof. The assertion follows from the fact that the monad morphism j is an isomorphism, see
[Hofmann and Nora, 2018, Theorem 9.10].

The principal goal of this section is to obtain a restriction of the functor of Theorem 3.11
to a fully faithful functor defined on [0, 1]⊙-Priest — a question left open in [Hofmann and
Nora, 2018]. To do so, we identify those [0, 1]⊙-functors Φ: CX −→ [0, 1] which correspond
to “the points of X inside VX”; that is, to the U⊙-functors of the form a( �

x,−) : X −→ [0, 1].
We shall employ the fact that the quantale [0, 1]⊙ is a Girard quantale: for every u ∈ [0, 1],
u = hom(hom(u,⊥),⊥). We recall that hom(u,⊥) = 1− u and put u⊥ = 1− u. Also note that
(−)⊥ : [0, 1] −→ [0, 1]op is an isomorphism in [0, 1]⊙-Priest.

In a nutshell, our strategy is the same as in the ordered case: we show that an additional
property on Φ translates to “φ : X −→ [0, 1] is irreducible”, and “soberness” of X guarantees
φ = a( �

x,−), for some x ∈ X. Therefore we need to introduce these notions for U⊙-categories,
which fortunately was already done in [Clementino and Hofmann, 2009]. In our context, “sober”
means Cauchy-complete (called Lawvere complete in [Clementino and Hofmann, 2009]) and “ir-
reducible” means left adjoint U⊙-distributor. We do not introduce these notions here but rather
refer to the before-mentioned literature; for our purpose it is enough to recall the following two
results.

Theorem 3.12. An U⊙-functor φ : X −→ [0, 1] (viewed as an U⊙-distributor from 1 to X) is
left adjoint if and only if the representable [0, 1]⊙-functor

[φ,−] : U⊙-Cat(X, [0, 1]) −→ [0, 1], φ′ 7−→
∧
x∈X

hom(φ(x), φ′(x))

preserves copowers and finite suprema.

Proof. See [Hofmann and Stubbe, 2011, Proposition 3.5].

Theorem 3.13. Every [0, 1]⊙-categorical compact Hausdorff space X is Cauchy-complete (viewed
as an U⊙-category); that is, every left adjoint U⊙-distributor φ from 1 to X is of the form
φ = a( �

x,−), for some x ∈ X.
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Proof. See [Hofmann and Reis, 2018, Corollary 4.18].

To link Theorem 3.12 with our situation, we view an U⊙-functor φ : X −→ [0, 1] as a [0, 1]⊙-
distributor φ : 1 −◦−→ X and note that the diagram

[0, 1]⊙-Dist(X, 1) [0, 1]⊙-Dist(1, X)op

[0, 1] [0, 1]op

(−)⊥

(−·φ) [φ,−]op

(−)⊥

commutes in [0, 1]⊙-Cat (see [Hofmann and Reis, 2018, Proposition 4.35]). Furthermore, we can
restrict the top line of the diagram above to the [0, 1]⊙-functor

(−)⊥ : U⊙-Cat(X, [0, 1]op) −→ U⊙-Cat(X, [0, 1])op.

Note that we consider U⊙-Cat(X, [0, 1]op) as [0, 1]⊙-subcategory of [0, 1]⊙-Dist(X, 1). We obtain
immediately:

Proposition 3.14. An U⊙-functor φ : X −→ [0, 1] is a left adjoint U⊙-distributor φ from 1 to
X if and only if the [0, 1]⊙-functor (− · φ) : U⊙-Cat(X, [0, 1]op) −→ [0, 1] preserves powers and
finite infima.

Finally, for an object X in [0, 1]⊙-Priest, we will show that the inclusion [0, 1]⊙-functor

CX ↪−→ U⊙-Cat(X, [0, 1]op)

is
∨

-dense. This property guarantees that − · φ : U⊙-Cat(X, [0, 1]op) −→ [0, 1] preserves powers
and finite infima if and only if − · φ : CX −→ [0, 1] does so.

For every U⊙-category (X, a), the [0, 1]⊙-subcategory

(3.i) {all U⊙-functors φ : X −→ [0, 1]} ⊆ [0, 1]X

is closed under weighted limits and finite weighted colimits (see [Hofmann, 2007, Corollary 5.3
e Proposition 6.11]); we shall show now that this property characterises the collection of all
U⊙-functors φ : X −→ [0, 1]. This way we transport a well-known fact from approach theory
(see [Lowen, 1997]) to the “Łukasiewicz setting”.

In general, every [0, 1]⊙-subcategory R ⊆ [0, 1]X closed under weighted limits and finite
weighted colimits corresponds to a monad

µ : [0, 1]X −→ [0, 1]X (1 ≤ µ, µµ ≤ µ)

where the [0, 1]⊙-functor µ preserves finite weighted colimits. Here, given R ⊆ [0, 1]X ,

µ(α) =
∧
{φ | φ ∈ R, α ≤ φ},

and, for a monad µ : [0, 1]X −→ [0, 1]X ,

R = {α ∈ [0, 1]X | µ(α) = α}.

For a subset A ⊆ X, we write χA : X −→ [0, 1] for the characteristic function of A. The following
key result is essentially [Lowen, 1997, Proposition 1.6.5].
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Proposition 3.15. Let µ, µ′ : [0, 1]X −→ [0, 1]X be monads that preserve finite weighted colimits.
Then µ = µ′ if and only if µ(χA) = µ′(χA), for all A ⊆ X.

Note that, for a [0, 1]⊙-subcategory R ⊆ [0, 1]X closed under weighted limits and finite
weighted colimits and with corresponding monad µ, we have

µ(χA)(x) =
∧
{φ | φ ∈ R, χA ≤ φ} =

∧
{φ | φ ∈ R and, for all z ∈ A, φ(z) = 1},

for all x ∈ X. For an U⊙-category (X, a), the monad µ corresponding to (3.i) is given by

µ(α)(x) =
∨

x∈UX
a(x, x)⊙ ξUα(x),

for all α ∈ [0, 1]X . In particular, for every A ⊆ X,

µ(χA)(x) =
∨

x∈UX
a(x, x)⊙ ξUχA(x), =

∨
x∈UA

a(x, x),

for all x ∈ X.

