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Building on the notion of normed category as suggested by Lawvere, we introduce notions
of Cauchy convergence and cocompleteness for such categories that differ from proposals in
previous works. Key to our approach is to treat them consequentially as categories enriched in
the monoidal-closed category of normed sets, i.e., of sets which come with a norm function.
Our notions largely lead to the anticipated outcomes when considering individual metric
spaces or normed groups as small normed categories (in fact, groupoids), but they can
be challenging when trying to establish them for large categories, such as those of semi-
normed or normed vector spaces and all linear maps as morphisms, not just because norms
of vectors need to be allowed to have value ∞ in order to guarantee the existence of colimits of
(sufficiently many) infinite sequences. These categories, along with categories of generalized
metric spaces, are the key example categories discussed in detail in this paper.

Working with a general commutative quantale V as a value recipient for norms, rather
than only with Lawvere’s quantale R+ of the extended real half-line, we observe that the
categorically atypical, and perhaps even irritating, structure gap between objects and mor-
phisms in the example categories is already present in the underlying normed category of
the enriching category of V-normed sets. To show that this normed category and, in fact,
all presheaf categories over it, are Cauchy cocomplete, we assume the quantale V to satisfy
a couple of light alternative extra properties which, however, are satisfied in all instances
of interest to us. Of utmost importance to the general theory is the fact that our notion
of Cauchy convergence is subsumed by the notion of weighted colimit of enriched category
theory. With this theory and, in particular, with results of Albert, Kelly and Schmitt, we
are able to prove that all V-normed categories have correct-size Cauchy cocompletions, for
V satisfying our light alternative assumptions.

We also show that our notions are suitable to prove a Banach Fixed Point Theorem for

contractive endofunctors of Cauchy cocomplete normed categories.
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1 Introduction

A category X is normed if it comes with a function which assigns to every morphism f : x → y

a value |f | ∈ [0,∞], such that

0 ≥ |1x| and |f |+ |g| ≥ |g · f |

for all morphisms g : y → z. Hence, this paper adopts Lawvere’s [30] original notion of normed
category, as a category enriched in a certain monoidal-closed category. Mentioned by him only
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rather covertly as a remark in [30], the notion was worked out in full generality soon afterwards
by Betti and Galuzzi [7]. Some authors call such categories weighted (see [16, 12, 35]) rather than
normed. We avoid this change of the original terminology, mostly for being able to distinguish
between our notion of normed colimit and the established notion of weighted colimit of enriched
category theory when we prove the non-trivial fact that the former notion is subsumed by the
latter. We do not aim at special categorical environments, like that of triangulated categories
(see [34] for an overview), and we refrain from imposing any further a priori conditions on the
notion as some papers do (such as [29, 24]) but treat or discuss these as special add-on properties
of Lawvere’s fundamental notion.

Given Lawvere’s minimalistic and logic-oriented approach, it cannot surprise that examples of
normed categories abound. First of all, individual mathematical objects may often be seen as
small normed categories. We mention here only the most obvious example: for every metric
space (X, d) one forms the (indiscrete) category iX with object set X in which, for any x, y ∈ X,
there is precisely one morphism x → y, denoted by (x, y), and its norm is given by the metric:
|(x, y)| = d(x, y). In fact, the small normed categories in which all hom-sets are singletons
correspond precisely to the generalized metric spaces (X, d : X ×X → [0,∞]), required only to
satisfy the point and triangle inequalities

0 ≥ d(x, x) and d(x, y) + d(y, z) ≥ d(x, z)

for all x, y, z ∈ X, with this atypical way of stating them (following [30, 31]) to be explained
shortly.

Many of the large, and sufficiently interesting, normed categories have objects with some metric
structure which, however, is hardly, or not at all, respected by the morphisms. But the metric
structure of the objects may then be used to specify classes of well-behaved morphisms. For
instance, let X be the (large) category NVec∞ whose objects are all normed real vector spaces
in the usual sense, except that we allow norms to assume the value ∞ (see further below for
some justification), along with an adjustment of the real arithmetic for this value, and whose
morphisms are all linear maps (i.e., the linear ∞-Lipschitz maps). From a standard categorical
perspective, forming this category appears to be highly questionable since it makes two objects
X and Y isomorphic as soon as they are algebraically isomorphic, regardless of their norms. (In
fact, with a choice of a basis for every space granted, X becomes equivalent to the category of
all real vector spaces and their linear maps.) Nevertheless, X has a raison d’ être when regarded
as a normed category, as it may allow us to investigate morphisms of interest within the same
category, such as the (uniformly) continuous maps, or the maps with a given Lipschitz value ≥ 1.
Indeed, for a linear map f : X → Y , with || · || denoting the given norms of vectors in X and Y
(which, as already observed in [29], may also be considered as categorical norms when X and Y
are treated as one-object categories under addition), writing log◦ α := max{0, logα} when α > 0

one simply considers

|f | = sup
x ̸=0

log◦(
||fx||
||x||

) ,

so that |f | becomes minimal in [0,∞] with respect to the natural order and the property that

e|f |||x|| ≥ ||fx||
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holds for all x ∈ X. This makes e|f | the Lipschitz value L(f) of the map f whenever L(f) ≥ 1

under a natural extension of the real arithmetic to ∞), so that the condition |f | <∞ characterizes
f as bounded (or, equivalently, as (uniformly) continuous), while |f | = 0 describes it as non-
expanding, or 1-Lipschitz.

A seemingly trivial situation arises when we consider a normed category X in which norms are
allowed to take as values only 0 or ∞. Interpreting 0 as ⊤ (true) and ∞ as ⊥ (false), and
rewriting the relation ≥ as the implication ⇒ and the operation + as the logical connective ∧,
then the norm conditions determining the class S of all morphisms f that satisfy |f | = ⊤ or,
equivalently, ⊤ ⇒ |f |, may be recorded equivalently as

1x ∈ S and f ∈ S ∧ g ∈ S =⇒ g · f ∈ S .

In other words, such 2-valued normed categories X are just categories that come equipped with
a distinguished wide subcategory S (i.e., a subcategory with the same class of objects as X).
The wide-subcategory conditions as stated above explain why it is logically preferable to use the
natural ≥ of the reals as the relevant order, a perspective that gets justified further by Lawvere’s
enriched category-theoretical view of metrics and norms which we adopt in this paper.

Just as for metric spaces, the concept of Cauchy convergence should be fundamental in the study
of normed categories. But what is it? And once defined, what does completeness mean? Do there
exist completions, and are there protagonistic normed categories in this context, like the presheaf
categories in the completion theory of ordinary categories? In this paper we try to give answers to
these questions and test them in examples. Taking seriously the enriched categorical perspective
that is already present in [30, 7, 31], our answers differ from those presented in other papers, such
as [29, 34, 24]. Also, instigated not just by the third type of examples above, we increase the
potential range of applications by allowing norms to take values in an arbitrary (commutative
and unital) quantale, i.e., in a complete lattice (V,≤) which, in addition, has a commutative
monoid structure (V,⊗, k), such that ⊗ distributes in each variable over arbitrary joins. Hence,
we consider V-normed categories where (V,≤,⊗, k) will, amongst others, take on the role of the
Lawvere quantale R+ = ([0,∞],≥,+, 0), or of the Boolean quantale 2 = ({⊤,⊥},⇒,∧,⊤) used
in the examples above.

Seeing the study of V-normed categories as embedded into enriched category theory, we must take
seriously the enriching monoidal-closed category Set//V whose objects are mere sets equipped
with a V-valued function; morphisms are maps which keep or increase the V-value of elements.
Hence, V-normed categories are categories enriched in Set//V. Despite its simplicity, Set//V has
an unexpected feature: the internal hom of objects A and B is given by all mappings A → B,
not just by the (Set//V)-morphisms A → B. Hence, being central to the understanding of the
theory, right from start we have to consider the somewhat strange V-normed category induced
by the internal hom of Set//V. This leads us to the V-normed category

Set||V

of V-normed sets with arbitrary maps as their morphisms. It contains the ordinary category
Set//V as a non-full subcategory. As the recipient category for the presheaves over any given
V-normed category X, it is key in the study of any kind of completions of X.
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For this reason, in Sections 2-4 we take time to present the fundamentals of V-normed category
theory in detail. Alongside many examples of such small and large categories, we note that the
category Cat//V of all small V-normed categories and V-normed functors is topological [1, 22] over
Set//V, which gives the recipe for the construction of limits and colimits of V-normed categories.
We show that it is symmetric monoidal closed [26, 33], as well as locally presentable [15, 3]. Other
than Set||V, we also introduce the V-normed categories V-Lip and V-Dist, both having as their
objects small V-categories, i.e., Lawvere metric spaces when V = R+, whilst their morphisms
are respectively arbitrary maps and V-distributors. The former category facilitates the study
of norms for categories of metric spaces, and the norm of the latter category naturally leads to
non-symmetrized Hausdorff metrics (as considered in [30] and studied in [4, 36]).

In Sections 5 and 6, introducing the key notions of Cauchy sequence and of normed convergence
of a sequence in a V-normed category, we tighten the corresponding definitions as proposed by
Kubiś [29] in the context of V = R+, in such a way that, unlike in Kubiś’s work, normed colimits
become unique and conform with the enriched setting. This allows us to prove in Sections 11-13
the central general theorems of this paper, under two very weak alternative assumptions on the
ambient quantale V, the status of which we discuss further in the appended Section 15. Hence,
first we show that the normed category of (Set||V )-valued presheaves of a V-normed category
X is Cauchy cocomplete1, i.e., that all of its Cauchy sequences have a normed colimit. Then
we exhibit the normed colimits as weighted colimits in the sense of enriched category theory,
and finally we invoke the machinery developed by Albert, Kelly and Schmitt [5, 28] to show the
existence of a Cauchy cocompletion of X belonging to the same universe as the given normed
category X. Unlike these results, it is easy to see that our notions lead to known concepts and
outcomes when applied to individual (Lawvere) metric spaces seen as small normed categories;
see in particular [9, 39, 23, 21]. We leave to future work the question whether the methods
used in these and other papers may be generalized to produce a more direct construction of the
Cauchy cocompletion of a normed category than the one presented here.

