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Abstract
Behavioural distances measure the deviation between states
in quantitative systems, such as probabilistic or weighted
systems. There is growing interest in generic approaches
to behavioural distances. In particular, coalgebraic meth-
ods capture variations in the system type (nondeterminis-
tic, probabilistic, game-based etc.), and the notion of quan-
tale abstracts over actual values distances take, thus cover-
ing, e.g., two-valued equivalences, metrics, and probabilistic
metrics. Coalgebraic behavioural distances have variously
been based on liftings of Set-functors to categories of met-
ric spaces; on modalities modeled as predicate liftings, via
a generalised Kantorovich construction; and on lax exten-
sions of Set-functors to categories of quantitative relations.
Every lax extension induces a functor lifting in a straight-
forward manner. Moreover, it has recently been shown that
every lax extension is Kantorovich, i.e. induced by a suitable
choice of monotone predicate liftings. In the present work,
we complete this picture by determining, in coalgebraic and
quantalic generality, when a functor lifting is induced by a
class of predicate liftings or by a lax extension. We subse-
quently show coincidence of the respective induced notions
of behavioural distances, in a unified approach via double cat-
egories that applies even more widely, e.g. to (quasi)uniform
spaces.

1 Introduction
Universal coalgebra [34] serves as a general framework for
a wide range of transition systems of different types. It gen-
eralises (labelled) transition systems and encapsulates the
emerging transition types as set functors. Coalgebras come
equipped with a canonical notion of behavioural equivalence
based on identifiability under coalgebra morphisms. How-
ever, it has long been realised that for quantitative systems
more fine-grained comparisons are desirable, such as be-
havioural distance [4, 11, 12, 14, 17, 40]. A priori, notions of
distance are less canonically defined than behavioural equiv-
alence. One systematic approach to behavioural distances

in coalgebraic generality uses liftings of set functors to cate-
gories of pseudometric spaces, briefly metric liftings [3]. The
process of inducing a behavioural distance from such a lifting
can roughly be summarized as follows. The forgetful functor
from the category of pseudometric spaces is topological [1]
(or, in alternative terminology, a CLat⊓-fibration [24, 25]). It
follows that if 𝐹 is a metric lifting of 𝐹 , then the forgetful
functor from 𝐹 -coalgebras to 𝐹 -coalgebras is also topolog-
ical [20], and as such has a right adjoint, which precisely
equips an 𝐹 -coalgebra with a behavioural distance. This idea
is also behind categorical frameworks that connect indis-
tinguishability and games [24], and indistinguishability and
expressivity of logic [25].
Another coalgebraic approach to behavioural distance

uses lax extensions [28, 36], which extend the action of a set
functor to quantitative relations, adhering to suitable axioms.
A lax extension gives rise to a notion of quantitative bisimu-
lation, generalising the standard notion of a bisimulation as a
relation that is compatible with the transition structure of a
coalgebra [16, 33, 41, 43]; this induces a notion of behavioural
distance as the greatest quantitative bisimulation.
It has been noted that both metric liftings and lax ex-

tensions can be constructed via quantitative predicate lift-
ings, which encapsulate the semantics of quantitative modal-
ities [5, 35], via respective generalised Kantorovich construc-
tions [3, 41] (a special case of which is the standard Kan-
torovich lifting of distances to probability distributions). For
lax extensions, it has been shown that indeed every lax ex-
tension is Kantorovich, i.e. induced by a suitable choice of
monotone predicate liftings [18, 41]. Moreover, it is well-
known that every lax extension induces a metric lifting by
restriction.
In the present paper we complete the existing picture

of mutual connections between predicate liftings, metric
liftings, monotone and unrestricted lax extensions, as sum-
marized in Figure 1.
Specifically, we show that every functor lifting that preserves
initial morphisms is Kantorovich, i.e. comes from a choice
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monotone
predicate liftings predicate liftings

lax extensions functor liftings

[41], 4.9 [3], 3.11[41]

4.13

3.12, 3.3

Figure 1. Summary of connections. Indeed this diagram
extends to a square of adjunctions (4.i).

of not necessarily monotone predicate liftings, namely the
predicate liftings it induces; and that every functor lifting
that preserves initial morphisms and induces only monotone
predicate liftings is induced by a lax extension. A key ingre-
dient of our general treatment is the use of quantales as the
range of distance functions, andmoreover we do not insist on
distances being symmetric, thus covering also (quantitative)
notions of similarity. (Recent work on quantitative modal
characterization theorems [42] works at a similar level of
generality.) In working with quantales we follow Worrell
[43], who uses them to cover the classical two-valued set-
ting, standard unit-interval-valued metrics, ultrametrics, and
probabilistic metrics [15, 31] in a uniform way.

Finally, we propose to use double categories as a uniform
framework to reason coalgebraically about indistinguisha-
bility. Our motivation stems from the fact that the type of
transition and the type of similarity are naturally encapsu-
lated by the single notion of a double functor. By applying
well-known constructions in double categories, we illustrate
how this point of view allows expressing the connection be-
tween similarity and behavioural distance beyond Set-based
approaches.

In more detail, we proceed as follows. In the next section
we briefly review the theory of quantale-enriched categories
and relations, lax extensions and predicate liftings. In Sec-
tions 3 and 4 we describe how lax extensions, liftings and
predicate liftings are related.

In Section 3 we relate liftings to predicate liftings. We re-
view a simple construction to lift a functor F : A → A along a
topological functor B → A – we call such liftings topological.
We prove that for every lifting of a functor F : Set → Set
to the category V-Cat of quantale-enriched categories and
quantale-enriched functors there exists a class of predicate
liftings of F such that the corresponding topological lifting
differs from F at most at the emptyV-category. Therefore,
from a coalgebraic point of view, one can always assume that
a lifting is constructed from predicate liftings. Furthermore,
we introduce the notion of predicate lifting induced by a
lifting and the notion of Kantorovich lifting – a natural gen-
eralisation of the notion introduced by Baldan et al. [3]. We
characterise the Kantorovich liftings precisely as the liftings
that preserve initial morphisms. This is a pleasant property

that is required in multiple results in the context of coalge-
braic indistinguishability (e.g. [3, 25, 43]), and that now can
be used, for example, to conclude that every Wasserstein
lifting is Kantorovich, although not necessarily with respect
to the same class of predicate liftings. On the other hand, this
characterisation also shows that the notion of Kantorovich
lifting is more restrictive than it seems at first sight. For in-
stance, the discrete lifting of the identity functor on Set to
the categoryOrd of preordered sets and monotone functions
is not Kantorovich.

In Section 4 we relate lax extensions to liftings by building
on the results of the previous section and a representation
theorem for lax extensions [18]. We show that lax extensions,
liftings and predicate liftings are linked by adjunctions, and
that those liftings induced by lax extensions are precisely the
Kantorovich liftings whose predicate liftings are monotone.
This means, for example, that the lifting of the identity func-
tor to Ord that maps each preordered set to its dual cannot
be induced by a lax extension despite being Kantorovich.

Finally, in Section 5 we take advantage of several notions
and constructions involving double categories to reason coal-
gebraically about indistinguishability. In particular, we show
in this setting that the corresponding notions of what, for
distinction, we call similarity (for lax extensions) and be-
havioural distance (for liftings), respectively, coincide. Taking
into account the results of the previous sections, this implies
that the notion of similarity provided by a lax extension cor-
responding to a class of monotone predicate liftings coincides
with the notion of behavioural distance provided by the lift-
ing associated with the same class of predicate liftings. This
is the missing link mentioned by Komorida et al. [25] that
makes is possible to incorporate the approach to similarity
via lax extensions in the categorical frameworks that connect
indistinguishability and games [24] and indistinguishability
and expressivity of logic [25]. Furthermore, the point of view
of double categories allows for expressing the connection
between these concepts beyond Set-coalgebras and beyond
V-relations as simulations. Indeed, by considering coalge-
bras over quantale-enriched categories and V-distributors
as simulations, we recover Worrell’s coinduction results [43],
and by considering coalgebras over (quasi) uniform spaces
and promodules [8] as simulations, we obtain a new result
which complements the expressivity result for bisimulation
uniformity presented by Komorida et al. [25].

RelatedWork. As indicated above, quantale-valued quan-
titative notions of bisimulation for functors that already live
on generalised metric spaces (rather than being lifted from
functors on sets) have been considered early on [43]. We
have already mentioned previous work on coalgebraic be-
havioural metrics, for functors originally living on sets, via
metric liftings [3] and via lax extensions [16, 41], where
in particular it was shown that every lax extension is Kan-
torovich [41], a result that we complement here by showing,
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among other things, that every metric lifting is Kantorovich.
Existing work that combines coalgebraic and quantalic gen-
erality and accommodates asymmetric distances, like the
present work, has so far concentrated on establishing so-
called van Benthem theorems, concerned with characteriz-
ing (coalgebraic) quantitative modal logics by bisimulation
invariance [42]. There is a line of work on Kantorovich-type
coinductive predicates at the level of generality of topologi-
cal categories [24, 25] (using fibrational terminology), with
results including a game characterization and expressive
logics for coinductive predicates already assumed to be Kan-
torovich in a general sense, i.e. induced by variants of predi-
cate liftings. In this work, the condition of preserving initial
morphisms already shows up as fiberedness, and indeed an
instance of the condition already appears in work on metric
liftings as preservation of isometries [3].

2 Preliminaries
In this section we briefly review the theory of quantale-
enriched categories, predicate liftings and lax extensions.
Detailed information about these topics can be easily found
in the literature (e.g. [7, 18, 21, 23, 29, 32, 36, 37, 39]).

2.1 Quantale-enriched relations and categories
A quantale, more precisely a commutative and unital quan-
tale, is a complete lattice V that carries the structure of a
commutative monoid (V, ⊗, 𝑘) such that for every 𝑢 ∈ V
the map 𝑢 ⊗ − : V → V preserves suprema. Therefore, in
a quantale every map 𝑢 ⊗ − : V → V has a right adjoint
hom(𝑢,−) : V → V which is characterised by

𝑢 ⊗ 𝑣 ≤ 𝑤 ⇐⇒ 𝑣 ≤ hom(𝑢,𝑤),

for all 𝑣,𝑤 ∈ V . A quantale is non-trivial whenever ⊥, the
least element of V , does not coincide with ⊤, the greatest
element of V . Moreover, a quantale is integral if ⊤ is the
unit of the monoid operation ⊗ ofV , which we refer to as
tensor or multiplication.

Examples 2.1. Quantales are ubiquitous in mathematics
and computer science.

1. Every frame is a quantale with ⊗ = ∧ and 𝑘 = ⊤.
2. Every commutative monoid (𝑀, ·, 𝑒) generates a quan-

tale structure on (P𝑀,⋃), the free quantale on a monoid.
The tensor ⊗ on P𝑀 is defined by

𝐴 ⊗ 𝐵 = {𝑎 · 𝑏 | 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵},

for all 𝐴, 𝐵 ⊆ 𝑀 , and {𝑒} is the unit of ⊗.
3. The complete lattice [0,∞] ordered by the “greater or

equal” relation ⩾ and addition as tensor, denoted by [0,∞]⊕ ,
or maximum as tensor, denoted by [0,∞]max.
4. The complete lattice [0, 1] ordered by the “greater or

equal” relation ⩾ and truncated addition as tensor, denoted
by [0, 1]⊕ .

For a quantale V and sets 𝑋 , 𝑌 , a V-relation – an en-
riched relation – from 𝑋 to 𝑌 is a map 𝑋 × 𝑌 → V and
it is represented by 𝑋 −↦−→ 𝑌 . As for ordinary relations, V-
relations can be composed via “matrix multiplication”. That
is, for 𝑟 : 𝑋 −↦−→ 𝑌 and 𝑠 : 𝑌 −↦−→ 𝑍 , the composite 𝑠 · 𝑟 : 𝑋 −↦−→ 𝑍

is calculated pointwise by

(𝑠 · 𝑟 ) (𝑥, 𝑧) =
∨

𝑦∈𝑌
𝑟 (𝑥,𝑦) ⊗ 𝑠 (𝑦, 𝑧),

for every 𝑥 ∈ 𝑋 and 𝑧 ∈ 𝑍 . The collection of all sets and
V-relations between them forms the category V-Rel. For
each set 𝑋 , the identity morphism on 𝑋 is the V-relation
1𝑋 : 𝑋 −↦−→ 𝑋 that sends every diagonal element to 𝑘 and all
the others to ⊥.

Examples 2.2. The category of 2-relations is the usual cat-
egory Rel of sets and relations. Quantitative or “fuzzy” rela-
tions are usually defined as [0, 1]⊕-relations (e.g. [3, 41]).

We can compare V-relations of type 𝑋 −↦−→ 𝑌 using the
pointwise order induced by V ,

𝑟 ≤ 𝑠 ⇐⇒ ∀(𝑥,𝑦) ∈ 𝑋 × 𝑌, 𝑟 (𝑥,𝑦) ≤ 𝑠 (𝑥,𝑦).

Every hom-set of V-Rel becomes a complete lattice when
equipped with this order, and an easy calculation reveals
that V-relational composition preserves suprema in each
variable. Therefore, V-Rel is a quantaloid and enjoys many
properties inherited fromV . In particular, precomposition
and postcomposition with a V-relation 𝑟 : 𝑋 −↦−→ 𝑌 define
maps with right adjoints that compute Kan lifts and exten-
sions, respectively. Thus, the lift of a V-relation 𝑠 : 𝑍 −↦−→ 𝑌

along 𝑟 : 𝑋 −↦−→ 𝑌 is the V-relation 𝑟 � 𝑠 : 𝑍 −↦−→ 𝑋 defined by
the property 𝑟 · 𝑡 ≤ 𝑠 ⇐⇒ 𝑡 ≤ 𝑟 � 𝑠, for every 𝑡 : 𝑍 −↦−→ 𝑋 .