Lemma 3.16. Let R ⊆ [0, 1]X be a [0, 1]⊙-subcategory closed under weighted limits and finite
weighted colimits and a : UX ×X −→ [0, 1] be the initial convergence on X induced by the cone
(φ : X −→ [0, 1])φ∈R in U⊙-Cat. Then the following assertions hold.

1. a(x, x) =
∧
{φ(x) | φ ∈ R, ξUφ(x) = 1}, for all x ∈ UX and x ∈ X.

2. For all A ⊆ X and x ∈ X,∧
{φ(x) | φ ∈ R and, for all z ∈ A, φ(z) = 1} =

∨
x∈UA

a(x, x).

Proof. To see the first statement, note that

a(x, x) =
∧
{hom(ξUφ(x), φ(x)) | φ ∈ R} ≤

∧
{φ(x) | φ ∈ R, ξUφ(x) = 1}.

On the other hand, for every φ ∈ R, put u = ξUφ(x). Then hom(u, φ) ∈ R and, since
hom(u,−) : [0, 1] −→ [0, 1] is continuous with respect to the Euclidean topology,

ξU(hom(u, φ))(x) = ξU(hom(u,−))(φ(x)) = hom(u, ξUφ(x)) = 1,

which proves the assertion. Regarding the second statement, the inequality∧
{φ(x) | φ ∈ R and, for all z ∈ A, φ(z) = 1} ≥

∨
x∈UA

a(x, x)

is certainly true. To see the opposite inequality, put

u =
∧
{φ(x) | φ ∈ R and, for all z ∈ A, φ(z) = 1}.

Let v < u und put ε = u−v, then hom(u, v) = 1−ε. For every φ ∈ R with φ(x) < v, there exists
some z ∈ A with φ(z) < 1− ε. In fact, if φ(z) ≥ 1− ε for all z ∈ A, then hom(1− ε, φ(z)) = 1
for all z ∈ A, but hom(1− ε, φ(x)) = φ(x) + ε < u. Therefore

f = {φ−1([0, 1− ε]) | φ ∈ R, φ(x) < v} ∪ {A}

is a filter base, let x be an ultrafilter finer than f. Then, for every φ ∈ R with φ(x) < v,
ξUφ(x) ≤ 1− ε. Therefore

a(x, x) =
∧
{φ(x) | φ ∈ R, ξUφ(x) = 1} ≥ v.
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From Proposition 3.15 and Lemma 3.16 we conclude now:

Corollary 3.17. Let R ⊆ [0, 1]X be a [0, 1]⊙-subcategory closed under weighted limits and finite
weighted colimits, and consider on X the initial convergence a : UX × X −→ [0, 1] induced by
R. Then

R = {all U⊙-functors φ : X −→ [0, 1]}.

Corollary 3.18. Let R,R′ ⊆ [0, 1]X be [0, 1]⊙-subcategories closed under weighted limits and
finite weighted colimits. If R and R′ induce the same convergence, then R = R′.

We return now to [0, 1]⊙-enriched Priestley spaces.

Proposition 3.19. Let X be in [0, 1]⊙-Priest and R be the closure under infima of [0, 1]⊙-Priest(X, [0, 1])
in [0, 1]X . Then the [0, 1]⊙-subcategory R ⊆ [0, 1]X is closed under weighted limits and finite
weighted colimits.

Proof. Since the maps

∨ : [0, 1]× [0, 1] −→ [0, 1], [0, 1] −→ [0, 1], u 7−→ 0,

∧ : [0, 1]× [0, 1] −→ [0, 1], [0, 1] −→ [0, 1], u 7−→ 1

as well as the maps

hom(u,−) : [0, 1] −→ [0, 1] and u⊙− : [0, 1] −→ [0, 1] (u ∈ [0, 1])

are morphisms in [0, 1]⊙-Priest, the [0, 1]⊙-subcategory [0, 1]⊙-Priest(X, [0, 1]) of [0, 1]X is closed
under finite weighted limits and finite weighted colimits. Clearly, R ⊆ [0, 1]X is closed under all
weighted limits. Since (∧

i∈I
φi

)
∨
(∧
i∈J

φj

)
=

∧
(i,j)∈I×J

(φi ∨ φj),

R is closed in [0, 1]X under binary suprema, and R is closed in [0, 1]X under tensors since u⊙−
preserves non-empty infima.

Corollary 3.20. Let X be in [0, 1]⊙-Priest. Then every U⊙-functor X −→ [0, 1] is an infimum
of morphisms X −→ [0, 1] in [0, 1]⊙-Priest.

Proof. Since [0, 1] ≃ [0, 1]op in [0, 1]⊙-CatU and X is Priestley, the cone [0, 1]⊙-Priest(X, [0, 1])
is point-separating and initial with respect to [0, 1]⊙-CatCH −→ CompHaus. Then, since the
functor K : [0, 1]⊙-CatCH −→ U⊙-Cat [Hofmann et al., 2014, Proposition III.5.3.3] preserves
initial mono-cones, the closure of [0, 1]⊙-Priest(X, [0, 1]) in [0, 1]X under infima coincides with
U⊙-Cat(X, [0, 1]).

Using the isomorphism (−)⊥ : [0, 1] −→ [0, 1]op, we obtain the desired result.

Corollary 3.21. For every X in [0, 1]⊙-Priest, the inclusion CX ↪−→ U⊙-Cat(X, [0, 1]op) is∨
-dense (with respect to suprema in [0, 1]).
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Corollary 3.22. For every U⊙-functor φ : X −→ [0, 1], the [0, 1]⊙-functor

(− · φ) : U⊙-Cat(X, [0, 1]op) −→ [0, 1]

preserves finite weighted limits if and only if the [0, 1]⊙-functor

(− · φ) : CX −→ [0, 1]

does so. Therefore, by Proposition 3.14, an U⊙-distributor φ from 1 to X is left adjoint if and
only if the [0, 1]⊙-functor (− · φ) : CX −→ [0, 1] preserves finite weighted limits.