Our discussion of norms for categories of normed vector spaces and of metric spaces does not
require any advanced categorical tools and can be read independently from the abstract comple-
tion theory. We therefore present it earlier (in Sections 8 and 9), even though matters are not
as straightforward as one may have hoped. Consider the sequence of normed vector spaces

R = R1
// R 1

2

// R 1
3

// ... // colimn R 1
n
= R0 ,

where Rc is the 1-dimensional vector space of real numbers normed by ||1|| = c for a constant
c > 0. The connecting identity maps being strictly contractive, it seems reasonable to work in a
categorical context which gives as the colimit the space R0, and thus to admit the case c = 0, i.e.,
to allow norms of non-zero vectors to be 0, rather than to force the sequence to collapse in the
null space in order to obtain a normed vector space. Hence, just like for Lawvere metric spaces,
we do not insist on separation and consider semi-normed vector spaces, rather than just normed
spaces. Moreover, to have enough limits and colimits, just as it is the case for Lawvere metrics,
we should allow norms to have value ∞. Here is a simple example of an inverse sequence, again

1The term, or its dual, is not to be confused with Cauchy completeness in the sense of idempotent completeness;
see Corollary 7.3 and the footnote there.
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involving only 1-dimensional normed spaces and strict contractions given by identity maps; in
the same notation as above, it reads as

R = R1 R2
oo R3

oo ...oo limn Rn = R∞ .oo

To be able to work in a satisfactory categorical environment, we therefore consider in Section 8 the
normed category SNVec∞ whose objects are semi-normed vector spaces with norms permitted
to attain the value ∞, and whose morphisms are just linear maps. Consequently, we had to
extend (and restrict) not only the real addition and subtraction, but also the multiplication and
division to [0,∞] and, in order to have the category normed, do the same for the exponential
function and the logarithm. This works well when one extends inverse operations systematically
by adjunction, rather than by ad hoc conventions. We consider the proof showing that, by
traditional analytic epsilon arguments, the normed category SNVec∞ is Cauchy cocomplete as
this paper’s main result in the realm of concrete normed categories. By contrast, the category
NVec∞ fails to be Cauchy cocomplete.

Expanding on previous work (see in particular [29, 35]), in Section 9 we establish the purely
metric version of the vector space result, by proving that the normed category Met∞ of all
Lawvere metric spaces and arbitrary maps is Cauchy cocomplete. We do so by first showing
that the previously used epsilon argumentation works well also in the more general setting of
the category V-Lip, under reasonable (but no longer mild) conditions on the quantale V which
align with the methods used in Flagg’s pioneering work [13, 14] and, more recently, in [20]. After
a change of base, which trades the quantale R+ for its multiplicative counterpart, the Cauchy
cocompleteness of Met∞ follows. Finally, improving a result by Kubiś [29], in Section 14 we
present a relatively easily established Banach Fixed Point Theorem for a contractive endofunctor
of a Cauchy cocomplete normed category which replicates the classical theorem in the case of a
complete metric space, considered as a small normed category.

Acknowledgements: We thank Javier Gutiérrez-García for his assistance in finding an example
of a quantale helping to distinguish the conditions used in Section 11; see Section 15 for details.
We also thank Paolo Perrone for providing access to the paper [7], as well as Marino Gran who
made possible our joint stay at Louvain-la-Neuve prior to CT 2023 in June 2023. Following the
third-named author’s talks given in April/May of 2022, joint work on this paper was initiated
at that occasion, with some key results presented by the second-named author in a talk given in
October 2023.

2 V-normed sets

Throughout this paper V = (V,≤,⊗, k) is a unital and commutative quantale, that is: (V,≤) is
a complete lattice and (V,⊗, k) is a commutative monoid with neutral element k, such that, for
all v ∈ V, the map −⊗ v : V → V preserves arbitrary suprema:

(
∨
i∈I

ui)⊗ v =
∨
i∈I

(ui ⊗ v);
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in particular, ⊥ ⊗ v = ⊥ for the bottom element ⊥ of V. In the (small and thin) symmetric
monoidal-closed category V, for all v, w ∈ V one has the internal hom, [v, w], characterized by

u ≤ [v, w] ⇐⇒ u⊗ v ≤ w

for all u ∈ V. The standard quantales considered in this paper are the Boolean quantale, 2 =

{⊥,⊤} with ⊗ = ∧ and k = ⊤, and the Lawvere quantale, R+ = ([0,∞],≥,+, 0), ordered by
the natural ≥-order of the extended real half-line. In R+, the internal hom is computed as
[v, w] = max{0, w − v}, [v,∞] = ∞, [∞, w] = [∞,∞] = 0 for all v, w < ∞, and in 2 it is given
by the implication: [v, w] = (v ⇒ w).

Definition 2.1. A V-normed set is a set A that comes with a function |-|A : A → V, and a
V-normed map (A, |-|A) → (B, |-|B) is a mapping f : A → B satisfying |a|A ≤ |fa|B for all
a ∈ A:

A
f

//

|-|A

≤

��

B

|-|B��

V

Henceforth, we usually drop the subscripts. This defines the category Set//V .

This category is simply the formal coproduct completion FamV of the category (V,≤). Applying
the Fam-construction to the unique functor V → 1 of V to the terminal quantale one obtains
the forgetful functor Set//V → Set, which is topological [1]; that is: given a family of any size of
mappings fi : A → Bi (i ∈ I) with a fixed set A and all Bi V-normed, then there is an “initial”
V-norm on A, namely

|a| =
∧
i∈I

|fia|.

Equivalently: given any family of mappings gi : Ai → B (i ∈ I) from V-normed sets Ai to a
given set B, then there is a “final” V-norm on B that is described by

|b| =
∨
i∈I

∨
a∈g−1

i b

|a|.

Consequently, Set//V is complete and cocomplete. Moreover, the forgetful functor has a left
adjoint, putting on every set the discrete V-norm with constant value ⊥, as well as a right adjoint,
putting on every set the indiscrete V-norm with constant value ⊤. In particular, Set//V → Set

is represented by the discrete singleton V-normed set E⊥, i.e., by {∗} with | ∗ | = ⊥.

More importantly, one has:

Proposition 2.2. The category Set//V is symmetric monoidal-closed.

Proof. For V-normed sets A and B, their tensor product A⊗B is carried by the cartesian product
A × B, normed by |(a, b)| = |a| ⊗ |b| in V, and the tensor-neutral set Ek is the set {∗} normed
by |∗| = k.
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To describe the internal hom-object, denoted by [A,B], we first observe that its elements are
necessarily described by V-normed maps E⊥ → [A,B], which must correspond to V-normed maps
E⊥ ⊗ A→ B. But these correspond precisely to arbitrary Set-maps A→ B, since E⊥ ⊗ A puts
just the discrete structure on the set A. Consequently, [A,B] has carrier set Set(A,B), i.e., the
set of all mappings φ : A→ B, with their norm defined by

|φ| =
∧
a∈A

[|a|, |φa|].

This turns out to be the largest structure (in the order induced pointwise by V) making the
evaluation map [A,B]⊗A→ B V-normed; i.e., |φ| is maximal with the property

|φ| ⊗ |a| ≤ |φa|

for all a ∈ A.

Remarks 2.3. (1) We note that, for φ ∈ [A,B], one has k ≤ |φ| precisely when |a| ≤ |φa| for all
a ∈ A, that is, when φ : A → B is a V-normed map. Hence, |φ| is to be seen as the “degree” to
which the arbitrary map φ is a morphism of Set//V.

(2) When we consider the lattice V as a small thin category, the functor 1 → Set of the terminal
category 1 pointing to the terminal object {∗} of Set “lifts” to the functor i : V → Set//V, which
assigns to every v ∈ V the set Ev = {∗}, normed by | ∗ | = v. It has a left adjoint, s, which
assigns to every object A its “sum”, or “supremum” sA =

∨
a∈A |a|, also regarded as its “optimal

value” [35]. In the commutative diagram

V

��

i // Set//V

forget
��

s
⊤gg

1 // Set
⊤

gg

all arrows are monoidal homomorphisms and they, except possibly for s, preserve also the internal
homs.

(3) As a left adjoint, the functor s preserves all colimits, and it also preserves products if (and
only if) the lattice V is completely distributive.

(4) Other than the forgetful functor Set//V → Set as in (2), one may, for every v ∈ V, consider
more generally the functor Pv : Set//V → Set which assigns to a V-normed set A the set
{a ∈ A | v ≤ |a|}. It has a left adjoint which puts the V-norm with constant value v onto every
set, and it is represented by the V-normed set Ev as defined in (2). The set of objects

{Ev | v ∈ V}

distinguishes itself as being a strong generator of the category Set//V. Indeed, for any V-normed
set B, the family of all morphisms Ev → B with some v ∈ V is not only jointly epic, but in fact
strongly so, since B carries the final structure (as described above) with respect to this family.
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Before exploiting the strong-generator property of the set {Ev | v ∈ V}, we show that every
individual member of this set has an important property (as introduced in [15], see also [3]):

Lemma 2.4. For the least regular cardinal λ larger than the size of the set V, and for every
element v ∈ V, the V-normed set Ev is λ-presentable in Set//V, that is: the representable functor
Pv : Set//V → Set preserves λ-directed colimits.

Proof. For a λ-directed ordered set I (so that any subset of size < λ has an upper bound in I),
we consider an I-indexed diagram (fi,j : Ai → Aj)i≤j with colimit cocone (gi : Ai → B)i∈I in
Set//V. We must show that every morphism b : Ev → B in Set//V has an essentially unique
factorization through some gi. But such morphism is described by an element b ∈ B with v ≤ |b|,
and since B carries the final structure with respect to the colimit cocone, we have |b| =

∨
Cb

with
Cb = {|a| | ∃i ∈ I : a ∈ g−1

i b} ⊆ V.

For every u ∈ Cb we choose an index iu ∈ I and an element au ∈ g−1
iu
b with |au| = u. Since the

terminal object {∗} is λ-presentable in Set and I is λ-directed, there are j ∈ I and a ∈ Aj so
that, for all u ∈ Cb, one has iu ≤ j and fiu,j(au) = a. Therefore gj(a) = b and, for all u ∈ Cb,
u ≤ |a|. Consequently v ≤ |a|, that is, the map Ev → Aj with value a is actually a morphism in
Set//V, and we conclude that b : Ev → B factors through gj : Aj → B. The essential uniqueness
of this factorization follows from the fact that a singleton set is λ-presentable in Set.

Proposition 2.5. The category Set//V is locally presentable.

Proof. It suffices to note that the Set-based topological category Set//V is cocomplete, and that
every object of its strong generator {Ev | v ∈ V} is locally λ-presentable, with λ as in Lemma
2.4.