IfV is non-trivial, we can seeV-Rel as an extension of Set
through the faithful functor (−)◦ : Set → V-Rel that acts as
identity on objects and interprets a function 𝑓 : 𝑋 → 𝑌 as
the V-relation 𝑓◦ : 𝑋 −↦−→ 𝑌 that sends every element of the
graph of 𝑓 to 𝑘 and all the others to ⊥. To avoid unnecessary
use of subscripts usually we write 𝑓 instead of 𝑓◦.

The categoryV-Rel comes equipped with a contravariant
involution (−)◦ : V-Relop −→ V-Rel that maps objects iden-
tically and sends a V-relation 𝑟 : 𝑋 −↦−→ 𝑌 to the V-relation
𝑟 ◦ : 𝑌 −↦−→ 𝑋 defined by 𝑟 ◦ (𝑦, 𝑥) = 𝑟 (𝑥,𝑦) and called the con-
verse of 𝑟 .
Category theory underlines preordered sets as the fun-

damental ordered structures. For an arbitrary quantale V ,
the same role is taken by V-categories. Analogously to the
classical case, we say that a V-relation 𝑟 : 𝑋 −↦−→ 𝑋 is reflex-
ive whenever 1𝑋 ≤ 𝑟 , and transitive whenever 𝑟 · 𝑟 ≤ 𝑟 .
A V-category is a pair (𝑋, 𝑎) consisting of a set 𝑋 of ob-
jects and a reflexive and transitive V-relation 𝑎 : 𝑋 −↦−→ 𝑋 ;
a V-functor (𝑋, 𝑎) → (𝑌,𝑏) is map 𝑓 : 𝑋 → 𝑌 such that
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𝑓 · 𝑎 ≤ 𝑏 · 𝑓 . Clearly, V-categories and V-functors define a
category, denoted as V-Cat.

Examples 2.3. The following are some familiar examples
of quantale-enriched categories.

1. The category 2-Cat is equivalent to the category Ord
of preordered sets and monotone maps.

2. The category [0,∞]⊕-Cat is the categoryMet of gen-
eralisedmetric spaces and non-expansive maps.
3. The category [0,∞]max-Cat is the category UMet of

generalised ultrametric spaces and non-expansive maps.
4. The category [0, 1]⊕-Cat is the category BMet of gen-

eralised bounded-by-1 metric spaces and non-expansive
maps.

5. Categories enriched in a free quantale P𝑀 on amonoid𝑀
(such as𝑀 = Σ∗ for some alphabet Σ) can be interpreted as la-
belled transition systems with labels in𝑀 : in a P𝑀-category
(𝑋, 𝑎) the objects represent the states of the system, and we
can read𝑚 ∈ 𝑎(𝑥,𝑦) as an𝑚-labelled transition from 𝑥 to 𝑦.

There are several ways of constructingV-categories from
known ones. Of special importance in this work are the dual
of aV-category (𝑋, 𝑎), which is theV-category (𝑋, 𝑎)op =

(𝑋, 𝑎◦); and the V-category composed by a set 𝑋 equipped
with the initial structure 𝑎 : 𝑋 −↦−→ 𝑋 with respect to a
structured cone (𝑓𝑖 : 𝑋 → (𝑋𝑖 , 𝑎𝑖 ))𝐼 , that is,

𝑎(𝑥,𝑦) =
∧

𝑖∈𝐼
𝑎𝑖 (𝑓𝑖 (𝑥), 𝑓𝑖 (𝑦)),

for all 𝑥,𝑦 ∈ 𝑋 . The fact that the we can compute the initial
structure of every structured cone of the forgetful functor
V-Cat → Setmeans that the categoryV-Cat is topological
over Set [1]. Therefore, the categoryV-Cat is complete and
cocomplete, and the canonical forgetful functor preserves
limits and colimits.

Remark 2.4. The quantaleV becomes aV-category when
equipped with structure hom: V ×V → V .

Proposition 2.5. TheV-categoryV = (V, hom) is injective
with respect to initial morphisms and, for everyV-category 𝑋 ,
the cone (𝑓 : 𝑋 → V)𝑓 is initial with respect to the forgetful
functor V-Cat → Set.

Remark 2.6. Since (−)op : V-Cat → V-Cat is a concrete iso-
morphism, Proposition 2.5 applies also to theV-categoryVop

in lieu of V .

Another useful way of organizing V-categories in a cate-
gory is to consider as morphisms the V-relations that are
compatible with the structure of V-category. A V-relation
𝑟 : 𝑋 −↦−→ 𝑌 betweenV-categories (𝑋, 𝑎) and (𝑌,𝑏) is called a
V-distributor1 whenever 𝑟 · 𝑎 ≤ 𝑟 and 𝑏 · 𝑟 ≤ 𝑟 . Since the
reverse inequalities always hold, these are in fact equalities.
We distinguish aV-distributor from (𝑋, 𝑎) to (𝑌,𝑏) with the
notation (𝑋, 𝑎) −◦−→ (𝑌,𝑏).

1Also called module, bimodule or profunctor in the literature.

The category V-Dist has V-categories as objects and V-
distributors as morphisms; composition is inherited from
V-Rel, but the identity morphism on a V-category (𝑋, 𝑎)
is the V-distributor 𝑎 : (𝑋, 𝑎) −◦−→ (𝑋, 𝑎). The fact that the
structure of a V-category is transitive implies that we have
a structured version (−)◦ : V-Cat → V-Dist of the functor
(−)◦ : Set → V-Rel that maps objects identically, and sends
a V-functor 𝑓 : (𝑋, 𝑎) → (𝑌,𝑏) to the V-distributor 𝑏 ·
𝑓 : (𝑋, 𝑎) −◦−→ (𝑌,𝑏).

2.2 Predicate liftings
Given a cardinal ^, a ^-ary predicate lifting of a functor
F : Set → Set is a natural transformation ` : PV^ −→ PVF,
where PV^ denotes the functor Set(−,V^) : Setop → Set.
We say that ` : PV^ → PVF is monotone if every compo-
nent of ` is a monotone map with respect to the pointwise
order.

Remark 2.7. The Yoneda lemma tells us that a natural trans-
formation ` : PV^ → PVF is completely determined by its
action on the identitymap onV^ , in particular, the collection
of all natural transformation of type PV^ → PVF is a set.
With ` denoting the resulting morphism of type FV^ → V ,
then `𝑋 : PV^𝑋 → PVF𝑋 is given by the map 𝑓 ↦−→ ` · F𝑓 .

Examples 2.8. The paradigmatic examples of predicate
liftings are motivated by Kripke semantics of modal logic.
Coalgebras of the covariant powerset functor P : Set → Set
correspond precisely to Kripke frames. In coalgebraic modal
logic, the Kripke semantics of the modal logic 𝐾 is recovered
by interpreting the modal operator ^ as the predicate lifting
^ : P2 → P2P whose 𝑋 -component is defined by

𝐴 ↦−→ {𝐵 ⊆ 𝑋 | 𝐴 ∩ 𝐵 ≠ ∅},
or by interpreting the modal operator □ as the predicate
lifting □ : P2 → P2P whose 𝑋 -component is defined by

𝐴 ↦−→ {𝐵 ⊆ 𝑋 | 𝐵 ⊆ 𝐴}.

2.3 Lax extensions
A lax extension 2 of a functor F : Set → Set toV-Rel con-
sists of a map (𝑟 : 𝑋 −↦−→ 𝑌 ) ↦−→ (F̂𝑟 : F𝑋 −↦−→ F𝑌 ) such that:

(L1) 𝑟 ≤ 𝑟 ′ =⇒ F̂𝑟 ≤ F̂𝑟 ′,
(L2) F̂𝑠 · F̂𝑟 ≤ F̂(𝑠 · 𝑟 ),
(L3) F𝑓 ≤ F̂𝑓 and (F𝑓 )◦ ≤ F̂(𝑓 ◦),

for all 𝑟 : 𝑋 −↦−→ 𝑌 , 𝑠 : 𝑌 −↦−→ 𝑍 and 𝑓 : 𝑋 → 𝑌 .
Every lax extension has a dual [37]. The dual lax exten-

sion F̂◦ : V-Rel → V-Rel of a lax extension F̂ : V-Rel →
V-Rel is the lax extension of F : Set → Set that is defined
by the assignment 𝑟 ↦−→ F̂(𝑟 ◦)◦. Notably, this means that
we can symmetrise lax extensions. The symmetrisation

2It is also common to refer to some sort of extension of a Set-functor to Rel
as “relator” , “relational lifting” or “lax relational lifting”.
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F̂𝑠 : V-Rel → V-Rel of a lax extension F̂ : V-Rel → V-Rel
is the lax extension given by the infimum between F̂ and F̂◦.

Lax extensions are deeply connected with monotone pred-
icate liftings. As advocated by [18], to realise this it is conve-
nient to think of the𝑋 -component of a^-ary predicate lifting
as a map of type V-Rel(𝑋,^) → V-Rel(F𝑋, 1). Hence, in
the present work, we move freely between this point of view
and the standard point of view.

Definition 2.9. A predicate lifting ` : PV^ → PVF is in-
duced by a lax extension F̂ : V-Rel → V-Rel whenever
there exists aV-relation 𝔯 : F^ −↦−→ 1 such that ` (𝑓 ) = 𝔯 · F̂𝑓 ,
for everyV-relation 𝑓 : 𝑋 −↦−→ ^ . If 𝔯 is the converse of an ele-

ment 𝔨 : 1 → F^ , thenwe say that ` is aMoss lifting of F̂, and
we emphasise this by using the notation `𝔨 : PV^ → PVF.

Remark 2.10. It follows immediately from (L1) that every
predicate lifting induced by a lax extension is monotone.

Example 2.11. Consider the lax extension of the covariant
powerset functor P : Set → Set to Rel given by

𝐵(P̂𝑟 )𝐶 ⇐⇒ ∀𝑐 ∈ 𝐶, ∃𝑏 ∈ 𝐵, 𝑏 𝑟 𝑐.

The unaryMoss lifting of P̂ determined by the element 1 ∈ P1
is the predicate lifting ^ : PV → PVP (see Examples 2.8).
Similarly, the Moss lifting of the dual extension of P̂ de-
termined by the element 1 ∈ P1 is the predicate lifting
□ : PV → PVP (see Examples 2.8).

Theorem 2.12 ([18]). Let ` : PV^ → PVF be a ^-ary pred-
icate lifting. For every V-relation 𝑟 : 𝑋 −↦−→ 𝑌 , consider the

V-relation F̂`𝑟 : F𝑋 −↦−→ F𝑌 given by

F̂`𝑟 =
∧

𝑔 : 𝑌−↦−→^
` (𝑔) � ` (𝑔 · 𝑟 ). (2.i)

If ` is monotone, then the assignment 𝑟 ↦→ F̂𝑟 defines a lax
extension F̂ : V-Rel → V-Rel.

Definition 2.13. Let F : Set → Set be a functor, and 𝑀 a
class of monotone predicate liftings. The Kantorovich lax
extension of F with respect to𝑀 is the lax extension

F̂𝑀 =
∧

`∈𝑀
F̂` .

Examples 2.14. LetV be a quantale.
1. The identity functor on V-Rel is the Kantorovich ex-

tension of the identity functor on Set with respect to the
identity natural transformation PV → PV .
2. The largest extension of a functor F : Set → Set to

V-Rel arises as the Kantorovich extension of F with respect
to the natural transformation ⊤ : PV → PVF that sends
every map to the constant map ⊤.
3. The Kantorovich extension of the powerset functor

P : Set → Set with respect to the predicate lifting ^ : PV →

PVP (see Examples 2.8) is defined on aV-relation 𝑟 : 𝑋 −↦−→ 𝑌

by the “Hausdorff formula”,

P̂^𝑟 (𝐴, 𝐵) =
∧

𝑏∈𝐵

∨
𝑎∈𝐴

𝑟 (𝑎, 𝑏),
for every 𝐴 ⊆ 𝑋 and 𝐵 ⊆ 𝑌 . ForV = 2 we obtain a generali-
sation of the upper-half of the Egli-Milner order; whereby for
the quantales [0,∞]⊕ , [0,∞]max and [0, 1]⊕ we obtain a gen-
eralisation of the upper-half of the corresponding Hausdorff
metric. Therefore, the symmetrisation of these lax exten-
sions are generalisations of the Egli-Milner order and the
Hausdorff metric.

The Kantorovich extension leads to a representation theo-
rem that plays an important role in Section 4.

Theorem 2.15 ([18]). Let F̂ : V-Rel → V-Rel be a lax exten-
sion, and𝑀 the class of all of its Moss liftings. Then, F̂ = F̂𝑀 .

3 Liftings versus predicate liftings
It is well-known that every lax extension F̂ : V-Rel → V-Rel
gives rise to a functor F̂ : V-Cat → V-Cat that commutes
with the underlying forgetful functor to Set:

V-Cat V-Cat

Set Set

|− |

F̂

=

F

|− |

We say that a functor F : V-Cat → V-Cat with this prop-
erty is a (strict) lifting of F : Set → Set to V-Cat, a lifting
of F : Set → Set, a functor lifting or simply a lifting. These
functors are completely determined by their action on ob-
jects. In particular, the lifting induced by a lax extension
F̂ : V-Cat → V-Cat sends a V-category (𝑋, 𝑎) to the V-
category (F𝑋, F̂𝑎).
A less known fact is that predicate liftings also induce

liftings. This is the outcome of a simple construction avail-
able on all topological categories. More in detail, to lift a
functor G : A → Y along a topological functor |−| : B → Y,
it is enough to give, for every object 𝐴 in A, a |−|-structured
cone

C(𝐴) = (G𝐴 ℎ−→ |𝐵 |)ℎ,𝐵 (3.i)
so that, for every ℎ in C(𝐴) and every 𝑓 : 𝐵 → 𝐴, the com-
posite ℎ ·G𝑓 belongs to the cone C(𝐵). Then, for an object𝐴
in A, one defines G𝐼𝐴 by equipping G𝐴 with the initial struc-
ture with respect to the structured cone (3.i). It is easy to
see that the assignment 𝑋 ↦→ G𝐼𝑋 indeed defines a functor
G𝐼 : A → B so that |−| · G𝐼 = G. This technique has been
recently applied to construct “codensity liftings” [24, 25] and
”Kantorovich liftings” [3]. Applying this to our situation with
G = F · |−|, the idea is that to construct a lifting of a func-
tor F : Set → Set to V-Cat it suffices to provide a cocone
indexed by a class 𝐼 of natural transformations

`𝑖 : V-Cat(−, 𝐴𝑖 ) −→ Set(F|−|, |𝐵𝑖 |).
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Then, given a V-category 𝑋 , we consider the |−|-structured
cone

`𝑖 (𝑓 ) : F|𝑋 | −→ |𝐵𝑖 |
determined by every natural transformation `𝑖 and every
V-functor 𝑓 : 𝑋 → 𝐴𝑖 , and, as described above, we obtain a
V-category F𝐼𝑋 by equipping F𝑋 with the initial structure
with respect to this cone. We call a lifting constructed this
way a topological lifting, although, as we will see next, it
does not make much sense to talk about topological liftings
without restricting the collection of the V-categories that
may take the role of 𝐴𝑖 .