Proof. Clearly, if (− · φ) : U⊙-Cat(X, [0, 1]op) −→ [0, 1] preserves finite weighted limits, then so
does (− · φ) : CX −→ [0, 1]. Assume now that (− · φ) : CX −→ [0, 1] preserves finite weighted
limits. Then certainly (− · φ) : U⊙-Cat(X, [0, 1]op) −→ [0, 1] preserves the top-element, it is left
to show the preservation of powers and binary infima. Let u ∈ [0, 1] and ψ : X −→ [0, 1]op

in U⊙-Cat. Then ψ =
∨
i∈I αi with αi : X −→ [0, 1]op in [0, 1]⊙-Priest, we may assume that

I ̸= ∅. Then, since the function “taking u-powers” u ⋔ − preserves non-empty suprema in
U⊙-Cat(X, [0, 1]op), we obtain

(u ⋔ ψ) · φ =
(
u ⋔

∨
i∈I

αi

)
· φ =

(∨
i∈I

u ⋔ αi

)
· φ =

∨
i∈I

((u ⋔ αi) · φ)

=
∨
i∈I

(u ⋔ (αi · φ)) = u ⋔
∨
i∈I

(αi · φ) = u ⋔ (ψ · φ).

The preservation of binary infima can be shown analogously.

Similarly to Corollary 3.6, we deduce

Corollary 3.23. Let φ : X −◦−→ Y be a morphism in [0, 1]⊙-Priest
V

. Then φ comes from a
morphism in [0, 1]⊙-Priest if and only if Cφ preserves finite weighted limits.

Proof. For φ : 1 −◦−→ Y , this follows immediately from Corollary 3.22 and Cauchy-completeness
of Y . For the general case, observe that

• φ : X −◦−→ Y is of the form φ = f∗ for some f : X −→ Y in [0, 1]⊙-Priest if and only if, for
all x ∈ X, there is some y ∈ Y with y∗ = φ · x∗ (see Remark 3.10), and

• Cφ preserves finite weighted limits if and only if, for all x ∈ X, evx ·Cφ preserves finite
weighted limits.

We let [0, 1]⊙-FinLat denote the category of finitely complete and finitely cocomplete [0, 1]⊙-
categories and [0, 1]⊙-functors that preserve finite weighted limits and colimits. All told, we
obtain:

Theorem 3.24. The fully faithful functor

C : ([0, 1]⊙-Priest
V

)op −→ [0, 1]⊙-FinSup

restricts to a fully faithful functor

C : ([0, 1]⊙-Priest)op −→ [0, 1]⊙-FinLat.
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Remark 3.25. The categories [0, 1]⊙-FinSup and [0, 1]⊙-FinLat are ℵ1-ary quasivarieties. For
[0, 1]⊙-FinSup, this is shown in [Hofmann and Nora, 2018, Remark 2.10], and for [0, 1]⊙-FinLat
this can be shown as in [Hofmann and Nora, 2018, Remark 2.10] by adding operations and equa-
tions for powers and finite infima. In particular, both categories are locally ℵ1-ary presentable
and the forgetful functor [0, 1]⊙-FinLat −→ [0, 1]⊙-FinSup preserves limits and ℵ1-filtered colim-
its.

Unfortunately, at the moment we are not able to provide a useful description of the image
of C. Nevertheless, in the next section we will use Theorem 3.24 to obtain properties of the
category of coalgebras for V : [0, 1]⊙-Priest −→ [0, 1]⊙-Priest.

4 Duality theory for enriched Priestley spaces: abstractly

In Section 3 we presented some duality results for the category [0, 1]⊙-Priest which in particular
expose some algebraic flavour of [0, 1]⊙-Priestop. For a general quantale V, we are still far
away from concrete duality results, and in this section we investigate properties of V-categorical
compact Hausdorff spaces which help us to recognise

(
V-Priest

)op as some sort of algebraic
category.

Since we will use it frequently, below we recall an intrinsic characterisation of cofiltered limits
in CompHaus which goes back to [Bourbaki, 1942]. We refer to this result commonly as the
Bourbaki-criterion.

Theorem 4.1. Let D : I −→ CompHaus be a cofiltered diagram. Then a cone (pi : L −→
D(i))i∈I for D is a limit cone if and only if

1. (pi : L −→ D(i))i∈I is point-separating, and

2. for every i ∈ I, ⋂
j→i

imD(j → i) = im pi.

That is, “the image of each pi is as large as possible”.

Remark 4.2. The second condition above is automatically satisfied if pi : L −→ D(i) is surjective.

Remark 4.3. The Bourbaki-criterion applies also to complete categories A with a limit preserving
faithful functor |−| : A −→ CompHaus. In this case, the first condition above reads as

the cone (pi : L −→ D(i))i∈I is point-separating and initial with respect to the functor
|−| : A −→ CompHaus.

Example 4.4. From the Bourbaki-criterion it follows at once that, for instance, every Priestley
space X is a cofiltered limit of finite Priestley spaces. In fact, let (pi : X −→ Xi)i∈I be the
canonical cone for the canonical diagram of X with respect to all finite spaces. Clearly, the cone
(pi : X −→ Xi)i∈I is point-separating and initial since 2 is finite. For every index i, consider the
image factorisation of pi.

X

finite spaces: Xi im(pi)

pi
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Since im(pi) ↪−→ Xi belongs to the diagram, the second condition is satisfied.
We can deduce in a similar fashion the well-known facts that every Boolean space X is a

cofiltered limit of finite spaces, every compact Hausdorff space is a cofiltered limit of metrizable
compact Hausdorff spaces, and so on.

Remark 4.5. The classic Stone/Priestley duality Priestop ∼ DL implies in particular that Priestop

is a finitary variety, a fact which can also be seen abstractly using Theorems 1.1 and 1.2. Below
we explain the argument in some detail as it serves as a motivation for the investigation in the
remainder of this section.