3 V-normed categories

Definition 3.1. A V-normed category X is a (Set//V)-enriched category. This just means that
X is an ordinary category with (small) V-normed hom-sets such that, for all objects x, y, z, the
maps

Ek → X(x, x), ∗ 7→ 1x, and X(x, y)⊗ X(y, z) → X(x, z), (f, g) 7→ g · f,

are V-normed; equivalently, for all morphisms f : x→ y and g : y → z one has

k ≤ |1x| and |f | ⊗ |g| ≤ |g · f |.

A functor F : X → Y is V-normed if it makes its hom maps X(x, y) → Y(Fx, Fy) V-normed;
that is, if

|f | ≤ |Ff |
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holds for all morphisms f in X. For the emerging categories

(Set//V)-Cat and (Set//V)-CAT

of all small V-normed categories with their V-normed functors and its (higher-universe) counter-
part of all V-normed categories we use respectively the more familiar notation

Cat//V and CAT//V

as justified by the following observation.

Facts 3.2. (1) Considering the monoid (V,⊗, k) as a one-object 2-category with its 2-cells given
by the order of V, we may describe a V-normed category X equivalently as a 2-category with
only identical 2-cells, equipped with a lax functor |-| : X → V. A V-normed functor F : X → Y
is then a (lax, but necessarily strict) 2-functor producing the lax-commutative diagram

X F //

|-|X

≤

��

Y

|-|Y��

V

(2) The (monoidal) functors of the diagram of Remarks 2.3(2) induce the diagram

V-Cat

forget
��

i // Cat//V

forget
��

s
⊤ii

Set
indiscrete // Cat

⊤
ob

ii

of change-of-base functors. Here an object of V-Cat is (as in [30] and [22]) a set X which, for all
x, y ∈ X, comes with a value X(x, y) ∈ V, satisfying the laws

k ≤ X(x, x) and X(x, y)⊗X(y, z) ≤ X(x, z).

The functor i describes the V-category X equivalently as an indiscrete category X = iX with
obX = X, putting the V-norm

|x→ y| = X(x, y)

on the only morphism in X(x, y). The functor s takes an arbitrary small V-normed category X
to the V-category sX = obX with

(sX)(x, y) =
∨

{|f | | f ∈ X(x, y)}.

(3) The norm-forgetting functor Cat//V → Cat must be carefully distinguished from the functor

(−)◦ : Cat//V → Cat

which sends a small V-normed category X to the category X◦, defined (as in enriched category
theory [26]) to have the same objects as X, but the morphisms of which are only those morphisms
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f : x → y in X with k ≤ |f | (since these are equivalently described by the (Set//V)-morphisms
Ek → X(x, y)). Extending the terminology of [29] from R+ to arbitrary V, we call the morphisms
of X◦ the k-morphisms of X, and we say that the (ordinary and generally non-full) subcategory

X◦

of X is the category of k-morphisms in X. An isomorphism f in X◦ is called a k-isomorphism of
X; i.e., f is an isomorphism in X such that both, f and f−1, are k-morphisms.

Caution: An isomorphism in the ordinary category X may not belong to X◦, and even if it does,
it may not be an isomorphism in X◦: for a (non-symmetric) two-point metric space X = {a, b}
with X(a, b) = 1 and all other distances 0, just consider X = iX, as formed in Examples 3.5(3).

(4) Being of the form W-Cat for some symmetric monoidal-closed category W, all four categories
of the diagram in (2) are again symmetric monoidal closed (if not cartesian closed). In particular,
recall that the tensor product of X and Y in V-Cat is carried by the cartesian product and
structured by

(X ⊗ Y )((x, y), (x′, y′)) = X(x, x′)⊗ Y (y, y′),

and that their internal hom, [X,Y ], is carried by the hom-set V-Cat(X,Y ) and structured by

[X,Y ](f, g) =
∧
x∈X

Y (fx, gx).

Of course, E = {∗} with E(∗, ∗) = k is the monoidal unit in V-Cat (see [22] for details).

We define the tensor product X ⊗ Y of the V-normed categories X and Y to be carried by the
ordinary category X× Y, structured by

|(f, f ′)| = |f | ⊗ |f ′|.

One then routinely shows that their internal hom [X,Y] is given by the V-normed functors X → Y
and all natural transformations between them, normed by

|α| =
∧

x∈obX
|αx|.

The terminal category E in Cat with obE = E = {∗} becomes the monoidal unit when one puts
|1∗| = k (but note that it is terminal in Cat//V only if k = ⊤). Clearly, the functors i and s

preserve the monoidal structure, and i preserves even the closed structure.

We also observe that the forgetful functor Cat//V → Cat is, like V-Cat → Set, topological; that
is: for any (arbitrarily large) family Fi : X → Yi (i ∈ I) of functors of a fixed category X to
V-normed categories, there is the “initial” V-normed structure on X, given by

|f | =
∧
i∈I

|Fif |.

Let us summarize the main points of these observations:

11



Proposition 3.3. The category Cat//V is symmetric monoidal closed and topological over Cat.
In particular, Cat//V is complete and cocomplete, and the forgetful functor Cat//V → Cat has
both, a right and a left adjoint, providing an ordinary small category respectively with the in-
discrete and the discrete V-norm. The restriction to small V-normed categories whose carrier
category is indiscrete reproduces the corresponding statements for the category V-Cat and its
forgetful functor to Set.

We also mention that, since Set//V is locally presentable (Proposition 2.5), by the general result
shown in [27] this important property gets inherited by (Set//V)-Cat:

Corollary 3.4. The category Cat//V is locally presentable.

Examples 3.5. (1) A 1-normed category (for the terminal quantale 1) is just an ordinary
category, and for V = 1 the diagram of Facts 3.2(2) flattens to

s ⊣ i : 1-Cat = Set −→ Cat = Cat//1.

For the Boolean quantale V = 2, the diagram of Facts 3.2(2) takes the form

Ord

forget
��

i // Cat//2

forget
��

s
⊤hh

Set
indiscrete // Cat

⊤
ob

hh

Here Ord = 2-Cat is the category of preordered sets and monotone maps. Objects in Cat//2 may
be described as small categories X which come with a distinguished class S of morphisms that
is closed under composition and contains all identity morphisms; necessarily then, as a category,
S = X◦ as defined in Facts 3.2(3). Morphisms in Cat//2 are functors preserving the distinguished
morphisms.

(2) In an R+-normed category X, henceforth often called just normed and written with the
natural ≤ for the real numbers, rather than with the natural ≥ as in the Introduction, the norm
conditions read as

|1x| = 0 and |g · f | ≤ |f |+ |g|

for all f : x → y and g : y → z. A (R+-)normed functor F : X → Y must satisfy |Ff | ≤ |f | for
all morphisms f in X.

(3) Every Lawvere metric space X = (X, d) is equivalently described as a small indiscrete cate-
gory X whose objects are the points of X, such that for every pair x, y ∈ X, the only morphism
x→ y in X gets normed by |x→ y| = X(x, y), where we have written X(x, y) for d(x, y) in accor-
dance with Facts 3.2(2). Hence, the categorical norm conditions as shown in (2) just generalize
the defining conditions of a Lawvere metric space. Non-expanding maps between Lawvere metric

12



spaces are equivalently presented as normed functors of indiscrete small normed categories. This
describes the full reflective embedding

i : Met1 := R+-Cat −→ NCat1 := Cat//R+

of Facts 3.2(2) (with the subscript 1 indicating the Lipschitz constant defining the morphisms).
Its left adjoint s provides the set X of all objects of a small normed category X with the (Lawvere)
metric

X(x, y) = inf{|f | | f ∈ X(x, y)}.

(4) (Lawvere [30]) The subsets of a (Lawvere) metric space X are the objects of the small normed
category HX whose morphisms φ : A → B are arbitrary Set-maps, normed (like in the internal
hom [A,B] of Set//V) by

|φ| = sup
x∈A

X(x, φx).

The reflector s provides the powerset of X with the non-symmetrized Hausdorff metric

d(A,B) = inf
φ:A→B

sup
x∈A

X(x, φx) = sup
x∈A

inf
y∈B

X(x, y),

where the validation of the second equality (presenting the metric in its more usual form) requires
the Axiom of Choice.

(5) (See also [29, 35].) Here is an R+-norm that measures the degree to which an arbitrary
mapping between metric spaces fails to be 1-Lipschitz (i.e., fails to be non-expanding). Just
form the (somewhat strange) category Met∞ whose objects are Lawvere metric spaces, and
whose morphisms φ : X → Y are mere Set-maps, normed by

|φ| = sup
x,x′∈X

log◦(
Y (φx, φx′)

X(x, x′)
),

where we have used the abbreviation log◦ α = max{0, logα} for α ∈ [0,∞] and extended the
real arithmetic to [0,∞], the details of which are given in Section 8; see also Corollary 9.4.
If X is a metric space in the classical sense, then this extension may be largely avoided since
|φ| = log◦ L(φ), where

L(φ) = sup {Y (φx, φx′)

X(x, x′)
| x, x′ ∈ X, X(x, x′) ̸= 0})

is the Lipschitz value of φ in [0,∞]. Since the 0-morphisms in the normed category Met∞, i.e.,
the morphisms φ with |φ| = 0, are precisely the 1-Lipschitz maps, we have

(Met∞)◦ = Met1 .

If X and Y are the underlying metric spaces of normed vector spaces and φ is linear, then (with
||-|| denoting the given norms of the vector spaces), the above formula reads equivalently as

|φ| = sup
x ̸=0

log◦(
||φx||
||x||

) ,

13



as recorded in the Introduction. Hence, for φ 1-Lipschitz, e|φ| = ||φ|| is the usual operator norm
of φ.

(6) For every commutative monoid (M,+, 0) we have the free quantale (PM,⊆,+, {0}) over the
monoid M , with the powerset of M structured by A + B = {a + b | a ∈ A, b ∈ B} for all
A,B ⊆ M . (Note that this quantale drastically fails to be integral, i.e., here, for the tensor-
neutral element k = {0} one has k < ⊤ = M , unless M is trivial.) A PM -normed category
X may be thought of as a category that comes equipped with a mapping that assigns to every
α ∈M a class Sα of morphisms in X, which we may call “of type α”, or “bounded by α”, subject
to the rules that identity morphisms are bounded by 0, and that, for composable morphisms f
and g that are respectively bounded by α and β, one has g ·f bounded by α+β. A PM -normed
functor must preserve bounds.

We note that the trivial monoid {0} returns the case V = 2 of (1).

(7) Other quantales of interest include the quantale ∆ of distance distribution functions [14, 21,
22], categorically characterized as a coproduct of two copies of R+ in the category of commutative
unital quantales and their homomorphisms [38]. The small categories enriched in ∆ are the
probabilistic metric spaces. Its consideration as a value quantale for norms of categories, however,
we leave for future work.