Note that for every lifting F : V-Cat → V-Cat of a func-
tor F : Set → Set, the forgetful functor |−| : V-Cat → Set
induces a natural transformation

|−|−,Vop : V-Cat(F−,Vop) −→ Set(F|−|, |Vop |).

Lemma 3.1. Let F : V-Cat → V-Cat be a lifting of a functor
F : Set → Set and 𝑋 a V-category. Given a family of natural
transformations

`𝑖 : V-Cat(−, 𝐴𝑖 ) −→ V-Cat(F−,Vop) (for 𝑖 ∈ 𝐼 ),
if the cocone(

`𝑖𝑋 : V-Cat(𝑋,𝐴𝑖 ) −→ V-Cat(F𝑋,Vop)
)
𝑖∈𝐼

is jointly epic, then the topological lifting with respect to the
class of all natural transformations

`𝑖 : V-Cat(−, 𝐴𝑖 ) → Set(F|−|, |Vop |)
that factor as

V-Cat(−, 𝐴𝑖 ) V-Cat(F−,Vop)

Set(F|−|, |Vop |)

`𝑖

`𝑖
|− |−,Vop

coincides with F on 𝑋 .

Theorem 3.2. Every lifting is topological.

Constructing topological liftings from predicate liftings
amounts to choosing possibly different V-categories based
on powers of the set V . Given a ^-ary predicate lifting
` : PV^ → PVF, for each pair (𝐴, 𝐵) ofV-categories based
on the function set V^ and on the set V , respectively, we
use the natural transformation

V-Cat(−, 𝐴) −→ Set( |−|, |𝐴|)
defined by inclusion maps to obtain a natural transformation

` (𝐴,𝐵) : V-Cat(−, 𝐴) −→ Set(F|−|, |𝐵 |)
as illustrated below.

V-Catop Setop Set

Setop

V-Cat(−,𝐴)

⇓

|− | Set(−,V^ )
F ⇓

Set(−,V)

The next results shows that in practice it is often rea-
sonable to assume that every lifting is a topological lifting
constructed from predicate liftings.

Theorem 3.3. For every lifting F : V-Cat → V-Cat there is
a topological lifting constructed from a class of predicate lift-
ings of F that agrees with F on every non-empty V-category.

Corollary 3.4. Let F : V-Cat → V-Cat be a lifting such
that one of the following conditions is satisfied:

1. F preserves the initial morphism ∅ → (1, 11);
2. F preserves the final monomorphism ∅ → (1, 11).

Then, F is a topological lifting constructed from predicate lift-
ings.

Corollary 3.5. For every lifting F : V-Cat → V-Cat of
a functor F : Set → Set, there exists a topological lifting
F𝐼 : V-Cat → V-Cat of F constructed from predicate lift-
ings such that CoAlg(F) ≃ CoAlg(F𝐼 ).
Remark 3.6. The result above is already optimal with respect
to the proof-strategy encapsulated in Lemma 3.1.

In the remaining of the paper, we will be primarily con-
cerned with the situation where each ^-ary predicate lifting
` : PV^ → PVF gives rise to the natural transformation:

` : V-Cat(−, (V^)op) −→ Set(F|−|, |Vop |),
whereV is the canonicalV-category induced by the internal
hom of the quantale (see Remark 2.4). To simplify notation,
in the sequel we often omit the forgetful functor to Set.

Definition 3.7. Let F : Set → Set be a functor and𝑀 a class
of predicate liftings of F with respect to a quantaleV . The
Kantorovich lifting of Fwith respect to𝑀 is the topological
lifting F𝑀 : V-Cat → V-Cat that sends aV-category (𝑋, 𝑎)
to the V-category (F𝑋, F𝑀𝑎), where F𝑀𝑎 denotes the initial
structure on F𝑋 with respect to the structured cone of all
functions

` (𝑓 ) : F𝑋 −→ Vop

where ` : PV^ → PVF is a predicate lifting that belongs
to 𝑀 , and 𝑓 : (𝑋, 𝑎) → (V^)op is a V-functor. A lifting
F : V-Cat → V-Cat is said to be Kantorovich whenever it
can be expressed as the Kantorovich lifting with respect to a
class of predicate liftings of F.

As far as we know, the notion of Kantorovich lifting was
first introduced in practice – without mentioning initial lifts
at all – by Baldan et al. [2, 3] as a tool to study coalgebraically
the notion of behavioural distance; more specifically, as a
way of constructing liftings to (topological) categories of
pseudometric spaces and non-expansive maps from unary
predicate liftings.
In the remaining of this section we exploit the universal

property of initial lifts of cones to obtain a pleasant charac-
terisation of the class of Kantorovich liftings. To this end,
in the following let F : Set → Set be a functor, and V be
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a quantale. Consider the partially ordered class Pred(F) of
classes of predicate liftings of F ordered by containment,

𝑀 ≤ 𝑀 ′ ⇐⇒ 𝑀 ⊇ 𝑀 ′;

and the partially ordered class Lift(F) of liftings of F toV-Cat
ordered by

F ≤ F
′ ⇐⇒ ∀(𝑋, 𝑎) ∈ V-Cat, F𝑎 ≤ F

′
𝑎.

Remark 3.8. Alternatively, F ≤ F
′
if (1F𝑋 : F𝑋 → F𝑋 ) (𝑋,𝑎) ∈V-Cat

extends to a natural transformation from F to F
′
.

Motivated by Lemma 3.1 we introduce now the notion of
predicate lifting induced by a functor lifting.

Definition 3.9. Let F : V-Cat → V-Cat be a lifting. A
predicate lifting ` : PV^ → PVF is induced by F, also said
to be a predicate lifting of F, whenever ` (1V^ ) : F(V^)op →
Vop is aV-functor. The class of all predicate liftings induced
by F is represented by P(F).

Remark 3.10. In other words, a predicate lifting ` : PV^ →
PVF is induced by a lifting F : V-Cat → V-Cat whenever
the corresponding natural transformation

` : V-Cat(−, (V^)op) −→ Set(F|−|, |Vop |)

admits a lift

V-Cat(−, (V^)op) V-Cat(F−,Vop)

Set(F|−|, |Vop |).

`

`
|− |−,Vop

Theorem 3.11. Let F : Set → Set be a functor. Assigning to
a class of predicate liftings of F the corresponding Kantorovich
lifting yields a right adjoint F(−) : Pred(F) → Lift(F) whose
left adjoint P : Lift(F) → Pred(F) maps a lifting of F to its
class of predicate liftings.

Theorem 3.12. Let F : Set → Set be a functor. A lifting
F : V-Cat → V-Cat of F is Kantorovich if and only if it
preserves initial morphisms (=fully faithfull V-functors).

Example 3.13. The characterisation of Theorem 3.12 makes
it easy to provide examples of Kantorovich liftings.

1. It is an elementary fact that every lifting induced by
a lax extension preserves initial morphisms [20, Proposi-
tion 2.16]. In particular, the Wasserstein lifting [3] is Kan-
torovich.

2. Since we assume that a quantale V is commutative,
the involution (−)◦ : V-Relop → V-Rel induces a lifting
(−)◦ : V-Cat → V-Cat of the identity functor on Set that
sends every V-category to its dual. Clearly, this lifting pre-
serves initial morphisms, and it can be shown that it is the
Kantorovich lifting of the identity functor with respect to
the set of all predicate liftings induced by the V-functors
V → Vop.

Remark 3.14. The composite of V-Cat-functors that pre-
serve initial morphisms preserves initial morphisms. Conse-
quently, the composite of Kantorovich liftings is Kantorovich.
In particular, this entails that choosing the V-categories V
orVop as the base V-category to define the notion of Kan-
torovich lifting leads to the same class of functors. Our choice
here prevents a mismatch in Section 4 when we compare
the Kantorovich liftings and the liftings induced by the Kan-
torovich extension [18, 41].

Example 3.15. The following examples are topological lift-
ings that do not preserve initial morphisms.

1. The discrete lifting of the identity functor on Set to
V-Cat does not preserve initial morphisms.

2. Let (3, ≤) denote the set {0, 1, 2} equipped with the
preorder determined by 2 ≤ 0 and 2 ≤ 1. Then, considering
the preordered set (2 = {0, 1}, 12) – the symmetrisation
of the quantale 2 – we have that the inclusion (2, 12) →
(3, ≤) is an order embedding. The topological lifting of the
identity functor on Set to Ord with respect to the identity
map (2, 12) → (2, 12) acts as identity on (2, 12) but it sends
(3, ≤) to the set {0, 1, 2} equipped with the indiscrete order.
Therefore, this lifting does not preserve initial morphisms,
hence, by Theorem 3.12, it is not Kantorovich.

4 Lax extensions versus liftings
In this section we show that lax extensions, liftings and
predicate liftings are linked by adjunctions, and characterise
the liftings induced by lax extensions. We begin by showing
that the Kantorovich extension and the Kantorovich lifting
are compatible. To achieve this, it is convenient to express
the Kantorovich lifting in the language of V-relations [18].

Proposition 4.1. Let ` : PV^ → PF be a ^-ary predicate
lifting of a functor F : Set → Set. The Kantorovich lifting
F` : V-Cat → V-Cat of F with respect to ` sends a V-
category (𝑋, 𝑎) to theV-category (F𝑋, F`𝑎), where

F`𝑎 =
∧

𝑟 : (𝑋,𝑎)−◦−→(^,1^ )
` (𝑟 ) � ` (𝑟 ).

The Kantorovich lifting of a class of predicate liftings𝑀
sends a V-category (𝑋, 𝑎) to the V-category (F𝑋, F𝑀𝑎),
where

F𝑀𝑎 =
∧

`∈𝑀
F`𝑎.

Theorem 4.2. Let F̂ : V-Cat → V-Cat be a lifting of a
functor F : Set → Set induced by a lax extension F̂ : V-Rel →
V-Rel. If F̂ : V-Rel → V-Rel is the Kantorovich extension
with respect to a class𝑀 of predicate liftings, then the functor
F̂ : V-Cat → V-Cat is the Kantorovich lifting of F : Set →
Set with respect to𝑀 .

Therefore, recalling that Theorem 2.15 states that every
lax extension can be expressed as the Kantorovich extension
with respect to its collection of Moss liftings, we obtain:
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Corollary 4.3. Let F̂ : V-Cat → V-Cat be a lifting of a
functor F : Set → Set induced by a lax extension F̂ : V-Rel →
V-Rel. Then, the functor F̂ : V-Cat → V-Cat is the Kan-
torovich lifting of F : Set → Set with respect to the class of
Moss liftings of F̂ : V-Rel → V-Rel.

Remark 4.4. Taking as primitives the notions of bisimulation
and behavioural equivalence would lead us to consider lax
extensions toV-Rel that preserve converses [41] and liftings
to the categoryV-Catsym of symmetric quantale-enriched
categories [3]. In this regard, we note that the symmetrisation
of a lax extension of a Set-functor toV-Rel yields a lifting
of that functor to V-Catsym. Moreover, since the category
V-Catsym is topological over Set, we also have a canonical
notion of Kantorovich lifting to V-Catsym where V𝑠 , the
symmetrisation ofV , takes the role ofVop. Indeed, this is
how the Kantorovich lifting (of a unary predicate lifting)
to categories of pseudometrics is defined by Baldan et al.
[3] . It follows from the fact that, for every symmetric V-
category 𝑋 ,

V-Catsym (𝑋,V𝑠 ) = V-Cat(𝑋,V) = V-Cat(𝑋,Vop)

that the Kantorovich extension and the Kantorovich lifting of
a functor are also compatible with respect to symmetrisation;
that is, the lifting to V-Catsym of a functor F : Set → Set
induced by the symmetrisation of the Kantorovich extension
of F to V-Rel with respect to a class of monotone predi-
cate liftings coincides with the Kantorovich lifting of F to
V-Catsym with respect to the same class of predicate liftings.

Let Lax(F) denote the partially ordered class of lax exten-
sions of a functor F : Set → Set to V-Rel ordered by the
pointwise order,

F̂ ≤ F̂′ ⇐⇒ ∀𝑟 ∈ V-Rel, F̂𝑟 ≤ F̂′𝑟 ;

and let Lift(F)I represent the partially ordered subclass of
Lift(F) consisting of the liftings that preserve initial mor-
phisms. Furthermore, Pred(F)M denotes the partially ordered
subclass of Pred(F) of monotone predicate liftings. Clearly,
the operations of taking Kantorovich extensions

F̂(−) : Pred(F)M → Lax(F),

and inducing liftings from lax extensions

I : Lax(F) → Lift(F)I
define monotone maps. Moreover, as we have seen in Theo-
rem 3.12, the monotone map F(−) : Pred(F) → Lift(F) core-
stricts to Lift(F)I. Therefore, our results so far tell us that
lax extensions, liftings and predicate liftings are connected
through a diagram of monotone maps

Lax(F) Lift(F)I

Pred(F)M Pred(F)

I

PF̂(−) F(−) ⊢

which commutes if the left adjoint is ignored. We will see
next that the monotone map F̂(−) : Pred(F)M → Lax(F)
is a right adjoint. This might not be immediately obvious
without thinking in terms of liftings because the obvious
guess – taking the predicate liftings induced by a lax ex-
tension [18] – does not always defines a monotone map
Lax(F) → Pred(F)M, as it can be seen in Example 4.5. At
a deeper level we can see that there is a slight mismatch
between the predicate liftings of a lax extension and the
predicate liftings of the functor lifting induced by that lax
extension.