1. Priest has all limits and colimits. This is well-known, but we stress that it is a special case
of Corollary 2.22.

2. Every embedding in Priest is a regular monomorphism; therefore the class of embeddings
coincides with the class of regular monomorphisms. We use the argument of [Hofmann,
2002b, Lemma 4.8]: for an embedding m : X −→ Y in Priest, consider a presentation
(qi : Y −→ Yi)i∈I as a cofiltered limit of finite Priestley spaces (= finite partially ordered
sets). For every i ∈ I, take the (surjective, embedding)-factorisation

X
pi−−−−−→ Xi

mi−−−−−→ Yi

of qi ·m. Then also (pi : X −→ Xi)i∈I is a limit cone (by the Bourbaki-criterion); moreover,
m is the limit of the family (mi)i∈I .

(4.i)
X Y

Xi Yi

m

pi qi

mi

Having finite and hence discrete domain and codomain, each mi : Xi −→ Yi is a regular
monomorphism in Posfin = Priestfin (this is a special case of Theorem 2.5) and therefore
also in Priest. Consequently, also m = limimi is a regular monomorphism in Priest.

3. By definition and by the above, the two-element space is a regular cogenerator in Priest.

4. The two-element space is finitely copresentable in Priest. This is very well-known; for our
purpose we mention here that it is a consequence of [Hofmann, 2002a, Lemma 2.2]. In this
section we observe that this result generalises beyond the finitary case (see Lemma 4.37).

5. The two-element space is regular injective in Priest. This follows immediately from finite
copresentability: Consider a regular monomorphism m : X −→ Y in Priest together with
(4.i), and let f : X −→ 2 be a morphism in Priest. Since 2 is finitely copresentable, there
is some i0 ∈ I and a morphism f̄ : Xi0 −→ 2 with f̄ · pi0 = f . Since 2 is injective in Pos
(we stress that this is a special case of Proposition 2.6), there is some ḡ : Xi0 −→ Yi0 with
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ḡ ·mi0 = f̄ . Hence, ḡ · qi0 is an extension of f along m.

X Y

Xi0 Yi0

2

m

pi0

f

qi0

mi0

f̄
ḡ

6. Priest has effective equivalence corelations. A direct proof, even for partially ordered
compact Hausdorff spaces in general, can be found in [Abbadini and Reggio, 2020].

Note that our treatment of properties of Priest rests on results about Ord and Pos, therefore
we have first a look at V-categories.

Theorem 4.6. V-Catop is a quasivariety.

Proof. First recall from Theorem 2.5 that the regular monomorphisms in V-Cat are precisely
the embeddings, and from Proposition 2.6 that V is injective and (f : X −→ V)f is initial, for
every V-category X. Moreover, VI (indiscrete structure) is a cogenerator in V-Cat and therefore
V × VI is a regular injective regular cogenerator. Since V-Cat is also complete, the assertion
follows.

Remark 4.7. The observation above should be compared to the fact that “Topop is a quasivari-
ety”, for details see [Barr and Pedicchio, 1995, 1996] and [Adámek and Pedicchio, 1997; Pedicchio
and Wood, 1999].

On the other hand, for every V, the quasivariety V-Catop does not have any rank. To see this,
we recall first the following result from [Gabriel and Ulmer, 1971, Page 64] (see also [Ulmer,
1971]).

Proposition 4.8. A set is copresentable in Set if and only if it is a singleton.

The corresponding result for V-Cat is now an immediate consequence of the following obser-
vation.

Proposition 4.9. The “discrete” functor D : Set −→ V-Cat preserves non-empty limits, in
particular cofiltered limits. If k = ⊤ is the top-element of V, then D preserves also the terminal
object.

Corollary 4.10. If X is copresentable in V-Cat, then |X| = 1.

Proof. By Proposition 4.9, the forgetful functor |−| : V-Cat −→ Set preserves copresentable
objects since, for every V-category X, hom(−, |X|) ≃ hom(D−, X).

We turn now our attention to separated V-categories.
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Theorem 4.11. The full subcategory V-Catsep of V-Cat is closed under initial monocones.
Therefore the inclusion functor V-Catsep −→ V-Cat has a left adjoint; moreover, the canoni-
cal forgetful functor V-Catsep −→ Set is mono-topological with left adjoint D : Set −→ V-Catsep

(discrete structures). Consequently, V-Catsep is complete and cocomplete, with concrete limits.
A morphism f : X −→ Y in V-Catsep is a monomorphism if and only if the map f is injective.

Proof. See [Hofmann and Tholen, 2010], for instance.

Remark 4.12. We do not know if Topop
0 or V-Catop

sep are quasivarieties. Note that in both cases the
class of regular monomorphisms does not coincide with the class of embeddings, as we explain
below (see also [Baron, 1968]).

The description of further classes of morphisms in V-Catsep is facilitated by the notion of
L-closure introduced in [Hofmann and Tholen, 2010].

Lemma 4.13. Let X be a V-category, M ⊆ X and x ∈ X. Then the following assertions are
equivalent.

(i) x ∈M .

(ii) For all f, g : X −→ Y in V-Cat, if f |M = g|M , then f(x) ≃ g(x).

(iii) For all f, g : X −→ Y in V-Cat with Y separated, if f |M = g|M , then f(x) = g(x).

(iv) For all f, g : X −→ V in V-Cat, if f |M = g|M , then f(x) = g(x).

Corollary 4.14. The epimorphisms in V-Catsep are precisely the L-dense V-functors, and the
regular monomorphisms the closed embeddings.

Proof. The assertion regarding epimorphisms is in [Hofmann and Tholen, 2010, Theorem 3.8].
However, both claims follow immediately from Lemma 4.13.

We denote by V-Catsep,cc the full subcategory of V-Catsep formed by all Cauchy-complete
separated V-categories. The following two results follow immediately from Corollary 4.14.