4 The V-normed categories Set||V , V-Lip, and V-Dist

Every symmetric monoidal-closed category W becomes a W-enriched category with the same
objects, qua its internal hom. Exploiting this fact for W = Set//V we obtain a V-normed
category whose objects are V-normed sets, but whose hom-sets of morphisms A → B are given
by the internal hom [A,B] of Set//V, i.e., by all Set-maps A → B. The emerging normed
category must be carefully distinguished from the category Set//V and, as it plays an important
role in what follows, deserves a separate notation,

Set||V ,

not to be confused with its (generally non-full) subcategory Set//V. For clarity, with the proof
of Proposition 2.2 we summarize these points, as follows.

Proposition 4.1. The category Set||V of V-normed sets with arbitrary mappings as morphisms
becomes a V-normed category with

|A φ−→ B| =
∧
a∈A

[|a|, |φa|].

In the notation and terminology of Facts 3.2(3), the ordinary category Set//V is precisely the
category of k-morphisms of the V-normed category Set||V:

(Set||V)◦ = Set//V.
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Hence, at the level of sets we have

(Set||V)(A,B) = [A,B] = Set(A,B) and (Set||V)◦(A,B) = (Set//V)(A,B)

for all V-normed sets A and B.

Remarks 4.2. (1) As an ordinary category, Set||V is equivalent to the category Set. The intro-
duction of a separate notation is justifiable only when Set||V is regarded as a V-normed category.

(2) The monoid (V,⊗, k) may be regarded as a one-object V-normed category, with an identical
norm function. As the monoid acts on itself, we obtain a functor

λ : V −→ Set||V, u 7−→ (λu : V → V, v 7→ u⊗ v),

where V, as a domain and codomain of the (left-)translation λu, is regarded just as an identically
V-normed set. The functor λ is V-normed, actually norm-preserving, since

|λu| =
∧
v∈V

[v, u⊗ v] = u .

In generalization of Example 3.5(5), next we consider another category in which morphisms
are not required to respect the structure of the objects: the objects of the category V-Lip are
small V-categories, with arbitrary maps as morphisms (so that, as an ordinary category, V-Lip is
actually equivalent to Set again, as in Remarks 4.2(1)). Their V-norm measures to which extent
they may fail to be V-functors, as follows.

Proposition 4.3. Defining the Lipschitz V-norm of a mapping φ : X → Y between small V-
categories by

|φ| =
∧

x,x′∈X
[X(x, x′), Y (φx, φx′)]

makes V-Lip a V-normed category, such that k ≤ |φ| holds precisely when φ is a V-functor:

(V-Lip)◦ = V-Cat .

Furthermore, the forgetful functor

V-Lip −→ Set||V, X 7−→ X ×X,

defined to remember just that every V-category X comes with a function X×X → V, is not only
V-normed but actually norm-preserving. Restricting it to k-morphisms gives a faithful functor
V-Cat −→ Set//V.

Proof. For arbitrary maps φ : X → Y and ψ : Y → Z of V-categories X,Y and Z, utilizing the
fact that V with its internal hom [-,-] is a V-category, we obtain

|φ| ⊗ |ψ| = (
∧

x,x′∈X
[X(x, x′), Y (φx, φx′)])⊗ (

∧
y,y′∈Y

[Y (y, y′), Z(ψy, ψy′)])

≤
∧

x,x′∈X
[X(x, x′), Y (φx, φx′)]⊗ [Y (φx, φx′), Z(ψφx, ψφx′)]

≤
∧

x,x′∈X
[X(x, x′), Z(ψφx, ψφx′)] = |ψ · φ| .
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Since trivially k ≤ |idX |, this makes V-Lip V-normed. The other statements are even easier to
verify.

We will apply the Proposition in Section 9 in order to obtain results for categories of generalized
metric spaces.

There is another well-known way of weakening the notion of V-functor. Recall that a V-distributor
ρ : X −◦−→ Y (also V-(bi)module or -profunctor) of V-categories X and Y is given by a V-functor
ρ : Xop ⊗ Y → V, i.e., by a function ρ satisfying

X(x′, x)⊗ ρ(x, y)⊗ Y (y, y′) ≤ ρ(x′, y′)

for all x, x′ ∈ X and y, y′ ∈ Y . Its composite with σ : Y −◦−→ Z is defined by

(σ · ρ)(x, z) =
∨
y∈Y

ρ(x, y)⊗ σ(y, z).

With the identity V-distributor 1∗X on X given by the structure of X, one obtains the category
V-Dist, together with the identity-on-objects functors

V-Cat −∗ // V-Dist (V-Cat)op ,−∗
oo

defined by f∗(x, y) = Y (fx, y) and f∗(y, x) = Y (y, fx) for every V-functor f : X → Y and all
x ∈ X, y ∈ Y . With the order of V-distributors induced pointwise by the order of V, we can
regard V-Dist as a 2-category, with 2-cells given by order. One then has f∗ ⊣ f∗, i.e., 1∗X ≤ f∗ ·f∗
and f∗ · f∗ ≤ 1∗Y .

Proposition 4.4. Setting the Hausdorff norm of a V-distributor ρ : X −◦−→ Y of V-categories as

|ρ| =
∧
x∈X

∨
y∈Y

ρ(x, y)

one makes V-Dist a V-normed category such that every V-functor f , represented as a V-distributor
f∗ or f∗, becomes a k-morphism. The function |-| is monotone, thus making

|-| : V-Dist −→ V

of Facts 3.2(1) a lax 2-functor.

Proof. Given ρ and σ : Y −◦−→ Z one has

|ρ| ⊗ |σ| = (
∧
x∈X

∨
y∈Y

ρ(x, y))⊗ (
∧
y′∈Y

∨
z∈Z

σ(y′, z))

≤
∧
x

∨
y

(ρ(x, y)⊗
∨
z

σ(y, z))

=
∧
x

∨
z

∨
y

ρ(x, y)⊗ σ(y, z)

=
∧
x

∨
z

(σ · ρ)(x, z) = |σ · ρ| .

Since one also has k ≤
∧
xX(x, x) = |1∗X |, this proves the principal assertion of the Proposition.

The additional claim may also be verified easily.
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Remark 4.5. Alternatively, for a V-distributor ρ : X −◦−→ Y one may set (cp. [30])

||ρ|| =
∨

φ:X→Y

∧
x∈X

ρ(x, φx)

to make the category V-Dist V-normed; here the join runs over all mappings φ : X → Y . The
choice-free proof of this claim proceeds similarly to the proof for |ρ|. But, under the Axiom of
Choice, and if the complete lattice V is (constructively) completely distributive (see [40, 22]),
one has in fact ||ρ|| = |ρ| for all ρ. We note that the underlying lattices of all quantales considered
in this paper so far are completely distributive; in particular 2 and R+ are.

For every V-distributor ρ : X −◦−→ Y and all subsets A ⊆ X, B ⊆ Y , denoting their inclusion
maps to X and Y by iA and iB, respectively, we define

(Hρ)(A,B) := |i∗B · ρ · (iA)∗| =
∧
x∈A

∨
y∈B

ρ(x, y)

and use the abbreviation HX = H1∗X . Applying the norm rules of Proposition 4.4 we now show
how one easily concludes (some essential parts of) Theorem 3 in [4] on the Hausdorff monad on
V-Cat (identified in [36] as describing its Eilenberg-Moore algebras as the conically cocomplete
V-categories), and on the lax extension of that monad to V-Dist:

Corollary 4.6. The function HX makes the powerset of every V-category X a V-category, de-
noted again by HX, such that Hρ : HX −◦−→ HY becomes a V-distributor for every V-distributor

ρ : X −◦−→ Y . This defines a V-normed lax 2-functor H, so that |ρ| ≤ |Hρ|, and it restricts
to a (strict) endofunctor of V-Cat which lifts the powerset functor of Set, so that one has the
commutative diagram

V-Cat

H
��

−∗ // V-Dist

H
��

(V-Cat)op

Hop

��

−∗
oo

V-Cat −∗ // V-Dist (V-Cat)op−∗
oo

Proof. For V-distributors ρ : X −◦−→ Y, σ : Y −◦−→ Z and all subsets A ⊆ Y and C ⊆ Z, we have

(Hσ · Hρ)(A,C) =
∨
B⊆Y

Hρ(A,B)⊗Hσ(B,C)

=
∨
B⊆Y

|i∗C · σ · (iB)∗| ⊗ |i∗B · ρ · (iA)∗|

≤
∨
B⊆Y

|i∗C · σ · (iB)∗ ⊗ i∗B · ρ · (iA)∗|

≤ |i∗C · σ · 1∗Y · ρ · (iA)∗|

= H(σ · ρ)(A,C)

and k ≤ |1∗A| ≤ |i∗A · (iA)∗| = HX(A,A). For ρ = σ = 1∗X , this shows that HX is a V-category.
Choosing alternately only one of the V-distributors to be identical will show that Hρ is a V-
distributor, while the general case confirms that H is a lax 2-functor of V-Dist. It is V-normed
since

Hρ(A,B) = |i∗B · ρ · (iA)∗| ≥ |i∗B| ⊗ |ρ| ⊗ |(iA)∗| ≥ k⊗ |ρ| ⊗ k = |ρ| .
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For a V-functor f : X → Y also Hf : HX → HY with (Hf)(A) = f(A) is a V-functor since

HX(A,A′) = |(iA′)∗ · (iA)∗| ≤ |(iA′)∗ · f∗ · f∗ · (iA)∗| = |(if(A′))
∗ · (if(A))∗| = HY (f(A′), f(A)) .

Finally, the left part of the diagram above commutes since

(Hf∗)(A,B) = |i∗B · f∗ · (iA)∗| = |i∗B · (if(A))∗| = HY (f(A), B) = (Hf)∗(A,B) ,

and the commutativity of the right part follows by duality.

Generalizing Example 3.5(4) from R+ to our general quantale V, and trading the Hausdorff norm
|-| à la Lawvere for ||-|| of Remark 4.5, one obtains the following corollary (without using Choice
or assuming complete distributivity of V !):

Corollary 4.7. For every V-category X, the subsets of X are the objects of a small V-normed
category HX whose morphisms are arbitrary maps φ : A→ B, normed by |φ| =

∧
x∈AX(x, φx).

The sum functor s of Facts 3.2(2) takes HX to the V-category H̃X with H̃(A,B) =
∨
φ:A→B |φ|.