Example 4.5. The identity functor on Ord is the lifting
induced by the identity functor on Rel which is a lax exten-
sion of identity functor on Set. The constant map into ⊤ is a
monotone map 2op → 2op and determines a monotone pred-
icate lifting that is induced by the largest extension of the
identity functor. However, it is easy to see that this predicate
lifting is not a predicate lifting of the identity functor on Rel
(for example, see [18, Example 3.12]).

Proposition 4.6. Every predicate lifting of a lax extension
F̂ : V-Rel → V-Rel is also a predicate lifting of the corre-
sponding lifting F̂ : V-Cat → V-Cat.

It should also be noted that even if a functor lifting pre-
serves initial morphisms its predicate liftings might not be
monotone. That is, the map P : Lift(F)I → Pred(F) does not
necessarily corestricts to Pred(F)M.
Example 4.7. Consider the lifting (−)◦ : Ord → Ord of the
identity functor on Set to Ord that sends each preordered
set to its dual. Then, the predicate lifting of (−)◦ determined
by theV-functor hom(−, 0) : (2, hom) → (2, hom)op is not
monotone since it sends the constant map 0 : 1 → 2 to the
constant map 1 : 1 → 2.

Accordingly, we need to “filter the monotone predicate
liftings” first. This operation trivially defines the left adjoint

M : Pred(F) → Pred(F)M
of the inclusion map Pred(F)M ↩→ Pred(F). In Proposi-
tion 4.11, we will observe that this procedure is redundant
whenever applied to a collection of predicate liftings of a
lifting induced by a lax extension.

Lemma 4.8. Let F̂ : V-Cat → V-Cat be a lifting induced by
a lax extension F̂ : V-Rel → V-Rel. Then, for every monotone
predicate lifting ` : PV^ → PVF of F̂, F̂ ≤ F̂` .

Theorem 4.9. Let F : Set → Set be a functor. The monotone
mapMPI : Lax(F) → Pred(F)M is left adjoint to the monotone
map F̂(−) : Pred(F)M → Lax(F).

In the sequel, we show that the monotone maps F̂MP(−) :
Lift(F)I → Lax(F) and I : Lift(F)I → Lax(F) form an adjunc-
tion and characterise its fixed points. The following lemma
does most of the remaining heavy lifting.
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Lemma 4.10. Let F : V-Cat → V-Cat be a lifting. For ev-
ery cardinal ^, let ℎ^ denote the structure of the V-category
(V^)op. The following are equivalent:

(i) every predicate lifting of F is monotone;
(ii) for every cardinal ^ and every pair 𝑝, 𝑞 : 𝑋 −↦−→ ^ of

V-relations,

𝑝 ≤ 𝑞 =⇒ F𝑝♯ ≤ Fℎ^ · F𝑞♯,
where 𝑟 ♯ : 𝑋 → V𝑌 denotes the map corresponding to
the V-relation 𝑟 : 𝑋 −↦−→ 𝑌 .

Proposition 4.11. Let F̂ : V-Cat → V-Cat be a lifting in-
duced by a lax extension F̂ : V-Rel → V-Rel. Every predicate
lifting of the functor lifting F̂ : V-Cat → V-Cat is monotone.

Theorem 4.12. Let F : Set → Set be a functor. The monotone
map F̂MP(−) : Lift(F)I → Lax(F) is left adjoint to the monotone
map I : Lax(F) → Lift(F)I.

Therefore, the interplay between lax extensions, liftings
and predicate liftings is captured by the diagram

Lax(F) Lift(F)I

Pred(F)M Pred(F)

I

MPI ⊣ P

F̂MP(−)

⊣

F̂(−) F(−) ⊢

M

⊣

(4.i)

which commutes when only the right adjoints or only the
left adjoints are considered. Finally, let Lift(F)IM denote the
partially ordered subclass of Lift(F)I consisting of the liftings
that induce only monotone predicate liftings.

Theorem 4.13. Let F : Set → Set be a functor. The partially
ordered classes Lax(F) and Lift(F)IM are isomorphic.

Our characterisation of lax extensions makes it clear that
even among Kantorovich liftings there are interesting liftings
that are not induced by lax extensions. For instance, the
lifting of the identity functor to Ord determined by the dual
structure (3.13(2)) is Kantorovich, but as Example 4.7 shows
it cannot be induced by lax extensions.

5 Quantale-enriched simulations
It is known that a lax extension of a Set-functor to V-Rel
corresponds precisely to a lax-double endofunctor on the
standard double category of quantale-enriched relations [10].
This fact suggests that to reason coalgebraically about in-
distinguishability, we should consider not just the category
of coalgebras of an endofunctor but the double category of
coalgebras of a lax-double endofunctor. In this section, after a
brief review of basic facts about double categories, we show
that double category of coalgebras inherits nice properties
from the base double category. Then, for a given double

category of coalgebras, we show that the corresponding no-
tions of similarity and behavioural distance coincide. This
entails that the notion of similarity arising from a lax ex-
tension toV-Rel coincides with the notion of behavioural
distance arising from the lifting induced by the lax extension.
Moreover, by considering coalgebras over quantale-enriched
categories and V-distributors as simulations, we recover
Worrell’s coinduction results [43], and by considering coal-
gebras over (quasi) uniform spaces and promodules [8] as
simulations, we obtain a new result which complements the
expressivity result for bisimulation uniformity presented by
Komorida et al. [25].

We recall that a double category [13] A consists of objects
and two types of arrows: horizontal and vertical ones, and
cells in squares suggestively written as

𝑋 𝑌

𝐴 𝐵.

𝑓

|𝑟 | 𝑠

𝑔

Y

Cells can be composed horizontally and vertically, and
these operations must satisfy the middle-interchange law.
Furthermore, wewriteHoriz(A) for the 2-category of objects
of A , horizontal arrows of A , and with 2-cells Y : 𝑔 → ℎ being

𝐴 𝐵

𝐴 𝐵

ℎ

|1 | 1Y

𝑔

from A . Similarly, Ver(A) denotes the bicategory of objects
of A , vertical arrows of A , and with 2-cells 𝛿 : 𝑟 → 𝑠 given
by cells in A of type

𝐴 𝐴

𝐵 𝐵.

1

|𝑟 | 𝑠𝛿

1

To keep the presentation simple and to avoid coherence
issues, in this section we only consider flat double categories,
that is, we assume that each square has at most one cell, and
in this case we write

𝑋 𝑌

𝐴 𝐵.

𝑓

|𝑟 | 𝑠

𝑔

≤ (5.i)

Examples 5.1. Our paradigmatic example of a double cate-
gory is the double categoryV-Rel that has sets as objects,
functions as horizontal arrows andV-relations as vertical
arrows. Then, (5.i) holds if and only if 𝑔 · 𝑟 ≤ 𝑠 · 𝑓 in V-Rel.
Note that Horiz(V-Rel ) = Set and Ver(V-Rel ) = V-Rel.

We will also make use of the notion of companion and
conjoint. Given an horizontal arrow 𝑓 : 𝐴 → 𝐵 in a double
category A , a companion for 𝑓 is a vertical arrow 𝑓∗ : 𝐴 −↦−→ 𝐵
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in A so that

𝐴 𝐴

𝐴 𝐵

1

|1 | 𝑓∗≤

𝑓

and
𝐴 𝐵

𝐵 𝐵;

𝑓

|𝑓∗ | 1≤

1

somewhat dually, a conjoint for 𝑓 is a vertical arrow 𝑓 ∗ : 𝐵 −↦−→ 𝐴

so that

𝐴 𝐵

𝐴 𝐴

𝑓

|1 | 𝑓 ∗≤

1

and
𝐵 𝐵

𝐴 𝐵.

1

|𝑓 ∗ | 1≤

𝑓

We note that companions and conjoints are unique up
to equivalence. Following Shulman [38], we say that A is a
framed bicategory if every horizontal arrow has a compan-
ion and a conjoint.

Examples 5.2. The double category V-Rel is a framed
bicategory. The companion of a function 𝑓 : 𝐴 → 𝐵 is the
V-relation 𝑓◦ : 𝐴 −↦−→ 𝐵 and the conjoint is the V-relation
𝑓 ◦ : 𝐵 −↦−→ 𝐴.

As observed by Clementino et al. [9], Cruttwell and Shul-
man [10], for a framed bicategory A there is the framed bicat-
egory Pro(A) of the procompletion of Ver(A). The objects
and the horizontal arrows of Pro(A) are the same of A , and
a vertical arrow from an object 𝑋 to an object 𝑌 in Pro(A)
is a down-directed set of vertical arrows from 𝑋 to 𝑌 in A .
Moreover,

𝑋 𝑌

𝐴 𝐵

𝑓

|𝑅 | 𝑆

𝑔

≤

in Pro(A) if for all 𝑠 ∈ 𝑆 there is 𝑟 ∈ 𝑅 such that in A ,

𝑋 𝑌

𝐴 𝐵.

𝑓

|𝑟 | 𝑠

𝑔

≤

Horizontal composition and identities are the same of A , and
the composite of composable vertical arrows is defined as

𝑅′ ◦ 𝑅 = {𝑟 ′ · 𝑟 | 𝑟 ′ ∈ 𝑅′, 𝑟 ∈ 𝑅},
with the identity arrow on 𝑋 being {1𝑋 }. For every hori-
zontal arrow 𝑓 in Pro(A), the set {𝑓∗} is a companion for 𝑓 ,
while the set {𝑓 ∗} is a conjoint for 𝑓 .
Example 5.3. The framed bicategory Pro(V-Rel) allows
modelling uniform structures [9].

We also recall that, given a framed bicategory A , there is
the framed bicategory Mon(A) of monoids, monoid homo-
morphisms and bimodules in A [38]. More concretely,

• amonoid in A consists of an object 𝐴 in A together
with a vertical arrow 𝑎 : 𝐴 −↦−→ 𝐴 so that 1 ≤ 𝑎 and
𝑎 ◦ 𝑎 ≤ 𝑎,

• a monoid homomorphism 𝑓 : (𝐴, 𝑎) → (𝐵,𝑏) con-
sists of a horizontal arrow 𝑓 : 𝐴 → 𝐵 ∈ A so that

𝐴 𝐵

𝐴 𝐵.

𝑓

|𝑎 |

𝑏≤

𝑓

• a bimodule 𝜑 : (𝐴, 𝑎) → (𝐵,𝑏) consists of a vertical
arrow 𝜑 : 𝐴 → 𝐵 in A so that 𝜑 ◦ 𝑎 ≤ 𝜑 and 𝑏 ◦𝜑 ≤ 𝜑 .

• The cells of Mon(A) and their compositions are the
same as in A .

For every horizontal arrow 𝑓 : (𝐴, 𝑎) → (𝐵,𝑏) in Mon(A),
the vertical arrow 𝑏 ◦ 𝑓∗ in A is a companion for 𝑓 , while the
vertical arrow 𝑓 ∗ ◦ 𝑏 in A is a conjoint for 𝑓 .

Examples 5.4. The framed bicategory Mon(V-Rel ), which
we denote byV-Dist, consists ofV-categories as objects,V-
functors as horizontal arrows and V-distributors as vertical
arrows. The framed bicategoryMon(Pro(V-Rel )), whichwe
denote by V-qUnif , consists of V-enriched quasiuniform
spaces as objects, V-uniformly continuous maps as hori-
zontal arrows, andV-promodules as vertical arrows [8]. In
particular 2-qUnif is composed by quasiuniform spaces, uni-
formly continuous maps, and promodules. We also note that
[0,∞]⊕-qUnif is closely related to the notion of approach
uniform space [30].

A lax-double functor F : A → X sends

𝑋 𝑌

𝐴 𝐵

𝑓

|𝑟 | 𝑠≤

𝑔

to
F𝑋 F𝑌

F𝐴 F𝐵

F𝑓

|F𝑟 | F𝑠≤

F𝑔

and preserves horizontal composition and identities strictly
and vertical composition and identities laxly. Therefore F
induces a 2-functor F = Horiz(F ) : Horiz(A) → Horiz(X )
and a lax functor F̂ = Ver(F ) : Ver(A) → Ver(X ). Following
Shulman [38] again, a lax-framed functor is a lax-double
functor between framed bicategories.

Theorem 5.5. A lax-framed functor F : A → X corresponds
precisely to a pair (F, F̂), where F : Horiz(A) → Horiz(X ) is a
2-functor and F̂ : Ver(A) → Ver(X ) is a lax functor, such that
for every 𝑓 : 𝑋 → 𝑌 ∈ A , F(𝑓 )∗ ≤ F̂(𝑓∗) and F(𝑓 )∗ ≤ F̂(𝑓 ∗).

Corollary 5.6. Lax-double functors F : V-Rel → V-Rel
correspond precisely to lax extensions F̂ : V-Rel → V-Rel of
functors F : Set → Set.

From a lax-framed functor F : A → X , we obtain the
lax-framed functor Pro(F ) : Pro(A) → Pro(X ), which acts
as F on objects and horizonal arrows, and sends a vertical
arrow 𝑅 : 𝑋 −↦−→ 𝑌 to the vertical arrow {F 𝑟 | 𝑟 ∈ 𝑅}; and the
lax-framed functor Mon(F ) : Mon(A) → Mon(X ) given
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by

(𝐴, 𝑎) (𝐵,𝑏)

(𝑋, 𝑐) (𝑌,𝑑)

𝑓

|𝜑 | 𝜓≤

𝑔

↦−→
(F𝐴, F𝑎) (F𝐵, F𝑏)

(F𝑋, F 𝑐) (F𝑌, F𝑑) .