Corollary 4.15. A separated V-category X is Cauchy-complete if and only if X is a regular
subobject of a power of V in V-Catsep. Moreover, the regular monomorphisms in V-Catsep,cc are
precisely the embeddings of V-categories.

Corollary 4.16. The V-category V is a regular injective regular cogenerator in V-Catsep,cc.
Hence,

(
V-Catsep,cc

)op is a quasivariety.

Remark 4.17. Clearly, the “discrete” functor D : Set −→ V-Catsep preserves non-empty limits.
Under some conditions (see [Clementino and Hofmann, 2009, Proposition 2.2]), every discrete
V-category is Cauchy-complete and the discrete functor D : Set −→ V-Catsep,cc is left adjoint to
the forgetful functor V-Catsep,cc −→ Set and preserves codirected limits. Hence, in this case at
most a one-element V-category can be copresentable in V-Catsep,cc.

Remark 4.18. In general, the category (V-Catsep,cc)op is not a variety, i.e. does not have effective
equivalence corelations. A counterexample is already given by the case V = 2 since the dual
of Pos ∼ 2-Catsep,cc is not a variety. This fact is well-known and follows immediately from the
following facts:
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• Posop is equivalent to the category TAL of totally algebraic lattices and maps preserving
all suprema and all infima (see [Rosebrugh and Wood, 1994], for instance),

• TAL is a full subcategory of the category CCD of (constructively) completely distributive
lattices and maps preserving all suprema and all infima,

• the unit interval [0, 1] is completely distributive but not totally algebraic,

• the category CCD is monadic over Set (see [Pedicchio and Wood, 1999], and [Pu and Zhang,
2015] for a generalisation to quantaloid-enriched categories). Here the free algebra over a
set X is given by the complete lattice of upsets of the powerset of X, and this lattice is
totally algebraic and therefore also the free totally algebraic lattice over X.

Another important property of V-categories and V-functors is established in [Kelly and Lack,
2001]: V-Cat is locally presentable, for every quantale V. Under Assumption 4.19 below, and
based on [Seal, 2005, 2009], we show that V-Cat is locally ℵ1-copresentable by describing a
corresponding countable limit sketch. This will help us later to identify V-CatCH as the model
category of a ℵ1-ary limit sketch in CompHaus. To do so, in the remainder of this section we
impose the following conditions on the quantale V.

Assumption 4.19. We assume that the underlying lattice of V is completely distributive, and
that there is a countable subset D ⊆ V so that, for all v ∈ V,

v =
∨
{u ∈ D | u≪ v}.

Examples 4.20. The quantales of Examples 2.3 and Example 2.4 satisfy Assumption 4.19.

Remark 4.21. Under Assumption 4.19, for each v ∈ V,

↑v =
⋂
{↑u | u ∈ D,u≪ v}.

Hence, by Remark 2.9 (3), the sets ↑u (u ∈ D) form a subbasis for the closed sets of the dual of
the Scott topology of V.

We start with the following well-known fact.

Lemma 4.22. The assignments

(φ : X → V) 7−→ (φ−1(↑u)u∈D)

and
(Bu)u∈D 7−→ (φ : X → V, x 7→

∨
{u ∈ D | x ∈ Bu})

define a bijection between the sets

VX and {(Bu)u∈D | for all u ∈ D, Bu ⊆ X & Bu =
⋂
v≪u

Bv}.

Remark 4.23. Under the bijection above, a map a : X×X −→ V corresponds to a family (Ru)u∈D

of binary relations Ru on X.

Proposition 4.24. A V-relation a : X×X −→ V is reflexive if and only if ∆X ⊆ Rk. Moreover,
a : X ×X −→ V is transitive if and only if, for all u, v ∈ D, Ru ·Rv ⊆ Ru⊗v.
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Proof. See [Seal, 2009].

Remark 4.25. A V-category (X, a) is separated if and only if the relation Rk on X is anti-
symmetric.

Therefore the structure of a V-category can be equivalently described by a family of binary
relations, suitably interconnected. Since a map f : X −→ Y between V-categories is a V-functor
if and only if f preserves the corresponding relations, we obtain at once:

Corollary 4.26. The categories V-Cat and V-Catsep are model categories in Set of an ℵ1-ary
countable limit sketch.

Remark 4.27. We do not know yet wether V-Catsep,cc is locally presentable. However, we note
that in [Adámek et al., 2015] this property is proven for V = [0, 1]⊙, that is, for the case of
bounded metric spaces.

We turn now our attention to V-categorical compact Hausdorff spaces. First we observe that
Proposition 4.9 as well as some of its consequences generalise directly to the topological case.

Proposition 4.28. The “discrete” functors D : CompHaus −→ V-CatCH and D : CompHaus −→
V-CatCHsep preserve non-empty limits. If k = ⊤ is the top-element of V, then D preserves also
the terminal object.

Regarding copresentable compact Hausdorff spaces, we recall the following result from [Gabriel
and Ulmer, 1971, 6.5(c)] (see also [Ulmer, 1971]).

Theorem 4.29. 1. The finitely copresentable compact Hausdorff spaces are precisely the fi-
nite ones.

2. The ℵ1-copresentable compact Hausdorff spaces are precisely the metrisable ones. In par-
ticular, the unit interval [0, 1] is ℵ1-copresentable in CompHaus.

Corollary 4.30. For every regular cardinal λ, the forgetful functors |−| : V-CatCH −→ CompHaus
and |−| : V-CatCHsep −→ CompHaus preserve λ-copresentable objects. In particular, every
finitely copresentable (separated) V-categorical compact Hausdorff space is finite and every ℵ1-
copresentable (separated) V-categorical compact Hausdorff space has a metrizable topology.

We are particularly interested in properties of the space V. We start with the following
observation.

Proposition 4.31. A subbase for the Lawson topology on V is given by the sets

{u ∈ V | v ≪ u} and {u ∈ V | v ≰ u} (v ∈ D).