As already noted in Examples 3.5(4), with Choice one has H̃X = HX. However, even then the
passage X 7→ HX (unlike X 7→ H̃X) generally fails to be functorial.

Remark 4.8. For further investigations on the functor H and various restrictions thereof we refer
the reader to [20]. The question to which extent completeness properties of the object X get
transferred to HX, without the symmetrization of the structure and/or some restriction on the
subsets of X to be considered, such as the (in some sense) compact subsets, remains open. This
includes the Cauchy cocompleteness (of the normed category iX) as introduced in Section 6.

5 Normed convergence and symmetry

In order to introduce the concept of normed convergence in a V-normed category, we find it
useful to remind ourselves how sequential colimits are formed in Set//V. The following easily
checked statement is an immediate consequence of Set//V being topological over Set, amended
by an also easily verified second formula for the norm of the colimit object.

Proposition 5.1. The colimit of a sequence A0 → A1 → A2 . . . in Set//V is formed by providing
the colimit A of the underlying sequence in Set with the least norm that makes the colimit cocone
(AN

κN // A)N∈N live in Set//V:

|c| =
∨

{|a| | a ∈
⋃
N∈N

κ−1
N c} =

∧
N∈N

∨
n≥N

∨
a∈κ−1

n c

|a|

for all c ∈ A.
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Definition 5.2. Let s : N → X be a sequence2 in a V-normed category X, written as

s = (xm
sm,n

// xn)m≤n∈N .

An object x is a normed colimit of s in X if

(C1) x is a colimit of s in the ordinary category X, with a colimit cocone (xn
γn
// x)n∈N s. th.

(C2) for all objects y in X, the canonical Set-bijections3

Nat(s|N ,∆y)
κN // X(x, y), (f · γn)n≥N f�

κ−1
Noo (N ∈ N)

form a colimit cocone in Set//V, where s|N is the restriction of s to ↑N = {N,N + 1, . . . }
and Nat(s|N ,∆y) = [↑N,X](s|N ,∆y) (N ∈ N) is considered as a sequence in Set//V, with
all connecting maps given by restriction.

Keeping the notation of this definition, let us immediately analyze the meaning of (C2):

Proposition 5.3. Condition (C2) says equivalently that, for all morphisms f in X with domain
x, one must have

|f | =
∨
N∈N

∧
n≥N

|f · γn| .

The “≤”-part of this equality is satisfied if, and only if,

k ≤
∨
N∈N

∧
n≥N

|γn| .

Proof. Trivially, the natural Set-bijections κN (N ∈ N) form a colimit cocone in Set. In order to
make it a colimit cocone in Set//V, by Proposition 5.1 the norm on X(x, y) must satisfy

|f | =
∨

{|β| | β = ∆f · γ|N : s|N → ∆y, N ∈ N}

for all f : x→ y in X, which, by the norm formula for natural transformations (Proposition 3.3),
amounts to the claimed formula for |f |.

The second statement of the Proposition follows from the following more general lemma.

Lemma 5.4. For any cocone α : s → ∆x over a sequence s = (xn)n∈N with vertex x in a
V-normed category X, the following are equivalent:

(i) k ≤
∨
N∈N

∧
n≥N |αn| ;

(ii) |1x| ≤
∨
N∈N

∧
n≥N |αn| ;

(iii) |f | ≤
∨
N∈N

∧
n≥N |f · αn|, for every morphism f : x→ y in X .

2Here the ordered set N is treated as a category, discretely V-normed with constant value ⊥ for all non-identical
arrows, so that the sequence s becomes a V-normed functor N → X.

3Note that a colimit x of s in the ordinary category X is also a colimit of every restricted sequence s|N .
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Proof. Trivially, one has (iii)=⇒(ii)=⇒(i). For (i)=⇒(iii), we note

|f | = |f | ⊗ k ≤ |f | ⊗
∨
N∈N

∧
n≥N

|αn| ≤
∨
N∈N

∧
n≥N

|f | ⊗ |αn| ≤
∨
N∈N

∧
n≥N

|f · αn|.

Extending the terminology used for morphisms in Facts 3.2(3), we call a cocone α : s→ ∆x over
a sequence s = (xn)n∈N in a normed category X a k-cocone if it satisfies condition (i) of Lemma
5.4. We conclude from Proposition 5.3:

Corollary 5.5. An object x is a normed colimit of a sequence s in a V-normed category X if,
and only if, x is a colimit of s in the ordinary category X with a colimit cocone γ such that

(C2a) k ≤
∨
N∈N

∧
n≥N |γn|, i.e., γ is a k-cocone;

(C2b) |f | ≥
∨
N∈N

∧
n≥N |f · γn|, for every morphism f : x→ y in X.

Corollary 5.6. A normed colimit of a sequence in a V-normed category X is uniquely determined
up to a k-isomorphism, i.e., up to an isomorphism in X◦.

Proof. If γ : s → ∆x and δ : s → ∆y are both colimit cocones representing x and y as normed
colimits of s, respectively, then the canonical morphism f : x→ y is not only an isomorphism in
X, but also satisfies

|f | =
∨
N∈N

∧
n≥N

|f · γn| =
∨
N∈N

∧
n≥N

|δn| ≥ k ,

and likewise |f−1| ≥ k. Hence, f is an isomorphism in X◦.

Here is a sufficient, but not necessary, condition on the V-normed category X (which will be
discussed further in Facts 5.8) to make condition (C2b) of Corollary 5.5 redundant, as follows.

Corollary 5.7. Let X be a V-normed category satisfying the condition

(S) |f · h| ⊗ |h| ≤ |f | for all composable morphisms h and f .

Then an object x is a normed colimit of a sequence s in X if, and only if, x is a colimit of s in
the ordinary category X, with a colimit cocone that is a k-cocone.

Proof. First we note that, in (S), the morphism h may be replaced equivalently by any cocone
α : D → ∆x, for some diagram D : I → X with I ̸= ∅, so that (S) then reads as |∆f ·α|⊗|α| ≤ |f |.
Indeed, for all i ∈ I, using (S) and I ̸= ∅, one has

|∆f · α| ⊗ |α| =
∧
i∈I

|f · αi| ⊗
∧
i∈I

|αi| ≤
∧
i∈I

|f · αi| ⊗ |αi| ≤
∧
i∈I

|f | = |f | .
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Having (C2a) and this extended version of (S), we can now show (C2b) of Corollary 5.5, as
follows, utilizing also the fact that the occurring joins are directed:∨

N∈N

∧
n≥N

|f · γn| ≤ (
∨
N∈N

∧
n≥N

|f · γn|)⊗ (
∨
N∈N

∧
n≥N

|γn|)

≤
∨
N∈N

(
∧
n≥N

|f · γn| ⊗
∧
n≥N

|γn|)

≤
∨
N∈N

∧
n≥N

|f · γn| ⊗ |γn|

≤ |f |.

Facts 5.8. (1) Condition (S) is a (strong) symmetry condition on the normed category X. Indeed,
if X = iX is given by a V-category X as in Facts 3.2(2), then (S) means equivalently that X is
symmetric, i.e., that

X(x, y) = X(y, x)

holds for all x, y ∈ X. We call an arbitrary V-normed category X satisfying (S) forward sym-
metric. The condition generally fails in Set||V, even for V = R+ = ([0,∞],≥,+, 0). Indeed,
considering N as an identically R+-normed set, then for the endomaps f and h which keep 0

fixed while hn = n− 1 and fn = n+ 1 for all n > 0, one has |f | = 1 but |f · h|+ |h| = 0.

(2) The dualization of (S) reads as

(Sop) |g · f | ⊗ |g| ≤ |f | for all composable morphisms f and g;

we call X backwards symmetric in this case. Indeed for X = iX as in (1), condition (Sop) again
amounts to the V-category X being symmetric, and again, it generally fails in Set||V. However,
for arbitrary X, conditions (S) and (Sop) are far from being equivalent (as already the example
in (3) shows). But, as noted for V = R+ in Lemma 2.2 of [29], each of the two conditions implies
the inverse of an isomorphism f in the ordinary category X to have the same norm as f ; for
example, with (Sop) one has

|f | ≥ |f−1 · f | ⊗ |f−1| ≥ k⊗ |f−1| = |f−1|,

and likewise for |f−1| ≥ |f |. In particular, if (S) or (Sop) holds, a morphism in X◦ that is an
isomorphism in the ordinary category X is also an isomorphism in X◦.

(3) For V = R+, in addition to our conditions on a normed category, Kubiś [29] includes condition
(Sop) as part of his definition of normed category, and then defines the normed convergence of s
to x by requiring only conditions (C1) and (C2a), in their R+-versions. This, however, does not
make the colimit unique up to a 0-isomorphism (here 0 = k).

Indeed, the following simple witness appears already in [29]. Consider the category given by
the preordered set N ∪ {a, b} with new distinct elements a, b, and extend the natural order by
n ≤ a ≤ b and n ≤ b ≤ a for all n ∈ N; it gets (Kubiś-)normed by putting |x→ y| = 0 whenever
x /∈ {a, b}, and |a → b| = |b → a| = ∞. Hence, a and b are ordinary colimits of the sequence
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(n), both satisfying (C1) and (C2a), and the ambient category satisfies (Sop). However, (S) is
violated – not even (C2b) holds, which is why a and b fail to be 0-isomorphic.

If one modifies this example by declaring the norms of morphisms n→ b to be 1, rather than 0,
one still has a normed category satisfying (Sop), but now the ordinary colimit b no longer satisfies
(C2a) whilst a still does.

(4) A V-normed monoid is simply a monoid (A, ·, 1) which, considered as a one-object category A
with A as its only hom-set, is V-normed; that is: A comes with a function |-| : A→ V satisfying
k ≤ |1| and |a| ⊗ |b| ≤ |ab| for all a, b ∈ A. In case V = R+, such normed monoids are often
called semi-normed [8], but here we will omit the prefix. Every left-invariant Lawvere metric on a
monoid A makes A a normed monoid [29]. In fact, more generally, if a (multiplicatively written)
monoid A carries a V-category A structure such that, for all a, b, c ∈ a, one has A(ca, cb) =

A(a, b), then
|a| := A(1, a)

makes A a V-normed monoid. Indeed, trivially one has k ≤ |1| and

|a| ⊗ |b| = X(1, a)⊗X(1, b) = X(1, a)⊗X(a, ab) ≤ X(1, ab) = |ab| .

Conversely, if the V-normed monoid A is, algebraically, a group, then the norm makes A a
left-invariant V-category, via

A(a, b) := |a−1b| ,

and this actually results into a one-one correspondence between V-norms and left invariant V-
category structures on the given group A.