F𝑓

|F𝜑 | F𝜓≤

F𝑔

Examples 5.7. A lax-framed functor (F, F̂) : V-Rel → V-Rel
gives rise to the lax-framed functors:

1. Pro(F, F̂) : Pro(V-Rel) → Pro(V-Rel) that applies F
to sets and functions and F̂ : V-Rel → V-Rel to every V-
relation in a down-directed set of V-relations;
2. Mon(F, F̂) : Mon(V-Rel) → Mon(V-Rel) that applies

the lifting to V-Cat induced by F̂ : V-Rel → V-Rel on V-
categories and V-functors, and F̂ onV-distributors.

Now, we introduce the central notion of category of coal-
gebras of a lax-double functor.

Definition 5.8. Let F : A → A be a lax-double functor. The
double category of (horizontal) coalgebras CoAlg(F ) is
defined as follows:

• the objects of CoAlg(F ) are the coalgebras (𝐴, 𝛼) for
F : Horiz(A) → Horiz(A),

• the horizontal arrows in CoAlg(F ) between objects
(𝐴, 𝛼) and (𝐵, 𝛽) are coalgebra homomorphisms for
F : Horiz(A) → Horiz(A) from (𝐴, 𝛼) to (𝐵, 𝛽),

• the vertical arrows inCoAlg(F ) between objects (𝐴, 𝛼)
and (𝐵, 𝛽) are F -simulations, that is, vertical arrows
𝑠 : 𝑋 −↦−→ 𝑌 in A so that

𝐴 F𝐴

𝐵 F𝐵

𝛼

|𝑠 | F̂𝑠≤

𝛽

(5.ii)

in A [33], and finally
• the cells in CoAlg(F ) and their compositions are the
same as in A .

Remark 5.9. If 𝛼 : 𝐴 → F𝐴 and 𝛽 : 𝐵 → F𝐵 have companions
in A , then (5.ii) is equivalent to 𝛽∗ ◦ 𝑠 ≤ F̂𝑠 ◦ 𝛼∗ in Ver(A)
[19, 1.6. Ortogonal flipping].

Example 5.10. Double categories of coalgebras of a lax-
framed endofunctor onV-Rel provide a framework to rea-
son about indistinguishability in Set-coalgebras viaV-relations
(e.g. [16, 22, 41]).

Example 5.11. Double categories of coalgebras of a lax-
framed endofunctor on V-Dist provide a framework to rea-
son about indistinguishability in V-Cat-coalgebras via V-
distributors (e.g. [33, 43]).

Example 5.12. Double categories of coalgebras of a lax-
framed endofunctor on 2-ProRel provide a framework to rea-
son about indistinguishability in Set-coalgebras via quasiuni-
formities. For instance, in the double category of coalgebras

of the lax-framed functor Pro(F, F̂) : 2-ProRel → 2-ProRel , a
down-directed set 𝑅 ofV-relations from𝐴 to 𝐵 is a Pro(F, F̂)-
simulation from an F-coalgebra (𝐴, 𝛼) to a F-coalgebra (𝐵, 𝛽)
whenever 𝑅 is “jointly an F̂-simulation”; that is, for every
𝑟 ∈ 𝑅, there is 𝑠 ∈ 𝑅 such that 𝛽 · 𝑠 ≤ F̂𝑟 · 𝛼 in Rel.

Theorem 5.13. Let F : A → A be a lax-framed functor. Then
CoAlg(F ) is a framed bicategory.

Definition 5.14. We call a framed bicategory A locally
complete whenever the ordered category Ver(A) has com-
plete hom-sets.

Example 5.15. For every quantaleV , the double category
V-Rel is locally complete. Moreover, the framed bicate-
gories Pro(A) and Mon(A) are locally complete whenever
the framed bicategory A is locally complete. In particular,
the framed bicategories V-ProRel and V-Dist are locally
complete.

Theorem5.16. LetF : A → A be a lax-framed functor where
A is locally complete. Then CoAlg(F ) is locally complete.

Definition 5.17. Let F : A → A be a lax-framed func-
tor where A is locally complete. Let (𝐴, 𝛼) and (𝐵, 𝛽) be
F -coalgebras. The F -similarity from (𝐴, 𝛼) to (𝐵, 𝛽) is the
greatest F -simulation from (𝐴, 𝛼) to (𝐵, 𝛽), and we denote
it by ⊤𝛼,𝛽 , or by ⊤𝛼 , if 𝛼 = 𝛽 .

Example 5.18. For a lax-framed functor F : V-Rel →
V-Rel , F -similarity recovers the notions of F̂-similarity and
F̂-behavioural distance considered by Hughes and Jacobs
[22] and Wild and Schröder [41] when V is equal to 2 or
[0, 1]⊕ , respectively.

The following result, which is an immediate consequence
of the fact that right adjoints preserve limits, show that F -
similarity is compatible with coalgebra homomorphisms.

Theorem5.19. LetF : A → A be a lax-framed functor where
A is locally complete. For every pair of horizontal arrows

(𝐴, 𝛼) (𝐶,𝛾) (𝐵, 𝛽) (𝐷, 𝛿)𝑓 𝑔

in CoAlg(F ), ⊤𝛼,𝛽 = 𝑔∗ ◦ ⊤𝛾,𝛿 ◦ 𝑓∗ .

Next we explain how the previous results allow connect-
ing the coalgebraic treatments of similarity and behavioural
distance via lax extensions and via liftings, respectively. We
recall that there is a canonical lax-framed functorMon(A) →
A that forgets the monoid structures. Furthermore, for every
lax-framed functor F : A → A on a locally complete framed
bicategory, the forgetful functor

Horiz(CoAlg(Mon(F ))) −→ Horiz(CoAlg(F ))

is topological [6, 20] and therefore has a right adjoint

gfp : Horiz(CoAlg(F )) → CoAlg(Mon(F ))



Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and Paul Wild

that sends an F -coalgebra (𝐴, 𝛼) to the Mon(F )-coalgebra
(𝐴, 𝑎𝛼 , 𝛼) where 𝑎𝛼 is given by∨

{𝐴 𝑎−↦−→ 𝐴 in A | 𝛼 : (𝐴, 𝑎) → Mon(F )(𝐴, 𝑎) in Mon(A)}.
(5.iii)

Definition 5.20. Let F be a lax-framed endofunctor on a
locally complete framed bicategory. The F -behavioural
distance on a F -coalgebra (𝐴, 𝛼), denoted by bd𝛼 , is the
monoid structure on 𝐴 given by gfp(𝐴, 𝛼).

Example 5.21. For a lax-framed functor F : 2-ProRel →
2-ProRel , the notion of F -behavioural distance corresponds
essentially to the notion of bisimilarity uniformity [25].

Example 5.22. For V = [0, 1]⊕ , it follows from the fact
that every lifting induced by a lax extension is Kantorovich
(see Example 3.13(1)), that the notion of F -behavioural dis-
tance for a lax-framed functor (F, F̂) : V-Rel → V-Rel
corresponds to the asymmetric version of the notion of be-
havioural distance [26] – generalised to predicate liftings of
arbitrary arity – with respect to the lifting of F : Set → Set
to V-Cat induced by the lax extension F̂ : V-Rel → V-Rel.

The following result, in particular, connects the approaches
to indistinguishability via lax extensions and via liftings.

Theorem 5.23. Let F be a lax-framed endofunctor on a
locally complete framed bicategory. Then, F -similarity and
F -behavioural distance coincide on every F -coalgebra.

Remark 5.24. As a consequence of Theorems 5.23 and 4.2
we obtain that the notion of F -similarity provided by a lax
extension corresponding to a class of monotone predicate
liftings coincides with the notion of behavioural distance
provided by the lifting associated with the same class of
predicate liftings.

Remark 5.25. Baldan et al. [3] restricted the definition of
bisimilarity pseudometric (= behavioural distance) to liftings
of Set-functors that admit a terminal coalgebra. Arguably, the
reason behind this restriction is that if we allow an arbitrary
lifting F : V-Cat → V-Cat of an arbitrary functor F : Set →
Set, then it is easy to see that the notion of behavioural dis-
tance arising from the functor gfp : CoAlg(F) → CoAlg(F)
as described above is not necessarily invariant under coal-
gebra homomorphisms. In this regard, Theorem 5.19 and
Theorem 5.23 show that for liftings induced by lax exten-
sions the notion of F -behavioural distance is invariant under
coalgebra homomorphisms. Therefore, whenever a functor
F : Set → Set admits a terminal coalgebra, the definition
of (F, F̂)-behavioural distance coincides with the one con-
sidered by Baldan et al. [3] for the lifting F̂ : [0, 1]⊕-Cat →
[0, 1]⊕-Cat.

We conclude this section by showing how we can use
the framed bicategoryV-Dist to recover coinduction results
presented by Worrell [43]. In particular, this is as an example

of a context where, by choosing a double category different
from V-Rel , we can reason about liftings not necessarily
induced by a lax extension. Recall that Worrell considers a
functor F : V-Cat → V-Cat – not necessarily a lifting – that
admits a terminal coalgebra and preserves initial morphisms,
and shows, for example, that theV-category structure on the
terminal coalgebra coincides with the greatest F -simulation
with respect to a lax-framed endofunctor on V-Dist . This
result seems to be outside the scope of our setting, however,
as we show next, we are able to include it by applying the
𝑀𝑜𝑛 construction twice.
For a double category A , an object of Mon(Mon(A)) is

given by an A-object𝐴 together with vertical A-arrows 𝑎0 ≤
𝑎1 : 𝐴 −↦−→ 𝐴 making (𝐴, 𝑎0) and (𝐴, 𝑎1) monoids. Moreover,
given also an Mon(Mon(A))-object (𝐵,𝑏0, 𝑏1), a horizontal
arrow 𝑓 : 𝐴 → 𝐵 in A is a horizontal arrow 𝑓 : (𝐴, 𝑎0, 𝑎1) →
(𝐵,𝑏0, 𝑏1) inMon(Mon(A)) if and only if 𝑓 : (𝐴, 𝑎0) → (𝐵,𝑏0)
and 𝑓 : (𝐴, 𝑎1) → (𝐵,𝑏1) are horizontal arrows in Mon(A).
In the light of Theorem 5.23, the following result corre-

sponds to [43, Theorem 5.7].

Proposition 5.26. Let A be a framed bicategory and let
F : Mon(A) → Mon(A) be a lax-double functor preserv-
ing vertical identities. If (𝐶, 𝑐,𝛾) is a terminal F -coalgebra,
then (𝐶, 𝑐, 𝑐,𝛾) is a terminal Mon(F )-coalgebra.

Example 5.27. A 2-functor F : V-Cat → V-Cat preserving
initial morphisms extends to a identity preserving lax functor
F̂ : V-Dist → V-Dist [43], and these data gives rise to a ver-
tical identity preserving lax-double functor F : V-Dist −→
V-Dist . Let (𝐶, 𝑐,𝛾) be a terminal F-coalgebra and (𝐴, 𝑎, 𝛼)
be an F-coalgebra. Applying Theorem 5.23 and Proposi-
tion 5.26 to this situation, we obtain that the F -similarity
and the F -behavioural distance of (𝐴, 𝑎, 𝛼) coincide, more-
over, bd𝛼 = !∗ ◦ 𝑐 ◦ !∗ [43, Theorem 5.10]. Considering the
case of a discrete V-category (𝐴, 1𝐴, 𝛼), this specialises to
[3, Theorem 6.7].

6 Conclusions and Future Work
We have completed the diagram of known correspondences
between three systematic ways of inducing behavioural dis-
tances on quantitative state-based systems: via functor lift-
ings, via predicate liftings, and via lax extensions. Specifically,
we have shown that every functor lifting that preserves ini-
tial morphisms is Kantorovich, i.e. it is canonically induced
by a suitable choice of – not necessarily monotone – pred-
icate liftings; and that essentially we can always assume
that every functor lifting is induced by a suitable choice of
predicate liftings, although not in a canonical way. More-
over, we have shown that a functor lifting F that preserves
initial morphisms is induced by a lax extension if and only
if every predicate lifting induced by F is monotone. Finally,
we have introduced the double category of coalgebras of a
lax-double functor as a flexible framework to reason about
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indistinguishability. In particular, we have shown that the
notions of similarity and behavioural distance induced by a
lax-double functor coincide. This result applies simultane-
ously to quantitative relations, distributors, and uniformities,
for instance. One important issue for future research is to
investigate the modal logics of functor liftings that arise
from our results, in particular showing expressiveness in the
style of Hennessy-Milner, complementing existing results
that rely on monotonicity of predicate liftings [27, 41].

Acknowledgments
The first, third and fourth author acknowledge support by the
German Research Council (DFG) under the project A High
Level Language for Programming and Specifying Multi-Effect
Algorithms (GO 2161/1-2, SCHR 1118/8-2). The second author
acknowledges support by the Center for Research and Devel-
opment in Mathematics and Applications (CIDMA) through
the Portuguese Foundation for Science and Technology FCT
– Fundação para a Ciência e a Tecnologia (UIDB/04106/2020).

References
[1] Jiří Adámek, Horst Herrlich, and George E. Strecker. 1990. Abstract and

concrete categories: The joy of cats. John Wiley & Sons Inc., New York.
http://tac.mta.ca/tac/reprints/articles/17/tr17abs.html Republished
in: Reprints in Theory and Applications of Categories, No. 17 (2006)
pp. 1–507.