Proof. By definition, the Lawson topology is the join of the Scott topology and the lower topology
of V (see Remark 2.9); we recall that the latter is generated by the sets (↑v)∁, with v ∈ V. Since
the lattice V is completely distributive, the Scott topology of V has as subbase the sets (see
Proposition 2.15)

{u ∈ V | v ≪ u},

25



with v ∈ V. Since “generated topology” defines a left adjoint, the sets

{u ∈ V | v ≪ u} and {u ∈ V | v ≰ u} (v ∈ V)

form a subbase for the Lawson topology of V. Let now v ∈ V. For each v ≪ u ∈ V, there is
some w ∈ D with v ≪ w ≪ u, therefore

{u ∈ V | v ≪ u} =
⋃

w∈D,v≪w

{u ∈ V | w ≪ u}.

Finally, since v ∈
∨
{w ∈ D | w ≪ v}, we obtain ↑v =

⋂
{↑w | w ∈ D,w ≪ v} and therefore

(↑v)∁ =
⋃
{(↑w)∁ | w ∈ D,w ≪ v}.

Corollary 4.32. The Lawson topology makes V a ℵ1-copresentable object in CompHaus.

Proof. By Proposition 4.31, the Lawson topology on V has a countable subbase and therefore
also a countable base. Hence, V with the Lawson topology is a metrizable compact Hausdorff
space and therefore, by Theorem 4.29, ℵ1-copresentable in CompHaus.

We shall now extend Corollary 4.26 to the topological context and show that V-CatCH is a
model category of a limit sketch in CompHaus. To prepare this, we recall an alternative way
of expressing the compatibility between topology and V-categories which is closer to Nachbin’s
original definition.

Proposition 4.33. For a V-category (X, a) and a U-algebra (X,α) with the same underlying
set X, the following assertions are equivalent.

(i) α : U(X, a) −→ (X, a) is a V-functor.

(ii) a : (X,α)× (X,α) −→ (V, ξ≤) is continuous.

Proof. See [Hofmann and Reis, 2018, Proposition 3.22].

Lemma 4.34. Consider V with the dual of the Scott topology. Then, under the correspondence
of Lemma 4.22, φ : X −→ V is continuous if and only if, for each u ∈ D, Bu is closed in X.

Proof. Recall from Remark 4.21 that the sets ↑u (u ∈ D) form a subbase for the closed sets of
the dual of the Scott topology of V.

Applying Lemma 4.34 to the map a : (X,α) × (X,α) −→ (V, ξ≤) of Proposition 4.33 gives
immediately:

Theorem 4.35. Both V-CatCH and V-CatCHsep are model categories in CompHaus of a count-
able ℵ1-ary limit sketch. Hence, both categories are locally copresentable.

Proof. For the second affirmation, use [Adámek and Rosický, 1994, Remark 2.63].

Remark 4.36. At this moment we do not have any information about the rank of the locally
presentable category V-CatCHop; in particular, we do not know if V-CatCHop is ℵ1-ary locally
copresentable.
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In order to obtain more information on copresentable objects in V-CatCH, we adapt now
[Hofmann, 2002a, Lemma 2.2] to the case of a general regular cardinal. Here we call a λ-ary
limit sketch S = (C,L, σ) λ-small whenever there is a set M of morphisms in C of cardinality
less than λ so that every morphism of C is a finite composite of morphisms in M . Hence, for
λ > ℵ0, we require the category C to be λ-small.

Lemma 4.37. Let λ be a regular cardinal and let S = (C,L, σ) be a λ-small limit sketch. Then
a model of S in a category X is λ-copresentable in Mod(S,X) provided that each component is
λ-copresentable in X.

Proof. See [Hofmann, 2002a, Lemma 2.2].

By Assumption 4.19, the limit sketch for V-CatCH is countable which allows us to derive the
following properties.

Corollary 4.38. A V-categorical compact Hausdorff space is ℵ1-ary copresentable in V-CatCH
(respectively V-CatCHsep) if and only if its underlying compact Hausdorff space is metrizable. In
particular, Vop is ℵ1-ary copresentable in V-CatCH and in V-CatCHsep.

Corollary 4.39. If the quantale V is finite, then the finitely copresentable objects of V-CatCH
(respectively V-CatCHsep) are precisely the finite ones.

Remark 4.40. The conclusion of Lemma 4.37 is not necessarily optimal. For instance, the circle
line T = R/

Z is ℵ1-copresentable but not finitely copresentable in CompHaus (see [Gabriel
and Ulmer, 1971, 6.5]); hence, Lemma 4.37 implies that T is ℵ1-copresentable in the category
CompHausAb of compact Hausdorff Abelian groups and continuous homomorphisms. However,
by the famous Pontryagin duality theorem (see [Morris, 1977], for instance), T is even finitely
copresentable in CompHausAb which cannot be concluded from Lemma 4.37.

Remark 4.41. In particular, the finitely copresentable partially ordered compact spaces are
precisely the finite ones. Moreover, a partially ordered compact space is ℵ1-copresentable in
PosComp if and only if its underlying compact Hausdorff topology is metrisable. This character-
isation is slightly different from our result in [Hofmann et al., 2018] where the ℵ1-copresentable
objects in PosComp are characterised as those spaces where both – the order and the topology
– are induced by the same (not necessarily symmetric) metric.

As we show next, the results above also imply that the reflector π0 : V-CatCH −→ V-Priest
preserves ℵ1-cofiltered limits. In the classical case, the corresponding property is shown in
[Gabriel and Ulmer, 1971, Page 67] using Stone duality; however, our proof here is based on the
Bourbaki-criterion.

Proposition 4.42. The reflection functor π0 : V-CatCH −→ V-Priest preserves ℵ1-cofiltered
limits (and even cofiltered limits if V is finite).