We note that the identity norm of the V-normed commutative monoid (V,⊗, k) of Remark 4.2 is
induced by its V-category structure, given by its internal hom [-,-], although this structure fails
to be (left-) invariant, unless V is trivial. And, of course, V fails to be a group in all but the
trivial case.

(5) Further to the case that the V-normed monoid (A, ·, 1) considered in (4) is actually a group,
let us call A a V-normed group if the additional condition |a−1| = |a| holds for all a ∈ A. (For
V = R+, this gives the standard notion of normed group as used in [8].) The induced V-category
structure of a V-normed group A is symmetric, so that A(a, b) = A(b, a) holds for all a, b ∈ A.
Conversely, if the induced V-category structure of A is symmetric, then the one-object V-normed
category A induced by A is forward symmetric, i.e.,

(S) |ab| ⊗ |b| = A(1, ab)⊗A(1, b) = A(1, ab)⊗A(ab, a) ≤ A(1, a) = |a|

holds. Moreover, as follows already from (2), condition (S) implies |a−1| = |a| for all a ∈ A and
thus makes A a V-normed group. Consequently, for a V-normed monoid A that, algebraically, is
a group, the following conditions are equivalent:

(i) A is a V-normed group;

(ii) the induced V-category structure of A is symmetric;

(iii) the one-object V-normed category A given by A is forward symmetric.
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Caution: The one-object V-normed category A must not be confused with the (generally) multi-
object V-normed category iA as considered in (1). In the latter category, conditions (S) and
(Sop) are equivalent, unlike in the former category, unless the group A is Abelian.

6 Cauchy cocompleteness

We now extend (the key) Definition 5.2 in the expected way:

Definition 6.1. For a V-normed category X, we say that

• a sequence s = (xm
sm,n
// xn)m≤n∈N in X is Cauchy if k ≤

∨
N∈N

∧
n≥m≥N |sm,n|, and

• X is Cauchy (norm-)cocomplete if every Cauchy sequence in X has a normed colimit in X.

We will compare this notion for V-normed categories with the well-established notion of idem-
potent completeness for ordinary categories (and V-enriched categories, see [10]) in Corollary
7.3.

Facts 6.2. (1) Let us note first that the existence of a normed colimit for a sequence s does
not necessitate s to be Cauchy, even when V = R+. For example, considering the ordered set
N∪{∞} of natural numbers with an added maximum as a category, normed by |m→ n| = n−m
and |n→ ∞| = 0 for all m ≤ n in N, we obtain a normed category (satisfying (S), but not (Sop))
such that ∞ is a normed colimit of the sequence s = (n)n∈N, although s badly fails to be Cauchy;
in fact, here infN∈N supn≥m≥N |sm,n| = ∞.

(2) The notions of Definitions 5.2 and 6.1 are easily dualizable. For a V-normed category X,
the dual Xop of the ordinary category X becomes V-normed when giving every morphism the
same norm as in X. Now, having an inverse sequence s : Nop → X, given by morphisms
sm,n : xn → xm in X for all m ≤ n ∈ N, the inverse sequence is said to be Cauchy in X if the
sequence sop : N → Xop is Cauchy in Xop. Furthermore, an object x is a normed limit of s in X
if x is a normed colimit of sop in Xop; this means that x is a limit of s in the ordinary category
X, with a limit cone λ : ∆x→ s such that

|f | =
∨
N∈N

∧
n≥N

|λn · f |,

for all morphisms f : y → x in X.

Examples 6.3. (1) For V = R+, we repeat that the condition for a sequence s to be Cauchy in
the R+-normed category X reads as

inf
N∈N

sup
n≥m≥N

|sm,n| = 0,

and for the ordinary colimit x with colimit cocone γ in X to be a normed colimit means that

inf
N∈N

sup
n≥N

|γn| = 0 and |f | ≤ sup
n≥N

|f · γn|,
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for every morphism f : x→ y in X and all N ∈ N (see Corollary 5.5).
In case X = iX is induced by a (Lawvere) metric space X, the sequence s = (xn) is Cauchy if,
and only if,

inf
N∈N

sup
n≥m≥N

X(xm, xn) = 0,

so that s must be forward Cauchy in the sense of [9]; furthermore, x is a normed colimit of s if,
and only if,

X(x, y) = inf
N∈N

sup
n≥N

X(xn, y)

for all y ∈ X, which means that x is a forward limit of s in the language of [9]. (Note that
here the ordinary colimit condition for x comes for free since iX is a groupoid.) The notions
of backward Cauchy sequence and backward limit in X come about by dualization according to
Facts 6.2(2), i.e., by interchanging the arguments of X(-,-).

Of course, if X is symmetric, there is no need to distinguish between forward and backward, and
one obtains the standard notions of Cauchy sequence and sequential convergence.

(2) Expanding on Examples 3.5(4), for V = 1 we have Cat//V ∼= Cat, and every sequence in a
category X is Cauchy, and X is Cauchy cocomplete if, and only if, X has colimits of sequences.

For V = 2, describing an object in Cat//V or CAT//V as a category X with a distinguished class
S of morphisms satisfying Id(X) ⊆ S and S · S ⊆ S, a sequence s in X is Cauchy if, and only if,
eventually all of its connecting maps lie in S; and X is Cauchy cocomplete if, and only if, every
Cauchy sequence s has a colimit x with a colimit cocone (γn)n lying eventually in S, such that
any morphism f : x→ y belongs to S as soon as eventually all morphisms f · γn do so.

(3) More generally, for V = PM with a commutative monoid (M,+, 0) and Cat//V described as
in Examples 3.5(5), i.e., as containing all small categories X equipped with a class of morphisms
“bounded by α” for every α ∈ M , a sequence s in X is Cauchy if, and only if, eventually all
connecting maps are bounded by 0; and X is Cauchy cocomplete if, and only if, every Cauchy
sequence s has a colimit x with a colimit cocone (γn)n eventually bounded by 0 such that, for
every α ∈ M , any morphism f : x → y is bounded by α as soon as eventually all morphisms
f · γn are bounded by α. The symmetry conditions (S) and (Sop) of Corollary 5.7 and Facts
5.8(2) amount to the weak cancellations conditions

(S) f · h ∈ S & h ∈ S =⇒ f ∈ S ,

(Sop) g · f ∈ S & g ∈ S =⇒ f ∈ S ,

which typically hold for classes of epimorphisms and classes of monomorphisms, respectively.

(4) For a V-normed monoid (A, ·, 1), considered as a one-object V-normed category A (as in
Facts 5.8(4)), a sequence s in A is simply a sequence (an)n of elements in A, and a cocone α
over s is given by elements αn ∈ A satisfying αn+1an = αn for all n ∈ N. If A is a group, the
cocone is already determined by α0, since necessarily αn = α0a

−1
0 a−1

1 ...a−1
n−1 (where the product

of an empty string of elements is 1). In particular, we may consider the cocone γ with γ0 = 1

which, since every morphism in A is an isomorphism, presents the only object of A trivially as
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an ordinary colimit of s: the factorizing morphism induced by an arbitrary cocone α is simply
α0:

∗ a0 //

α0

,,

γ0=1

''∗ a1 // ∗ a2 // ∗......∗
an−1

// ∗ γn
//

αn

��

∗

α0
xx∗

If the group A is actually a V-normed group, so that A enjoys the symmetry condition (S) (as
shown in Facts 5.8(5)), for γ to present ∗ as a normed colimit, by Corollary 5.7 it is necessary
and sufficient that γ is k-cocone, which means (since |a| = |a−1| for all a ∈ A) that

k ≤
∨
N∈N

∧
n≥N

|an−1....a0|

holds. This, however, is a steep hurdle. For example, for V = R+ consider the multiplicative
group Q>0 of positive rationals, which becomes a normed group when one sets

|r| :=
∑
p

max{np,−np} whenever r =
∏
p

pnp with np ∈ Z,

where p runs through the set of prime numbers (and the products and sums are only nominally
infinite). Note that |r| = 0 only if r = 1. The convergence condition for the sequence reads as
infN∈N supn≥N |an−1....a0| = 0, and since the norms are always integer valued, it is easy to see
that this equivalently means that the sequence s must have some initial segment a0, ..., aN−1 of
rational numbers whose product equals 1, followed by an infinite tail that is constantly 1. By
contrast, for s to be Cauchy, an arbitrary initial segment is allowed, followed by a tail that is
constantly 1. As a consequence, Q>0 fails to be Cauchy cocomplete.

7 A note on idempotent completeness

Instigated by Example 6.3(4), for a general V-normed category X we briefly examine the question
of whether constant sequences in X are Cauchy and have a normed colimit in X. Here a sequence
s : N → X is understood to be constant if sm,n = e : x → x for all m < n in N. Such
morphism e must necessarily be idempotent in the ordinary category X, and every idempotent
morphism defines a constant sequence. Recall that the idempotent e splits in X if e = t · r for
some morphisms r, t with r · t = 1 (which already exist when X has epi-mono factorizations,
or equalizers, or coequalizers). Such factorization of e is unique, up to a uniquely determined
isomorphism.

Lemma 7.1. The constant sequence given by an idempotent e : x → x has a colimit in the
ordinary category X if, and only if, e splits.

Proof. Given a colimit cocone ρn : x→ y (n ∈ N) of the constant sequence defined by e, one has

ρ0 = ρ1 · e = ρ2 · e · e = ρ2 · e = ρ1
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and, inductively, ρ1 = ρ2 = · · · =: r. The colimit cocone makes this morphism epic. Furthermore,
the cocone η with ηn = e for all n corresponds to a morphism t : y → x with t · r = e, which also
satisfies r · t = 1y since r · t · r = r · e = r.

Conversely, given the splitting r, t of e, the cocone ρ with ρn := r : x → y for all n which we
call related to the splitting, exhibits y as a colimit of the constant sequence e: since any cocone
α : s→ ∆z is easily seen to satisfy α0 · t = αn · t, we obtain (α0 · t) · ρn = αn for all n ∈ N, and
furthermore, any morphism f : y → z with ∆f · ρ = α necessarily satisfies f · r = α0, so that
f = α0 · t.

Recall that X (as an ordinary category) is said to be idempotent complete4 if all idempotents
split in X. Idempotent completeness of the category X◦ suffices to provide an affirmative answer
to the question raised at the beginning of this section. More precisely:

Proposition 7.2. The constant sequence s in a V-normed category X given by an idempotent
morphism e is Cauchy precisely when e is a k-morphism. In this case, the constant cocone related
to a given splitting e = r·t of e in X gives a normed colimit of s in X if, and only if, the morphisms
r and t are both k-morphisms.