[2] Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König.
2014. Behavioral Metrics via Functor Lifting. In 34th International Con-
ference on Foundation of Software Technology and Theoretical Computer
Science, FSTTCS 2014, December 15-17, 2014, New Delhi, India (LIPIcs),
Venkatesh Raman and S. P. Suresh (Eds.), Vol. 29. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 403–415. https://doi.org/10.4230/
LIPIcs.FSTTCS.2014.403

[3] Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König.
2018. Coalgebraic Behavioral Metrics. Logical Methods in Computer
Science 14, 3 (2018), 1860–5974. https://doi.org/10.23638/lmcs-14(3:
20)2018

[4] Valentina Castiglioni, Daniel Gebler, and Simone Tini. 2016. Logical
Characterization of Bisimulation Metrics. In Proceedings 14th Inter-
national Workshop Quantitative Aspects of Programming Languages
and Systems, QAPL 2016, Eindhoven, The Netherlands, April 2-3, 2016
(EPTCS), Mirco Tribastone and HerbertWiklicky (Eds.), Vol. 227. 44–62.
https://doi.org/10.4204/EPTCS.227.4

[5] Corina Cîrstea, Alexander Kurz, Dirk Pattinson, Lutz Schröder, and
Yde Venema. 2011. Modal Logics are Coalgebraic. Computer Journal
54, 1 (2011), 31–41. https://doi.org/10.1093/comjnl/bxp004

[6] Maria Manuel Clementino and Dirk Hofmann. 2003. Topological
Features of Lax Algebras. Applied Categorical Structures 11, 3 (June
2003), 267–286. https://doi.org/10.1023/a:1024274315778

[7] Maria Manuel Clementino and Dirk Hofmann. 2004. On extensions of
lax monads. Theory and Applications of Categories 13, 3 (2004), 41–60.

[8] Maria Manuel Clementino and Dirk Hofmann. 2011. On the com-
pletion monad via the Yoneda embedding in quasi-uniform spaces.
Topology and its Applications 158, 17 (Nov. 2011), 2423–2430. https:
//doi.org/10.1016/j.topol.2011.01.026

[9] Maria Manuel Clementino, Dirk Hofmann, and Walter Tholen. 2004.
One setting for all: metric, topology, uniformity, approach structure.
Applied Categorical Structures 12, 2 (April 2004), 127–154. https:
//doi.org/10.1023/B:APCS.0000018144.87456.10

[10] Geoff S. H. Cruttwell and Michael A. Shulman. 2010. A unified frame-
work for generalized multicategories. Theory and Applications of
Categories 24, 21 (2010), 580–655.

[11] Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. 2009. Linear and
Branching System Metrics. IEEE Transactions on Software Engineering
35, 2 (mar 2009), 258–273. https://doi.org/10.1109/TSE.2008.106

[12] Yuxin Deng, Tom Chothia, Catuscia Palamidessi, and Jun Pang. 2006.
Metrics for Action-labelled Quantitative Transition Systems. Electronic
Notes in Theoretical Computer Science 153, 2 (may 2006), 79–96. https:
//doi.org/10.1016/j.entcs.2005.10.033

[13] Charles Ehresmann. 1963. Catégories structurées. Annales scientifiques
de l’École Normale Supérieure 80, 4 (1963), 349–426. https://eudml.
org/doc/urn:eudml:doc:81794

[14] Norm Ferns, Prakash Panangaden, and Doina Precup. 2004. Metrics
for Finite Markov Decision Processes. In Proceedings of the Nineteenth
National Conference on Artificial Intelligence, Sixteenth Conference on
Innovative Applications of Artificial Intelligence, July 25-29, 2004, San
Jose, California, USA, Deborah L. McGuinness and George Ferguson
(Eds.). AAAI Press / The MIT Press, 950–951. http://www.aaai.org/
Library/AAAI/2004/aaai04-124.php

[15] Robert C. Flagg. 1997. Quantales and continuity spaces. Alge-
bra Universalis 37, 3 (June 1997), 257–276. https://doi.org/10.1007/
s000120050018

[16] Francesco Gavazzo. 2018. Quantitative Behavioural Reasoning for
Higher-order Effectful Programs: Applicative Distances. In Logic in
Computer Science, LICS 2018, Anuj Dawar and Erich Grädel (Eds.).
ACM, 452–461. https://doi.org/10.1145/3209108.3209149

[17] Alessandro Giacalone, Chi-Chang Jou, and Scott A. Smolka. 1990.
Algebraic Reasoning for Probabilistic Concurrent Systems. In Pro-
gramming concepts and methods: Proceedings of the IFIP Working Group
2.2, 2.3 Working Conference on Programming Concepts and Methods,
Sea of Galilee, Israel, 2-5 April, 1990, Manfred Broy and Cliff B. Jones
(Eds.). North-Holland, 443–458.

[18] Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and
PaulWild. 2021. A Point-free Perspective on Lax extensions and Predicate
liftings. Technical Report. arXiv:math.CT/2112.12681

[19] Marco Grandis and Robert Pare. 2004. Adjoint for double categories.
Cahiers de Topologie et Géométrie Différentielle Catégoriques 45, 3 (2004),
193–240. http://www.numdam.org/item/CTGDC_2004__45_3_193_0/

[20] Dirk Hofmann and Pedro Nora. 2020. Hausdorff Coalgebras. Applied
Categorical Structures 28, 5 (April 2020), 773–806. https://doi.org/10.
1007/s10485-020-09597-8 arXiv:math.CT/1908.04380

[21] Dirk Hofmann, Gavin J. Seal, andWalter Tholen (Eds.). 2014. Monoidal
Topology. A Categorical Approach to Order, Metric, and Topology. Ency-
clopedia of Mathematics and its Applications, Vol. 153. Cambridge Uni-
versity Press, Cambridge. https://doi.org/10.1017/cbo9781107517288
Authors: Maria Manuel Clementino, Eva Colebunders, Dirk Hof-
mann, Robert Lowen, Rory Lucyshyn-Wright, Gavin J. Seal andWalter
Tholen.

[22] Jesse Hughes and Bart Jacobs. 2004. Simulations in coalgebra. Theo-
retical Computer Science 327, 1 (Oct. 2004), 71–108. https://doi.org/10.
1016/j.tcs.2004.07.022

[23] G. Max Kelly. 1982. Basic concepts of enriched category theory. Lon-
don Mathematical Society Lecture Note Series, Vol. 64. Cambridge
University Press, Cambridge. Republished in: Reprints in Theory and
Applications of Categories. No. 10 (2005), 1–136.

[24] Yuichi Komorida, Shin-ya Katsumata, Nick Hu, Bartek Klin, and
Ichiro Hasuo. 2019. Codensity Games for Bisimilarity. In 34th An-
nual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019,
Vancouver, BC, Canada, June 24-27, 2019. IEEE, 1–13. https://doi.org/
10.1109/LICS.2019.8785691

[25] Yuichi Komorida, Shin-ya Katsumata, Clemens Kupke, Jurriaan Rot,
and Ichiro Hasuo. 2021. Expressivity of Quantitative Modal Logics :
Categorical Foundations via Codensity and Approximation. In 36th

http://tac.mta.ca/tac/reprints/articles/17/tr17abs.html
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.403
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.403
https://doi.org/10.23638/lmcs-14(3:20)2018
https://doi.org/10.23638/lmcs-14(3:20)2018
https://doi.org/10.4204/EPTCS.227.4
https://doi.org/10.1093/comjnl/bxp004
https://doi.org/10.1023/a:1024274315778
https://doi.org/10.1016/j.topol.2011.01.026
https://doi.org/10.1016/j.topol.2011.01.026
https://doi.org/10.1023/B:APCS.0000018144.87456.10
https://doi.org/10.1023/B:APCS.0000018144.87456.10
https://doi.org/10.1109/TSE.2008.106
https://doi.org/10.1016/j.entcs.2005.10.033
https://doi.org/10.1016/j.entcs.2005.10.033
https://eudml.org/doc/urn:eudml:doc:81794
https://eudml.org/doc/urn:eudml:doc:81794
http://www.aaai.org/Library/AAAI/2004/aaai04-124.php
http://www.aaai.org/Library/AAAI/2004/aaai04-124.php
https://doi.org/10.1007/s000120050018
https://doi.org/10.1007/s000120050018
https://doi.org/10.1145/3209108.3209149
https://arxiv.org/abs/math.CT/2112.12681
http://www.numdam.org/item/CTGDC_2004__45_3_193_0/
https://doi.org/10.1007/s10485-020-09597-8
https://doi.org/10.1007/s10485-020-09597-8
https://arxiv.org/abs/math.CT/1908.04380
https://doi.org/10.1017/cbo9781107517288
https://doi.org/10.1016/j.tcs.2004.07.022
https://doi.org/10.1016/j.tcs.2004.07.022
https://doi.org/10.1109/LICS.2019.8785691
https://doi.org/10.1109/LICS.2019.8785691


Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and Paul Wild

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021,
Rome, Italy, June 29 - July 2, 2021. IEEE, 1–14. https://doi.org/10.1109/
LICS52264.2021.9470656

[26] Barbara König and Christina Mika-Michalski. 2018. (Metric) Bisimu-
lation Games and Real-Valued Modal Logics for Coalgebras. In 29th
International Conference on Concurrency Theory, CONCUR 2018, Sep-
tember 4-7, 2018, Beijing, China (LIPIcs), Sven Schewe and Lijun Zhang
(Eds.), Vol. 118. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
37:1–37:17. https://doi.org/10.4230/LIPIcs.CONCUR.2018.37

[27] Barbara König and Christina Mika-Michalski. 2018. (Metric) Bisimula-
tion Games and Real-Valued Modal Logics for Coalgebras. In Concur-
rency Theory, CONCUR 2018 (LIPIcs), Sven Schewe and Lijun Zhang
(Eds.), Vol. 118. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
37:1–37:17. https://doi.org/10.4230/LIPIcs.CONCUR.2018.37

[28] Alexander Kurz and Jiří Velebil. 2016. Relation lifting, a survey. Journal
of Logical and Algebraic Methods in Programming 85, 4 (June 2016),
475–499. https://doi.org/10.1016/j.jlamp.2015.08.002

[29] F. William Lawvere. 1973. Metric spaces, generalized logic, and closed
categories. Rendiconti del Seminario Matemàtico e Fisico di Milano 43, 1
(Dec. 1973), 135–166. https://doi.org/10.1007/bf02924844 Republished
in: Reprints in Theory and Applications of Categories, No. 1 (2002),
1–37.

[30] Robert Lowen and Bart Windels. 1998. AUnif: a common supercat-
egory of pMET and Unif. International Journal of Mathematics and
Mathematical Sciences 21, 1 (1998), 1–18. https://doi.org/10.1155/
s0161171298000015

[31] Karl Menger. 1942. Statistical metrics. Proceedings of the National
Academy of Sciences of the United States of America 28 (1942), 535–537.

[32] Dirk Pattinson. 2004. Expressive Logics for Coalgebras via Terminal
Sequence Induction. Notre Dame Journal of Formal Logic 45, 1 (jan
2004), 19–33. https://doi.org/10.1305/ndjfl/1094155277

[33] Jan Rutten. 1998. Relators and Metric Bisimulations. Electronic Notes
in Theoretical Computer Science 11 (1998), 252–258. https://doi.org/10.
1016/S1571-0661(04)00063-5

[34] Jan Rutten. 2000. Coalgebra, Concurrency, and Control. In Discrete
Event Systems. Springer Science & Business Media, 31–38. https:
//doi.org/10.1007/978-1-4615-4493-7_2

[35] Lutz Schröder and Dirk Pattinson. 2011. Description Logics and Fuzzy
Probability. In International Joint Conference on Artificial Intelligence,
IJCAI 2011, Toby Walsh (Ed.). IJCAI/AAAI, 1075–1081. https://doi.
org/10.5591/978-1-57735-516-8/IJCAI11-184

[36] Christoph Schubert and Gavin J. Seal. 2008. Extensions in the theory
of lax algebras. Theory and Applications of Categories 21, 7 (2008),
118–151.

[37] Gavin J. Seal. 2005. Canonical and op-canonical lax algebras. Theory
and Applications of Categories 14, 10 (2005), 221–243. http://www.tac.
mta.ca/tac/volumes/14/10/14-10abs.html

[38] Michael Shulman. 2008. Framed bicategories and monoidal fibrations.
Theory and Applications of Categories 20, 18 (2008), 650–738.

[39] Isar Stubbe. 2014. An introduction to quantaloid-enriched categories.
Fuzzy Sets and Systems 256 (Dec. 2014), 95–116. https://doi.org/10.
1016/j.fss.2013.08.009 Special Issue on Enriched Category Theory and
Related Topics (Selected papers from the 33rd Linz Seminar on Fuzzy
Set Theory, 2012).