Proof. Let (pi : X −→ D(i))i∈I be a ℵ1-cofiltered limit in V-CatCH (ℵ0-cofiltered if V is finite).
Since Vop is ℵ1-ary copresentable (ℵ0-ary copresentable if V is finite) in V-CatCH, the cone of
all morphisms of type X −→ Vop is given by the cone of all morphism

X
pi−−−−−→ D(i) φ−−−−→ Vop
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where i ∈ I and φ : D(i) −→ Vop in [0, 1]-CatCH. Hence, for every i ∈ I and every φ : X −→ Vop,
we obtain the commutative diagram

X π0(X)

D(i) π0(D(i)) Vop.

pi π0(pi)

φ̃

Therefore the cone (π0(pi) : π0(X) −→ π0(D(i)))i∈I is initial with respect to the forgetful functor
V-CatCH −→ CompHaus.

Let now i ∈ I and x ∈ D(i) with x ∈
⋂
{im(π0(D(k))) | k : j → i in I}. Let A ⊆ X be the

inverse image of x under the reflection map D(i) −→ π0(D(i)). Then, for every k : j → i in I,
∅ ̸= A ∩ im(k). Since the set {im(k) | k : j → i} is codirected and A is compact, we obtain

∅ ̸=
⋂

k : j→i

A ∩ imD(k) = A ∩
⋂

k : j→i

imD(k) = A ∩ im(pi).

Therefore x ∈ im(π0(pi)).

Remark 4.43. Corollary 4.38 allows for an alternative proof of Corollary 4.42 for ⊗ = ⊙ in the
spirit of [Gabriel and Ulmer, 1971, Page 67]. Firstly, the dualising object [0, 1] induces a natural
dual adjunction (see [Porst and Tholen, 1991])

[0, 1]⊙-CatCH [0, 1]⊙-FinLatop
C=hom(−,[0,1])

hom(−,[0,1])

⊥

where the fixed subcategory on the left-hand side is precisely [0, 1]⊙-Priest. Then the func-
tor π0 : [0, 1]⊙-CatCH −→ [0, 1]⊙-Priest is the composite of the functor C : [0, 1]⊙-CatCH −→
[0, 1]⊙-FinLatop and the right adjoint functor [0, 1]⊙-FinLatop −→ [0, 1]⊙-Priest above (see [Lam-
bek and Rattray, 1979, Theorem 2.0], and note that, for every L in [0, 1]⊙-FinLat, the space
hom(L, [0, 1]) is Priestley by construction).

Combining Corollaries 4.42 and 4.30 we obtain:

Corollary 4.44. 1. An object is ℵ1-ary copresentable in V-Priest if and only if its underly-
ing compact Hausdorff space is metrizable. In particular, Vop is ℵ1-ary copresentable in
V-Priest.

2. Assume that V is finite. Then an object is finitely copresentable in V-Priest if and only if
it is finite. In particular, Vop is finitely copresentable in V-Priest.

Proof. Since the left adjoint π0 : V-CatCH −→ V-Priest of V-Priest −→ V-CatCH preserves ℵ1-
codirected limits, the inclusion functor V-Priest −→ V-CatCH preserves ℵ1-copresentable objects.
Furthermore, since V-Priest is closed in V-CatCH under limits, V-Priest −→ V-CatCH reflects ℵ1-
copresentable objects. The second affirmation follows similarly.

Corollary 4.45. The fully faithful right adjoint functor

C : [0, 1]⊙-Priestop −→ [0, 1]⊙-FinLat

of Theorem 3.24 preserves ℵ1-filtered colimits.
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Theorem 4.46. The category V-Priest is locally ℵ1-ary copresentable. If V is finite, then
V-Priest is even locally ℵ0-ary copresentable.

Proof. By the Bourbaki-criterion, every X in V-Priest is a limit of the canonical diagram of X
with respect to the full subcategory of V-Priest defined by all ℵ1-copresentable objects. Since
V-Priest is complete, we conclude that V-Priest is locally ℵ1-ary copresentable. If V is finite, the
same argument works with ℵ0 in lieu of ℵ1.

Remark 4.47. The results of this section together with Theorem 3.24 and Remark 3.25 allow us
to deduce some nice properties of the category CoAlg(V) of coalgebras and homomorphisms for
the functor V : [0, 1]⊙-Priest −→ [0, 1]⊙-Priest. We write A for the isomorphism closure of the
image of

C : ([0, 1]⊙-Priest)op −→ [0, 1]⊙-FinLat;

hence, A is locally ℵ1-presentable and A −→ [0, 1]-FinLat⊙ is a reflective full subcategory closed
under ℵ1-filtered colimits. Also note that the category Un([0, 1]⊙-FinSup) of unary algebras
and homomorphisms in [0, 1]⊙-FinSup is locally ℵ1-ary presentable and the forgetful functor
Un([0, 1]⊙-FinSup) −→ [0, 1]⊙-FinSup preserves ℵ1-filtered colimites (see [Adámek and Rosický,
1994, Proposition 1.53]). Finally, CoAlg(V)op is equivalent to the category B of A-objects
equipped with a unary operation in [0, 1]⊙-FinSup and homomorphisms, which can be obtained
as the pullback

Un([0, 1]⊙-FinSup) B

[0, 1]⊙-FinSup A

of ℵ1-accessible functors. Consequently, B is locally ℵ1-ary presentable (see [Bird, 1984; Bird
et al., 1989; Makkai and Paré, 1989]) and therefore CoAlg(V) is locally ℵ1-ary copresentable. In
particular, CoAlg(V) is complete.

Next, we link V-categorical compact Hausdorff spaces with compact V-categories. To do so,
we also impose now the following condition.

Assumption 4.48. For the neutral element k of V, the set

{u ∈ V | u≪ k}

is directed.

Then ⊥ < k and, for all u, v ∈ V,

k ≤ u ∨ v =⇒ (k ≤ u or k ≤ v);

which guarantees that the L-closure is topological (see [Hofmann and Tholen, 2010, Propo-
sition 3.3]). Moreover, under this condition, a separated V-category X induces a Hausdorff
topology; if this topology is compact, X becomes a V-categorical compact Hausdorff space (see
[Hofmann and Reis, 2018, Theorem 3.28 and Propositions 3.26 and 3.29]). We let V-Catsep,comp

denote the full subcategory of V-Catsep defined by those V-categories with compact topology,
then this construction defines a fully faithful functor

V-Catsep,comp −→ V-CatCHsep.