Proof. The first claim is obvious. Also, trivially the constant cocone ρ related to the splitting
r, t of e is a k-cocone if, and only if, r is a k-morphism. Since ρ is an ordinary colimit cocone,
for the proof of the second claim, assuming k ≤ |r|, we just need to show that k ≤ |t| holds if,
and only if, ∨

N∈N

∧
n≥N

|f · ρn| = |f · r| ≤ |f |

for all f : y → z in X. Indeed, from k ≤ |t| one obtains |f · r| ≤ |f · r| ⊗ |t| ≤ |f · r · t| = |f | , and
conversely, exploiting this inequality for f = t, from k ≤ |e| we obtain k ≤ |t · r| ≤ |t|.

Corollary 7.3. For a V-normed category X, if the category X◦ is idempotent complete, every
constant Cauchy sequence in X has a normed colimit.

8 The principal example: semi-normed and normed vector spaces

When a norm function ||-|| on a (real, say) vector space X satisfies the standard axioms for a
norm, except that non-zero vectors are allowed to have norm 0, one usually calls X semi-normed.
Here, in order to ensure that the category to be formed becomes Cauchy cocomplete, just like
for the metric of a Lawvere metric space we should abandon not only the separation condition,

4We adopt here the terminology used in the recent paper [19]. Other terms used in the literature are Karoubi
complete, Lawvere complete or, most frequently, Cauchy complete. We avoid the latter term, not to risk
confusion with the dualization of our term of Cauchy cocompleteness for normed categories which is far more
directly modelled after Cauchy’s original ideas than idempotent completeness (of any flavour) is. Besides, as
a concept that gained its recognition through various important contributions in different contexts, it may
indeed be difficult to attach just one person’s name to idempotent completeness.
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but also the finiteness condition for norms. This then necessitates the extension of the real
multiplication to ∞, so that we can maintain the norm axiom for scalar multiples of vectors with
norm ∞. To that end we first introduce the quantale

R× = ([0,∞],≥, ·, 1),

in such a way that the exponential function e : R+ → R×, extended by e∞ = ∞, becomes
a homomorphism of quantales, i.e., a homomorphism of monoids which preserves infima (with
respect to the natural order ≤ of the extended non-negative real line).

The monotonicity of the multiplication on [0,∞] in each variable certainly necessitates α·∞ = ∞
for α > 0, and the preservation of infima then forces the equality

0 · ∞ = inf{α · ∞ | α > 0} = ∞ .

Since it extends the usual fractions in case α, β /∈ {0,∞}, we denote the internal hom [β, α] in
R× by α

β for all α, β ∈ [0,∞]. Hence, its value is given by the adjunction rule

α

β
≤ γ ⇐⇒ α ≤ β · γ ,

for all γ ∈ [0,∞], that is: α
β = inf{γ ∈ [0,∞] | α ≤ β · γ}. This gives in particular

0

0
= 0,

α

0
= ∞ (α > 0),

α

∞
=

∞
∞

= 0 .

The inf-preserving map e : [0,∞] → [0,∞] has a left adjoint, log◦, whose values are ruled by
adjunction, i.e.,

log◦ α ≤ β ⇐⇒ α ≤ eβ ;

explicitly,
log◦ 0 = 0, log◦ α = max{0, logα} (0 < α <∞), log◦∞ = ∞.

As a mapping log◦ : R× → R+ we obtain only a lax homomorphism of quantales, since the easily
established inequality

log◦(α · β) ≤ log◦ α+ log◦ β

is generally strict.

We are ready to define our category of semi-normed vector spaces:

Definition 8.1. A semi-norm on a (real) vector space X is a function ||-|| : X → [0,∞] satisfying

(N0) ||0|| = 0,

(N1) ||ax|| = |a|||x||,

(N2) ||x+ y|| ≤ ||x||+ ||y||,
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for all x ∈ X and a ∈ R, a ̸= 0. The thus defined semi-normed vector spaces are the objects of
the category

SNVec∞

whose morphisms are arbitrary linear maps. It contains as a full subcategory the category NVec∞

mentioned in the Introduction; see Definition 8.5 for details.

We define the logarithmic norm of a morphism f : X → Y in SNVec∞ by

|f | = sup
x∈X

(log◦
||fx||
||x||

) .

Here are some immediate consequences of this definition.

Lemma 8.2. Let f : X → Y be a linear map of semi-normed vector spaces. Then:

(1) If X contains a vector x0 with ||x0|| = 0 and ||fx0|| ̸= 0, then |f | = ∞.

(2) If ||x|| = 0 always implies ||fx|| = 0, then |f | = sup||x||=1 (log
◦ ||fx||) .

(3) For all x ∈ X one has ||fx|| ≤ e|f | ||x||.

(4) One has |f | = 0 if, and only if, ||fx|| ≤ ||x|| holds for all x ∈ X.

Proof. (1) From log◦ ||fx0||
||x0|| ≤ |f | one obtains ∞ = ||fx0||

||x0|| ≤ e|f | and, hence, |f | = ∞.

(2) Trivially t := sup||x||=1 (log
◦ ||fx||) ≤ |f |. For “≥” consider any x ∈ X. If ||x|| = 0, also

||fx|| = 0 by hypothesis, and log◦ ||fx||
||x|| = 0 ≤ t follows; likewise if ||x|| = ∞. In all other cases one

considers x1 := 1
||x||x in a standard manner.

(3) The claim follows from log◦ ||fx||
||x|| ≤ |f | by the adjunction rules for fractions and for log◦ ⊣ e.

(4) Again, by adjunction, ||fx|| ≤ ||x|| implies ||fx||
||x|| ≤ 1 for all x ∈ X, so that “if” follows, while

“only if” is obtained from (3).

Theorem 8.3. With its logarithmic norm, SNVec∞ is a Cauchy-cocomplete normed category
whose 0-morphisms are precisely the 1-Lipschitz linear maps: (SNVec∞)◦ = SNVec1.

Proof. Let us first confirm that SNVec∞ is indeed a normed category. By Lemma 8.2(4), one
has |idX | = 0 for every semi-normed space X. For morphisms f : X → Y and g : Y → Z in
SNVec∞, we may assume that every x ∈ X with ||x|| = 0 satisfies ||g(fx)|| = 0 since the existence
of x0 ∈ X with ||x0|| = 0 but ||g(fx0)|| ≠ 0 would, by Lemma 8.2(1), imply |g| = ∞ or |f | = ∞
(depending on whether ||fx0|| = 0 or not), so that ∞ = |gf | ≤ |f | + |g| would hold trivially.
Consequently, by Lemma 8.2 (2),(3) we may restrict ourselves to considering only vectors x ∈ X

with ||x|| = 1 and obtain the required inequality from

log◦ ||g(fx)|| ≤ log◦(e|g| · ||fx||) ≤ log◦ e|g| + log◦ ||fx|| ≤ |g|+ sup
y∈X

(log◦
||fy||
||y||

) = |g|+ |f | .
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Also, by Lemma 8.2(4), the 0-morphisms are precisely the 1-Lipschitz morphisms of SNVec∞.

Let us now consider a Cauchy sequence s = ( Xm
sm,n

// Xn )m≤n in SNVec∞, so that

inf
n∈N

sup
n≥m≥N

|sm,n| = 0 ,

and form its (ordinary) colimit X in the category Vec of (real) vector spaces and linear maps,

with colimit cocone γ = ( Xn
γn
// X )n∈N. First we define for all x ∈ X

||x|| := sup
N∈N

inf
n≥N

inf
z∈γ−1

n x
||z||n ,

and will now show that this makes X a semi-normed vector space. (In what follows, we will
no longer use subscripts to indicate where norms are being taken, as the context should give
sufficient clarity.) We trivially have ||0|| = 0, as well as ||x + y|| ≤ ||x|| + ||y|| whenever x, y ∈ X

are such that ||x|| = ∞ or ||y|| = ∞. Hence we may assume that the norms ||x|| and ||y|| are finite
and will establish the triangle inequality for them by showing that, for all N ∈ N and any real ε
with 0 < ε ≤ 1, one has infn≥N infz∈γ−1

n (x+y) ||z|| ≤ ||x||+ ||y||+ εr with r := ||x||+ ||y||+ 3.

Putting η := log(1+ε) > 0, the Cauchyness of s gives us some M ∈ N with |sm,n| ≤ η for all n ≥
m ≥M . The definition of the norms of x and y guarantees the existence of m,n ≥ max{M,N}
and u ∈ Xm, v ∈ Xn with γm(u) = x, γn(v) = y and ||u|| ≤ ||x||+ ε, ||v|| ≤ ||y||+ ε. Without loss
of generality we may assume m ≤ n and, setting w := sm,n(u), have ||w|| ≤ eη||u|| = ||u|| + ε||u||.
Consequently, γn(w + v) = x+ y and, with the triangle inequality holding in Xn, we obtain

inf
z∈γ−1

n (x+y)
||z|| ≤ ||w + v|| ≤ ||w||+ ||v||

≤ ||u||+ ε||u||+ ||v||

≤ ||x||+ ε+ ε(||x||+ ε) + ||y||+ ε

≤ ||x||+ ||y||+ εr ,

This concludes the proof of (N3). The validity of (N2), i.e., of ||ax|| = |a|||x|| for all real a ̸= 0

and x ∈ X, is an immediate consequence of the equivalence (z ∈ γ−1
n (ax) ⇐⇒ w ∈ γ−1

n x)

whenever z = aw, and of the fact that multiplication in [0,∞] by the positive real number |a|
preserves both, infima and suprema.

We are left with having to confirm conditions (C2a) and (C2b) of Corollary 5.5.

(C2a) To show infN supm≥N |γm| = 0, we consider any ε > 0 and, since s is Cauchy, obtain some
N ∈ N with supn≥m≥N |sm,n| ≤ ε.

Claim: For all m ≥ N and z ∈ Xm one has ||γmz|| ≤ supn≥m ||sm,nz||. Indeed, by definition one
has ||γmz|| = supK∈N ϕ(K) where ϕ(K) := inf{||w|| | k ≥ K,w ∈ Xk, γkw = γmz}. Since ϕ(K) is
monotonely increasing in K, we can write

||γmz|| = sup
n≥m

inf{||w|| | k ≥ n,w ∈ Xk, γkw = γmz} ≤ sup
n≥m

||sm,nz||,

with the inequality holding since sm,nz is one of the admissible vectors w: γn(sm,nz) = γmz.
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A consequence of the Claim is that one has ||γmz|| = 0 whenever ||z|| = 0, since Lemma 8.2(3)
implies

||sm,nz|| ≤ e|sm,n|||z|| ≤ eε||z||

for all n ≥ m. Therefore, with Lemma 8.2(2), we obtain

|γm| = sup
z∈Xm,||z||=1

log◦ ||γmz|| ≤ log◦(eε) = ε,

as desired.