[40] Franck van Breugel and James Worrell. 2005. A behavioural pseu-
dometric for probabilistic transition systems. Theoretical Computer
Science 331, 1 (feb 2005), 115–142. https://doi.org/10.1016/j.tcs.2004.
09.035

[41] Paul Wild and Lutz Schröder. 2020. Characteristic Logics for Be-
havioural Metrics via Fuzzy Lax Extensions. In 31st International Con-
ference on Concurrency Theory, CONCUR 2020, September 1-4, 2020,
Vienna, Austria (Virtual Conference) (LIPIcs), Igor Konnov and Laura
Kovács (Eds.), Vol. 171. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 27:1–27:23. https://doi.org/10.4230/LIPIcs.CONCUR.2020.27

arXiv:cs.LO/2007.01033
[42] Paul Wild and Lutz Schröder. 2021. A Quantified Coalgebraic van

BenthemTheorem. In Foundations of Software Science and Computation
Structures, FOSSACS 2021 (LNCS), Stefan Kiefer and Christine Tasson
(Eds.), Vol. 12650. Springer, 551–571. https://doi.org/10.1007/978-3-
030-71995-1_28

[43] James Worrell. 2000. Coinduction for recursive data types: partial
orders, metric spaces and Ω-categories. In Coalgebraic Methods in
Computer Science, CMCS 2000, Berlin, Germany, March 25-26, 2000
(Electronic Notes in Theoretical Computer Science), Horst Reichel (Ed.),
Vol. 33. Elsevier, 337–356. https://doi.org/10.1016/S1571-0661(05)
80356-1

https://doi.org/10.1109/LICS52264.2021.9470656
https://doi.org/10.1109/LICS52264.2021.9470656
https://doi.org/10.4230/LIPIcs.CONCUR.2018.37
https://doi.org/10.4230/LIPIcs.CONCUR.2018.37
https://doi.org/10.1016/j.jlamp.2015.08.002
https://doi.org/10.1007/bf02924844
https://doi.org/10.1155/s0161171298000015
https://doi.org/10.1155/s0161171298000015
https://doi.org/10.1305/ndjfl/1094155277
https://doi.org/10.1016/S1571-0661(04)00063-5
https://doi.org/10.1016/S1571-0661(04)00063-5
https://doi.org/10.1007/978-1-4615-4493-7_2
https://doi.org/10.1007/978-1-4615-4493-7_2
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-184
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-184
http://www.tac.mta.ca/tac/volumes/14/10/14-10abs.html
http://www.tac.mta.ca/tac/volumes/14/10/14-10abs.html
https://doi.org/10.1016/j.fss.2013.08.009
https://doi.org/10.1016/j.fss.2013.08.009
https://doi.org/10.1016/j.tcs.2004.09.035
https://doi.org/10.1016/j.tcs.2004.09.035
https://doi.org/10.4230/LIPIcs.CONCUR.2020.27
https://arxiv.org/abs/cs.LO/2007.01033
https://doi.org/10.1007/978-3-030-71995-1_28
https://doi.org/10.1007/978-3-030-71995-1_28
https://doi.org/10.1016/S1571-0661(05)80356-1
https://doi.org/10.1016/S1571-0661(05)80356-1


Quantalic Behavioural Distances

A Appendix: Omitted Proofs
A.1 Omitted proofs and details for Section 3
Lemma (3.1). Let F : V-Cat → V-Cat be a lifting of a functor F : Set → Set and 𝑋 a V-category. Given a family of natural
transformations

`𝑖 : V-Cat(−, 𝐴𝑖 ) −→ V-Cat(F−,Vop) (for 𝑖 ∈ 𝐼 ),
if the cocone (

`𝑖𝑋 : V-Cat(𝑋,𝐴𝑖 ) −→ V-Cat(F𝑋,Vop)
)
𝑖∈𝐼

is jointly epic, then the topological lifting with respect to the class of all natural transformations

`𝑖 : V-Cat(−, 𝐴𝑖 ) → Set(F|−|, |Vop |)

that factor as

V-Cat(−, 𝐴𝑖 ) V-Cat(F−,Vop)

Set(F|−|, |Vop |)

`𝑖

`𝑖
|− |−,Vop

coincides with F on 𝑋 .

Proof. By hypothesis, the topological lifting maps the V-category 𝑋 to the domain of the initial lift of the structured cone

( |𝑓 | : F|𝑋 | −→ |Vop |)
𝑓 ∈V-Cat(F𝑋,Vop ) .

Therefore, the claim follows from the fact that the cone V-Cat(F𝑋,Vop) is initial (see Remark 2.6). □

Theorem (3.2). Every lifting F : V-Cat → V-Cat is topological.

Proof. The Yoneda lemma guarantees that there is an epi-cocone of natural transformations

`𝑖 : V-Cat(−, 𝐴𝑖 ) −→ V-Cat(F−,Vop)

indexed by the class 𝐼 of pairs (𝐴, 𝑓 ) consisting of a V-category 𝐴 and a V-functor F𝐴 → Vop. □

Theorem (3.3). For every lifting F : V-Cat → V-Cat there is a topological lifting constructed from a class of predicate liftings of
F that agrees with F on every non-emptyV-category.

Proof. Let F : V-Cat → V-Cat be a lifting. If V is the trivial quantale then there is only one lifting of F to V-Cat ≃ Set.
Therefore, the lifting with respect to the empty class coincides with F. Now suppose that V is non-trivial. Consider the class
of all natural transformations of type

V-Cat(−, (V^ , 𝑎)) −→ V-Cat(F−,Vop)

where, for some cardinal ^, (V^ , 𝑎) is an arbitrary V-category based on the set V^ . In light of Lemma 3.1, we claim that for
every non-emptyV-category 𝑋 the cocone formed by the 𝑋 -components of the natural transformations described above is
epi.
Let (𝑋, 𝑎) be a non-empty V-category of cardinality ^ and 𝑓 : F(𝑋, 𝑎) → Vop a V-functor. Then, since V is non-trivial,

there is a monomorphism𝑚 : 𝑋 → V^ . Consequently, as 𝑋 is non-empty, there is a map 𝑔 : V^ → 𝑋 such that 1𝑋 = 𝑔 ·𝑚.
This factorisation lifts to a factorisation of the identityV-functor on (𝑋, 𝑎) via theV-category (V^ ,𝑚𝑎) given by the final
structure with respect to the structured map𝑚 : (𝑋, 𝑎) → V^ . Therefore, the (𝑋, 𝑎)-component of the natural transformation

V-Cat(−, (V^ ,𝑚𝑎))

V-Cat(−, (𝑋, 𝑎)) V-Cat(F−,Vop)

𝑔·−
𝑓 ·F(𝑔·−)

𝑓 ·F(−)

sends the V-functor𝑚 : (𝑋, 𝑎) → (V^ ,𝑚𝑎) to the V-functor 𝑓 : (𝑋, 𝑎) → Vop. □

The following example illustrates Remark 3.6.
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Example A.1. Let F : Ord → Ord be the discrete lifting of the Set-functor that sends the empty set to 2 and all other sets to
1. Then, the constant maps are the only monotone functions (2, 12) → 2op that factor via (1, 11). Therefore, the topological
lifting corresponding to the class of natural transformations of the proof of Theorem 3.3 sends the empty ordered set to the
indiscrete ordered set with two elements.

Theorem (3.11). Let F : Set → Set be a functor. Assigning to a class of predicate liftings of F the corresponding Kantorovich
lifting yields a right adjoint F(−) : Pred(F) → Lift(F) whose left adjoint P : Lift(F) → Pred(F) maps a lifting of F to its class of
predicate liftings.

Proof. It is clear that the assignments F(−) : Pred(F) → Lift(F) and P : Lift(F) → Pred(F) define functors. The first by definition
of Kantorovich lifting, and the latter because for all liftings F : V-Cat → V-Cat and F

′
: V-Cat → V-Cat such that F ≤ F

′
,

and every V-functor 𝑓 : F
′ (V^)op → Vop, the map

F(V^)op F
′ (V^)op Vop

1FV^ 𝑓

𝑓

is a V-functor.
Furthermore, by definition of Kantorovich lifting, for every predicate lifting ` : PV^ → PVF in a class of predicate liftings

𝑀 of F, the map ` (1V^ ) : F𝑀 (V^)op → Vop is aV-functor. Therefore, P(F𝑀 ) ⊇ 𝑀 . On the other hand, for every predicate
lifting ` : PV^ → PVF of a lifting F : V-Cat → V-Cat and every V-functor 𝑓 : (𝑋, 𝑎) → (V^)op,

F(𝑋, 𝑎) F(V^)op Vop
F𝑓 ` (1V^ )

` (𝑓 )

is aV-functor. Therefore, F(𝑋, 𝑎) ≤ FP(F) (𝑋, 𝑎). □

Theorem (3.12). Let F : Set → Set be a functor. A lifting F : V-Cat → V-Cat of F is Kantorovich if and only if it preserves
initial morphisms (=fully faithfull V-functors).

Proof. Firstly, we show that every Kantorovich lifting preserves initial morphisms.
Let 𝑖 : (𝑋, 𝑎) → (𝑌,𝑏) be an initial V-functor, 𝑀 a class of predicate liftings of F, 𝑗 : (𝑍, 𝑐) → F𝑀 (𝑌,𝑏) a V-functor, and

ℎ : 𝑍 → F𝑋 a map such that 𝑗 = F𝑖 · ℎ.
By definition of F𝑀 it is sufficient to show that for every ` : PV^ → PVF ∈ 𝑀 and everyV-functor 𝑓 : (𝑋, 𝑎) → (V^)op,

` (𝑓 ) · ℎ is aV-functor. SinceVop is injective inV-Cat with respect to initial morphisms, (V^)op is also injective inV-Cat
with respect to initial morphisms. Hence, for everyV-functor 𝑓 : (𝑋, 𝑎) → (V^)op there is aV-functor 𝑔 : (𝑌,𝑏) → (V^)op

such that 𝑓 = 𝑔 · 𝑖 . Consequently,
` (𝑓 ) · ℎ = ` (𝑔 · 𝑖) · ℎ = ` (𝑔) · F𝑖 · ℎ = ` (𝑔) · 𝑗

is aV-functor.
Secondly, we show that the converse statement holds. Suppose that F is a lifting that preserves initial morphisms. We already

know from Theorem 3.11 that F ≤ FP(F) . To prove that under our assumption the reverse inequality also holds, let (𝑋, 𝑎) be a
V-category and ^ = |𝑋 |. Then, the (co)yoneda embedding (𝑋, 𝑎) → [(𝑋, 𝑎),V]op gives us an initial V-functor

(𝑋, 𝑎) [(𝑋, 𝑎),V]op (V𝑋 )op (V^)op.

h

∼

Hence, since F preserves initial morphisms, F h : F(𝑋, 𝑎) → F(V^)op is initial. Now, let P^ (F) denote the set of all ^-ary
predicate liftings in P(F). Given that the cone of all V-functors

F(V^)op −→ Vop

is initial and the composition of initial cones is initial, the cone

(` (h) : F(𝑋, 𝑎) −→ Vop)
`∈P^ (F)

is initial. Therefore, FP(F) (𝑋, 𝑎) ≤ F(𝑋, 𝑎). □
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Remark (3.14). The composite of V-Cat-functors that preserve initial morphisms preserves initial morphisms. Consequently, the
composite of Kantorovich liftings is Kantorovich. In particular, for every Kantorovich lifting F𝐼 : V-Cat → V-Cat, by precomposing
and postcomposing

(−)◦ : V-Cat → V-Cat
with F𝐼 we obtain a lifting defined by the assignment

(𝑋, 𝑎) ↦−→ F𝐼 (𝑋, 𝑎◦)op
.

This is the topologial lifiting constructed from the class of predicate liftings 𝐼 where every ^-ary predicate lifting gives rise to the
natural transformation

V-Cat(−, (V^)) −→ Set(F|−|, |V|) .
Therefore, choosingV orVop as the base category to define the notion of Kantorovich lifting leads to the same class of functors. Our
choice here prevents a mismatch in Section 4 when we compare the Kantorovich liftings and the liftings induced by the Kantorovich
extension [18, 41].

A.2 Omitted proofs and details for Section 4
In the sequel we denote the V-relation associated with a function 𝑓 : 𝑋 → V^ by 𝑓 ♭ : 𝑋 −↦−→ ^,

Proposition A.2. Let (𝑋, 𝑎) be aV-category, ^ a cardinal and 𝑓 : 𝑋 → V^ a function. The following propositions are equivalent:
(i) 𝑓 : (𝑋, 𝑎) → (V^)op is aV-functor;
(ii) 𝑎 ≤ 𝑓 ♭ � 𝑓 ♭;
(iii) 𝑓 ♭ · 𝑎 = 𝑓 ♭;
(iv) 𝑓 ♭ : (𝑋, 𝑎) −↦−→ (^, 1^) is a V-distributor.

Corollary A.3. Let C = (𝑓𝑖 : 𝑋 → (V^)op)𝑖∈𝐼 be a structured cone. The initial structure of V-category on 𝑋 with respect to C is
given by ∧

𝑖∈𝐼
𝑓𝑖
♭ � 𝑓𝑖

♭ .

Proposition (4.1). Let ` : PV^ → PF be a^-ary predicate lifting of a functor F : Set → Set. The Kantorovich lifting F` : V-Cat →
V-Cat of F with respect to ` sends a V-category (𝑋, 𝑎) to theV-category (F𝑋, F`𝑎), where

F`𝑎 =
∧

𝑟 : (𝑋,𝑎)−◦−→(^,1^ )
` (𝑟 ) � ` (𝑟 ).

Lemma A.4. Let ` : PV^ → PVF be a ^-ary monotone predicate lifting and (𝑋, 𝑎) aV-category. Then,∧
𝑔 : 𝑋−↦−→^

` (𝑔) � ` (𝑔 · 𝑎) =
∧

𝑟 : (𝑋,𝑎)−◦−→(^,1^ )
` (𝑟 ) � ` (𝑟 ).

Proof. Let 𝑔 : 𝑋 −↦−→ ^ be a V-relation. Since 1𝑋 ≤ 𝑎, we have 𝑔 ≤ 𝑔 · 𝑎. Also, given that 𝑎 · 𝑎 ≤ 𝑎, 𝑔 · 𝑎 : (𝑋, 𝑎) −◦−→ (^, 1^) is a
V-distributor. Therefore, because ` is monotone,

` (𝑔 · 𝑎) � ` (𝑔 · 𝑎) ≤ ` (𝑔) � ` (𝑔 · 𝑎).
The other inequality is an immediate consequence of Proposition A.2((iii)). □

Theorem (4.2). Let F̂ : V-Cat → V-Cat be a lifting of a functor F : Set → Set induced by a lax extension F̂ : V-Rel → V-Rel.
If F̂ : V-Rel → V-Rel is the Kantorovich extension with respect to a class𝑀 of predicate liftings, then the functor F̂ : V-Cat →
V-Cat is the Kantorovich lifting of F : Set → Set with respect to𝑀 .

Proposition (4.6). Every predicate lifting of a lax extension F̂ : V-Rel → V-Rel is also a predicate lifting of the corresponding
lifting F̂ : V-Cat → V-Cat.