From Lemma 4.13 and Corollary 4.14 we obtain immediately:
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Corollary 4.49. Let f : X −→ Y be in V-Catsep,comp. Then

1. f is a regular monomorphism in V-CatCHsep if and only if f is an embedding, and

2. f is an epimorphism in V-CatCHsep if and only if f is surjective.

Lemma 4.50. If the V-category V is compact, then the L-topology on V coincides with the
Lawson topology.

Proof. By [Hofmann and Nora, 2020, Remark 4.27], for every u ∈ V, the sets ↑u and ↓u are
closed in V with respect to the L-closure.

Example 4.51. In particular, the L-closure on the [0, 1]⊙-category [0, 1] induces the Euclidean
topology with convergence ξ.

Corollary 4.52. Assume that the V-category V is compact. Then we have a fully faithful functor

V-Catsep,comp −→ V-Priest,

and every V-enriched Priestley space is a cofiltered limit of compact separated V-categories.
Moreover:

• every embedding f : X −→ Y in V-Priest is a regular monomorphism, and

• therefore the epimorphisms in V-Priest are precisely the surjective morphisms.

Consequently, Vop is a regular cogenerator in V-Priest.

Proof. Regarding embeddings, we use the same argument as in Remark 4.5 (2). Every epimor-
phism e in V-Priest factorises as e = m·g where g is surjective and m is a regular monomorphism,
hence m is an isomorphism and therefore e is surjective.

Remark 4.53. If V is finite, then Vop is finitely copresentable in V-Priest and, with the same
argument as in Remark 4.5 (5), we deduce that Vop is regular injective in V-Priest. Unfortunately,
the same argument does not seem to work if V is infinite since in this case

• Vop is countably but in general not finitely copresentable in V-Priest, but

• we are not able to prove that every V-enriched Priestley space is a ℵ1-cofiltered limit of
compact separated V-categories.

We finish this paper by bringing another well-known result from order theory into the enriched
realm: every V-categorical compact Hausdorff space is a quotient of a Priestley one. We shall
make use of the free V-categorical compact Hausdorff space, for U-category (X, a), and therefore
assume that our topological theory U = (U,V, ξ) is strict in the sense of [Hofmann, 2007]:

Assumption 4.54. The complete lattice V is completely distributive, and we consider the
Lawson topology ξ : UV −→ V (see Remark 2.9). Furthermore, the tensor ⊗ : V × V → V is
continuous with respect to the Lawson topology.
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We consider the free V-categorical compact Hausdorff space

(UX, â,mX)

of a U-category (X, a) where â = Ua · m◦
X (see [Hofmann et al., 2014, Theorem III.5.3.5]).

Moreover, by [Hofmann, 2007, Lemma 6.7 and Proposition 6.11], the map

δA : X −→ V, x 7−→
∨
{a(x, x) | x ∈ UA}

is an U-functor, for every A ⊆ X, since it can be written as the composite

X VUA V.
⌜a⌝

δA

∨
For our next result we need to consider a stronger version of Assumption 4.48 which we assume
from now on:

Assumption 4.55. The set {u ∈ V | u≪ v} is directed, for every v ̸= ⊥ in V.

Lemma 4.56. For every U-category (X, a) and all x, y ∈ UX,

â(x, y) =
∨
{u ∈ V | ∀A ∈ x . δ−1

A (↑u) ∈ y}.

Proof. Same as in [Hofmann, 2013, page 83], which in turn relies on [Hofmann, 2006, Corol-
lary 1.5].

Lemma 4.57. For every U-category (X, a), the cone

(UX ξ·UδA−−−−−−−→ V)A⊆X

is initial in V-CatCH.

Proof. For all x, y ∈ UX, we show that

â(x, y) ≥
∧
{ξ · UδA(y) | A ∈ x},

and observe that δA(x) ≥ k, for every A ∈ x. Let

u≪
∧
{ξ · UδA(y) | A ∈ x}.

Then, for every A ∈ x, u ≪ ξ · δA(y), and therefore ↑u ∈ UδA(y), which is equivalent to
δ−1
A (↑u) ∈ y. Therefore u ≤ â(x, y), by Lemma 4.56.

Corollary 4.58. For every U-category (X, a), the V-categorical compact Hausdorff space (UX)op

is Priestley.

Corollary 4.59. Every V-categorical compact Hausdorff space is a regular quotient of a Priestley
one.

Proof. With α : UX −→ X denoting the convergence of X (and Xop),

α : U(Xop) −→ Xop

is a regular quotient in V-CatCH, and hence also α : U(Xop)op −→ X.
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5 Conclusions

In this paper we have continued our study of “enriched Stone-type dualities” initiated in [Hof-
mann and Nora, 2018] where we extended the context from order structures to quantale-enriched
(in particular metric) structures. Therefore, we passed from ordered compact Hausdorff spaces
to quantale-enriched compact Hausdorff spaces which led naturally to the notion of quantale-
enriched Priestley space. In Section 3 we complemented the duality results for categories of
quantale-enriched Priestley space and continuous distributors by showing how these results can
be restricted to categories of maps (Theorem 3.7). In Section 4 we investigated the category
V-Priest of quantale-enriched Priestley spaces and morphisms, with emphasis on those properties
which identify the dual of this category as some kind of algebraic category. For certain quantales,
we showed that the larger category V-CatCH of quantale-enriched compact Hausdorff spaces and
morphisms is a model category in CompHaus of a countable ℵ1-ary limit sketch (Theorem 4.35),
characterised the ℵ1-copresentable objects of V-CatCH as precisely the metrizable ones (Corol-
lary 4.38), and showed that the left adjoint π0 : V-CatCH −→ V-Priest of the inclusion functor
V-Priest −→ V-CatCH preserves ℵ1-cofiltered limits (Proposition 4.42). Based on these results,
we characterised the ℵ1-copresentable objects (Corollary 4.44) and showed that this category is
locally ℵ1-copresentable (Theorem 4.46).
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