Proof. Let ` : PV^ → PVF be a predicate lifting of a lax extension F̂ : V-Rel → V-Rel and ℎ : V^ −↦−→ V^ the structure of the
V-category (V^)op. Then,

` (ev^) · F̂ℎ = ` (1^) · F(1♯^)◦ · F̂ℎ · F̂ℎ

= ` (1^) · F(1♯^)◦ · F̂ℎ
= ` (ev^).

Therefore, the claim follows from Proposition A.2. □
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Lemma (4.8). Let F̂ : V-Cat → V-Cat be a lifting induced by a lax extension F̂ : V-Rel → V-Rel. Then, for every monotone
predicate lifting ` : PV^ → PVF of F̂ : V-Cat → V-Cat, F̂ ≤ F̂` .

Proof. Let 𝑟 : 𝑋 −↦−→ 𝑌 and 𝑔 : 𝑌 −↦−→ ^ be V-relations and ℎ : V^ −↦−→ V^ the structure of the V-category (V^)op. The fact that

` (1V^ ) : F(V^)op → Vop is a V-functor, by Proposition A.2, translates to

` (ev^) · F̂ℎ = ` (ev^)

in the language of V-relations. Therefore, it follows from [18] and (L2) that

F̂𝑟 ≤ F̂(ℎ · 𝑔♯) � F̂(ℎ · 𝑔♯ · 𝑟 )

≤ ` (ev^) · F̂(ℎ · 𝑔♯) � ` (ev^) · F̂(ℎ · (𝑔 · 𝑟 )♯)

= ` (ev^) · F̂ℎ · F𝑔♯ � ` (ev^) · F̂ℎ · F(𝑔 · 𝑟 )♯

= ` (ev^) · F𝑔♯ � ` (ev^) · F(𝑔 · 𝑟 )♯

= ` (𝑔) � ` (𝑔 · 𝑟 ). □

Theorem (4.9). Let F : Set → Set be a functor. The monotone map MPI : Lax(F) → Pred(F)M is left adjoint to the monotone
map F̂(−) : Pred(F)M → Lax(F).

Proof. Let𝑀 be a class of monotone predicate liftings of F. Then, by Theorem 4.2 and the fact that MP : Lift(F)I → Pred(F)M
is left adjoint to F(−) : Pred(F)M → Lift(F)I,

MPI(F̂𝑀 ) = MP(F𝑀 ) ≤ 𝑀.

The other inequality follows immediately from Lemma 4.8. □

Lemma (4.10). Let F : V-Cat → V-Cat be a lifting. For every cardinal ^ , let ℎ^ denote the structure of the V-category (V^)op.
The following are equivalent:

(i) every predicate lifting of F is monotone;
(ii) for every cardinal ^ and every pair 𝑝, 𝑞 : 𝑋 −↦−→ ^ of V-relations,

𝑝 ≤ 𝑞 =⇒ F𝑝♯ ≤ Fℎ^ · F𝑞♯,

where 𝑟 ♯ : 𝑋 → V𝑌 denotes the map corresponding to the V-relation 𝑟 : 𝑋 −↦−→ 𝑌 .

Proof. We begin by proving (𝑖) =⇒ (𝑖𝑖). Let ^ be a cardinal and 𝑝, 𝑞 : 𝑋 −↦−→ ^ V-relations such that 𝑝 ≤ 𝑞. Let P^ (F) denote
the set of ^-ary predicate liftings of F. Then, by hypothesis,

1F𝑋 ≤
∧

`∈P^ (F)
` (𝑝) � ` (𝑞)

=
∧

`∈P^ (F)
(` (ev^) · F𝑝♯) � (` (ev^) · F𝑞♯).

Hence,

1F𝑋 ≤ (F𝑝♯)◦ ·
(∧

`∈P^ (F)
` (ev^) � ` (ev^)

)
· F𝑞♯ .

Moreover, by hypothesis,

{` (1V^ ) | ` ∈ P^ (F)} = V-Cat(F(V^)op
,Vop).

Thus, since the cone V-Cat(F(V^)op,Vop) is initial (see Remark 2.6 and Corollary A.3),

Fℎ^ =
∧

`∈P^ (F)
` (ev^) � ` (ev^).

Therefore, F𝑝♯ ≤ Fℎ^ · F𝑞♯.
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Now we show (𝑖𝑖) =⇒ (𝑖). Let ` : PV^ → PVF be a predicate lifting of F and 𝑝, 𝑞 : 𝑋 −↦−→ ^ V-relations such that 𝑝 ≤ 𝑞.

Then, by hypothesis, ` (ev^) · Fℎ^ = ` (ev^) and F𝑝♯ ≤ Fℎ^ · F𝑝♯. Therefore,
` (𝑝) = ` (ev^) · F𝑝♯

≤ ` (ev^) · Fℎ^ · F𝑞♯

= ` (ev^) · F𝑞♯

= ` (𝑞). □

Proposition (4.11). Let F̂ : V-Cat → V-Cat be a lifting induced by a lax extension F̂ : V-Rel → V-Rel. Every predicate lifting
of the functor lifting F̂ : V-Cat → V-Cat is monotone.

Proof. Let ^ be a cardinal, ℎ : V^ −↦−→ V^ the structure ofV-relation of (V^)op and 𝑝, 𝑞 : 𝑋 −↦−→ ^ V-relations such that 𝑝 ≤ 𝑞.
Note that

𝑝 ≤ 𝑞 ⇐⇒ 1𝑋 ≤ (𝑝♯)◦ · ℎ · 𝑞♯ .
Therefore,

1F𝑋 ≤ F̂1𝑋

≤ F̂((𝑝♯)◦ · ℎ · 𝑞♯)

= F(𝑝♯)◦ · F̂ℎ · F𝑞♯ . □

Theorem (4.12). Let F : Set → Set be a functor. The monotone map F̂MP(−) : Lift(F)I → Lax(F) is left adjoint to the monotone
map I : Lax(F) → Lift(F)I.

Proof. Let F̂ : V-Rel → V-Rel be a lax extension of F. Then, by Propositions 4.6 and 2.10,MPI(F̂) contains the Moss liftings of
F̂. Hence, by Theorem 2.15,

F̂MPI(F̂) ≤ F̂.
On the other hand, let F : V-Cat → V-Cat be a lifting of F that preserves initial morphisms. Then, by Theorem 4.2 and the

fact that MP : Lift(F)I → Pred(F)M is left adjoint to F(−) : Pred(F)M → Lift(F)I,

F ≤ FMP(F) = I(F̂MP(F) ). □

Theorem. Let F : Set → Set be a functor. The partially ordered classes Lax(F) and Lift(F)IM are isomorphic.

Proof. By Proposition 4.11, the adjunction
F̂MP(−) ⊣ I : Lax(F) → Lift(F)I

(co)restricts to an adjunction
F̂P(−) ⊣ I : Lax(F) → Lift(F)IM.

The fact that I : Lax(F) → Lift(F)IM is also right adjoint to F̂P(−) : Lift(F)IM → Lax(F) follows from the adjunction of
Theorem 4.9, Theorem 4.2 and the proof of Theorem 3.12. □

A.3 Omitted proofs and details for Section 5

Theorem (5.5). A lax-framed functor F : A → X corresponds precisely to a pair (F, F̂), where F : Horiz(A) → Horiz(X ) is a
2-functor and F̂ : Ver(A) → Ver(X ) is a lax functor, such that for every 𝑓 : 𝑋 → 𝑌 ∈ A , F(𝑓 )∗ ≤ F̂(𝑓∗) and F(𝑓 )∗ ≤ F̂(𝑓 ∗).
Proof. Analogous to [21, Proposition III.1.13.1]. □

Theorem (5.13). Let F : A → A be a lax-framed functor. Then CoAlg(F ) is a framed bicategory.

Proof. Let 𝑓 : (𝐴, 𝛼) → (𝐵, 𝛽) be a horizontal arrow in the double category CoAlg(F ). We show that the companion 𝑓∗ and
the conjoint 𝑓 ∗ of 𝑓 : 𝐴 → 𝐵 in A are F̂-simulations.

Using [19, 1.6. Ortogonal flipping], from

𝐴 F𝐴 F𝐵

𝐴 𝐵 F𝐵

𝛼

|1 =

F𝑓

| 1

𝑓 𝛽
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we obtain
𝐴 F𝐴 F𝐵

𝐵 F𝐵

𝛼

|𝑓∗

F𝑓

| 1≤

𝛽

and
𝐴 F𝐵

𝐵 F𝐵.

𝛼

|𝑓∗ | (F𝑓 )∗≤

𝛽

With (F𝑓 )∗ ≤ F̂(𝑓∗) we conclude that 𝑓∗ is a F̂-simulation.
Similarly, from

𝐴 𝐵 F𝐵

𝐴 F𝐴 F𝐵

𝑓

|1 =

𝛽

| 1

𝛼 F𝑓

we obtain
𝐴 𝐵 F𝐵

𝐴 F𝐴

𝑓

|1

𝛽

| (F𝑓 )∗≤

𝛼

and
𝐵 F𝐵

𝐴 F𝐴.

|𝑓 ∗

𝛽

| (F𝑓 )∗≤

𝛼

Finally, with (F𝑓 )∗ ≤ F̂(𝑓 ∗) we conclude that 𝑓 ∗ is a F̂-simulation. □

Theorem (5.16). Let F : A → A be a lax-framed functor where A is locally complete. Then CoAlg(F ) is locally complete.

Proof. Let (𝑠𝑖 : (𝐴, 𝛼) −↦−→ (𝐵, 𝛽))
𝑖∈𝐼

be a family of F -simulations. Then the supremum of this family, taken in Ver(A), is again
an F -simulation:

𝛽∗ ◦
∨

𝑖∈𝐼
𝑠𝑖 =

∨
𝑖∈𝐼

𝛽∗ ◦ 𝑠𝑖 ≤
∨

𝑖∈𝐼
F̂𝑠𝑖 ◦ 𝛼∗ ≤ F̂(

∨
𝑖∈𝐼
𝑠𝑖 ) ◦ 𝛼∗ . □

Theorem (5.19). Let F : A → A be a lax-framed functor where A is locally complete. For every pair of horizontal arrows

(𝐴, 𝛼) (𝐶,𝛾) (𝐵, 𝛽) (𝐷, 𝛿)𝑓 𝑔

in CoAlg(F ), ⊤𝛼,𝛽 = 𝑔∗ ◦ ⊤𝛾,𝛿 ◦ 𝑓∗ .

Proof. Follows from the fact that 𝑔∗ ◦ − ◦ 𝑓∗ is a right adjoint. □

Corollary A.5. Let F : A → A be a lax-framed functor where A is locally complete and the category Horiz(A) has binary
coproducts. Then, for all coalgebras (𝐴, 𝛼) and (𝐵, 𝛽),

⊤𝛼,𝛽 = 𝑖𝛽
∗ ◦ ⊤𝛼+𝛽 ◦ 𝑖𝛼 ∗,

where 𝑖𝛼 and 𝑖𝛽 denote the morphisms from (𝐴, 𝛼) and (𝐵, 𝛽) to the coproduct (𝐴 + 𝐵, 𝛼 + 𝛽).

Corollary A.6. Let F : A → A be a lax-framed functor where A is locally complete. If the functor F : Horiz(A) → Horiz(A)
admits a terminal coalgebra (𝐶,𝛾), then, for all F -coalgebras (𝐴, 𝛼) and (𝐵, 𝛽),

⊤𝛼,𝛽 = !𝛽 ∗ ◦ ⊤𝛾 ◦ !𝛼 ∗,
where !𝛼 and !𝛽 denote the unique morphisms from (𝐴, 𝛼) and (𝐵, 𝛽) to (𝐶,𝛾).

Theorem (5.23). Let F be a lax-framed endofunctor on a locally complete framed bicategory. Then, F -similarity and F -
behavioural distance coincide on every F -coalgebra.
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Proof. Follows from the fact that F -similarity ⊤𝛼 on (𝐴, 𝛼) is a monoid on 𝐴. □

Proposition (5.26). Let A be a double category and F : Mon(A) → Mon(A) be a lax-double functor preserving vertical identities.
If (𝐶, 𝑐,𝛾) is a terminal F -coalgebra, then (𝐶, 𝑐, 𝑐, 𝛾) is a terminal Mon(F )-coalgebra.

Proof. Let (𝐴, 𝑎0, 𝑎1, 𝛼) be a Mon(F )-coalgebra. First observe that 𝑓 : 𝐴 → 𝐶 in A is a morphism of Mon(F )-coalgebras if
and only if 𝑓 : (𝐴, 𝑎0, 𝛼) → (𝐶, 𝑐,𝛾) is a morphism of F -coalgebras and 𝑓 : (𝐴, 𝑎1) → (𝐶, 𝑐) is a horizontal arrow in Mon(A).
Therefore there is at most one Mon(F )-coalgebra homomorphism (𝐴, 𝑎0, 𝑎1, 𝛼) → (𝐶, 𝑐, 𝑐, 𝛾). Consider now 𝑖 : (𝐴, 𝑎0, 𝑎1) →
(𝐴, 𝑎1, 𝑎1) in Mon(Mon(A)) and

(𝐴, 𝑎0, 𝑎1)

Mon(F )(𝐴, 𝑎0, 𝑎1) Mon(F )(𝐴, 𝑎1, 𝑎1).

𝛼

Mon(F) (𝑖 )

𝛼1

Note that Mon(F )(𝐴, 𝑎1, 𝑎1) = (F (𝐴, 𝑎1), F𝑎1) and, since F preserves vertical identities, F𝑎1 coincides with the monoid
structure of F (𝐴, 𝑎1). Therefore also 𝛼1 : (𝐴, 𝑎1) → F (𝐴, 𝑎1) in Mon(A) and the identity on 𝐴 is an F -coalgebra ho-
momorphism (𝐴, 𝑎0, 𝛼) → (𝐴, 𝑎1, 𝛼1). Since (𝐶, 𝑐,𝛾) is the terminal F -coalgebra, there is F -coalgebra homomorphism
𝑓 : (𝐴, 𝑎1, 𝛼) → (𝐶, 𝑐,𝛾), which proves the claim. □
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