(C2b) For every linear map f : X → Y to a semi-normed vector space Y , we must show
|f | ≤ infN supn≥N |fn|, where fn = f · γn.

Case 1: For every x ∈ X with ||x|| = 0 we have ||fx|| = 0. Then Lemma 8.2(2) applies for the
computation of |f |, so that it suffices for us to show log◦ ||fx|| ≤ supn≥N |fn| whenever ||x|| = 1

and N ∈ N; we may actually also assume ||fx|| > 1 since otherwise log◦ ||fx|| = 0 . Given
any ε > 0, the definition of ||x|| guarantees the existence of some m ≥ N and z ∈ γ−1

m x with
||z|| ≤ 1 + ε. Since fx = fmz, the case ||fx|| = ∞ would imply |fm| = ∞. Hence, it suffices to
consider the case ||fx|| < ∞ and, without loss of generality, we may assume 0 < ε ≤ ||fx|| − 1.
Then

|fm| ≥ log◦
||fmz||
||z||

≥ log
||fx||
1 + ε

= log ||fx||+ log
1

1 + ε

for all such ε, which implies the desired inequality.

Case 2: For some x0 ∈ X with ||x0|| = 0 we have ||fx0|| ̸= 0. Then Lemma 8.2(1) gives |f | = ∞,
and we must show infN supn≥N |fn| ≥ ∞. Similarly to Case 1, given any N ∈ N and ε > 0, we
have some m ≥ N and z ∈ γ−1

m x0 with ||z|| ≤ ε, which implies

|fm| ≥ log◦
||fmz||
||z||

≥ log◦
||fx0||
ε

for all such ε. Again, the desired inequality follows.

Remark 8.4. The full normed subcategory NVec∞ of SNVec∞ as considered in the Introduction
fails to be closed under the formation of normed colimits of Cauchy sequences. Even for a
Cauchy sequence s of (strictly contractive) linear maps sm,n : Xm → Xn of normed vector spaces
(with all norms finite), the normed colimit in SNVec∞ may fail to be a normed vector space.
Indeed, consider the sequence already mentioned in the Introduction; that is: Xn := R normed
by ||1||n = 1

n and sn,m = idR for all m ≤ n. The normed colimit of s in SNVec∞ may again be
formed by identity maps, γn : Xn → X = R, with the norm in X given by

||1|| = sup
N

inf
n≥N

||1||n = 0,

i.e., all norms in X are 0, so that separation fails to the largest extent possible.

In general, the colimit maps γn : Xn → X presenting X as a normed colimit of the sequence
s = (Xm → Xn)m≤n in SNVec∞ have an important extra property (which follows from the Claim
formulated in the Proof of Theorem 8.3) that deserves to be named:
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Definition 8.5. A linear map f : X → Y of semi-normed vector spaces is called a zero-to-zero
morphism if ||fx|| = 0 holds for all x ∈ X with ||x|| = 0. (We note that every bounded operator
is a zero-to-zero morphism.) We denote by

SNVec00

the (non-full) subcategory of SNVec∞ containing all semi-normed vector spaces and their zero-
to-zero morphisms. The objects of the category

NVec∞

mentioned in the Introduction are precisely the separated semi-normed vector spaces; i.e., its
objects X satisfy the separation condition

||x|| = 0 =⇒ x = 0

for all x ∈ X, and they fall short of being normed vector spaces in the classical sense only insofar
as vectors are permitted to have infinite norms. The separation condition of its domain makes
a morphism in NVec∞, i.e., an arbitrary linear map, automatically a zero-to-zero morphism.
Therefore, NVec∞ is a full subcategory of SNVec00.

Proposition 8.6. The normed category NVec∞ is reflective in the normed category SNVec00, as
(Set//R+)-enriched categories.

Proof. For X ∈ SNVec00 consider its subspace X0 := {x ∈ X | ||x|| = 0} and let p : X → X/X0

be the projection. Since ||x|| = ||y+(x−y)|| ≤ ||y||+ ||x−y|| one has (||x−y|| = 0 ⇐⇒ ||x|| = ||y||)
for all x, y ∈ X, so that ||px|| := ||x|| makes X/X0 a well-defined object of NVec∞ and p a zero-
to-zero morphism – in fact, an isometry. Furthermore, for all Y ∈ NVec∞ we have the natural
bijection

− · p : NVec∞(X/X0, Y ) → SNVec00(X,Y ),

whose surjectivity is guaranteed by our restriction to zero-to-zero morphisms (as opposed to all
linear maps of semi-normed vector spaces). In fact, this bijection is a (Set//V)-isomorphism
since, for every linear map f : X/X0 → Y , one has

|f | = sup
z∈X/X0

(log◦
||fz||
||z||

) = sup
x∈X

(log◦
||f(px)||
||px||

) = sup
x∈X

(log◦
||f(px)||
||x||

) = |f · p| .

Corollary 8.7. The normed category NVec∞ has normed colimits of all those Cauchy sequences
whose normed colimit in SNVec∞ is a colimit in the ordinary category SNVec00.

Proof. Keeping the notation of the proof of Theorem 8.3, we consider a Cauchy sequence s in
NVec∞ and obtain its normed colimit X in SNVec∞, with a colimit cocone γ formed by zero-
to-zero morphisms. A fortiori, by hypothesis, γ is a colimit cocone in SNVec00, so that any
linear map f : X → Y must be a zero-to-zero morphism. To arrive at a colimit of s in NVec∞,
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according to Proposition 8.6, we must apply the reflector to X and obtain the colimit cocone
(p · γn : Xn → X/X0)n. As one easily checks (or formally derives with Proposition 12.1 proved
below), since the adjunction of Proposition 8.6 is (Set//R+)-enriched, this cocone presents X/X0

in fact as a normed colimit of s in NVec00.

By contrast:

Corollary 8.8. The normed category NVec∞ is not Cauchy cocomplete.

Proof. The sequence presented in Remark 8.4 is a Cauchy sequence in NVec∞. If it had a normed
colimit in NVec∞, this would have to be also a colimit in the ordinary category of vector spaces
and linear maps, so that we may assume that it is given by R, with a cocone of identity maps
and normed by |1| = c for some c > 0. But then |γn| = log◦(nc) for all n ∈ N, which would give
supN infn≥N |γn| = ∞, in contradiction to the normed colimit condition (C2a).

Let us also point out that existing normed colimits in NVec∞ of Cauchy sequences of Banach
spaces need not be Banach:

Example 8.9. Consider the sequence

{0} // R // R2 // R3 // ... // colimn Rn =
⊕

nRn

of isometric embeddings of Euclidean spaces whose normed colimit is given by the direct sum (in
Vec) of its objects, normed accordingly. In the direct sum, we have the Cauchy sequence (xn)n,
where the i-th component of xn is 1

i+1 for i ≤ n, and 0 otherwise, but the sequence does not
converge in

⊕
nRn.

9 Change of base for normed categories, metric spaces

Our next goal is to show that the category Met∞ of all Lawvere metric spaces, with arbitrary
maps between them as morphisms and normed as in Example 3.5(5), is Cauchy cocomplete. We
will do so in three steps, by first giving conditions on our quantale (V,≤,⊗, k) guaranteeing that
the normed category V -Lip of all small V-categories with arbitrary maps as defined in Proposition
4.3 is Cauchy cocomplete. With the benefit of the methods used in [13, 14], the proof extends
the “epsilon techniques” used in the proof of Theorem 8.3 to a fairly general quantalic context.
Then we will briefly discuss how Cauchy cocompleteness for V-normed categories fares under
changing the “base” V, before applying our findings to the adjunction e ⊣ log◦ : R× → R+ to
obtain the Cauchy cocompleteness of Met∞.

Recall that for u, v ∈ V one says that u is totally below v, written as u ≪ v, if v ≤
∨
W with

W ⊆ V can hold only if u ≤ w for some w ∈W . We say that v is approximated from totally below
if v =

∨
⇓v, where ⇓v = {u ∈ V | u ≪ v}. Recall that the complete lattice V is constructively

completely distributive [40, 22] if every element in V is approximated from totally below. (In the
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presence of Choice this property implies complete distributivity in the standard sense.) We say
that the tensor product of V preserves the totally below relation if u≪ v implies u⊗w ≪ v⊗w

for all w > ⊥ in V. In the presence of this preservation property, and if k = ⊤ is approximated
from totally below, then V is constructively completely distributive.

Theorem 9.1. Let the totally below relation in V be preserved by ⊗, and let the tensor-neutral
element k be approximated from totally below, with the set ⇓k being up-directed in V. Then the
normed category V-Lip is Cauchy cocomplete.

Proof. For a given Cauchy sequence s = ( Xm
sm,n

// Xn )m≤n in V-Lip, we form its (ordinary)

colimit X in the category Set with colimit cocone γ = ( Xn
γn
// X )n∈N and now want to define

a V-category structure on X by

X(x, y) :=
∧
N∈N

∨
{Xn(x

′, y′) | n ≥ N, x′ ∈ γ−1
n x, y′ ∈ γ−1

n y},

for all x, y ∈ X. Trivially, k ≤ X(x, x). In order to establish the inequality X(x, y)⊗X(y, z) ≤
X(x, z) in X, we may disregard the trivial case X(x, y) = ⊥ or X(y, z) = ⊥. We consider any
ε ∈ V with ⊥ < ε ≪ k. Then the Cauchyness of s gives us some M ∈ N with ε ≤ |sm,ℓ| for
all ℓ ≥ m ≥ M . By the assumed preservation property we have X(x, y) ⊗ ε ≪ X(x, y) and
X(y, z)⊗ ε≪ X(y, z). Therefore, for every N ∈ N, the definitions of X(x, y) and X(y, z) let us
pick m,n ≥ max{M,N} and x′ ∈ γ−1

m x, y′ ∈ γ−1
m y, y′′ ∈ γ−1

n y, z′ ∈ γ−1
n z, such that

X(x, y)⊗ ε ≤ Xm(x
′, y′) and X(y, z)⊗ ε ≤ Xn(y

′′, z′) .

Now, since γmy′ = γny
′′, the construction of X as a directed colimit in Set allows us to find

ℓ ≥ m,n with sm,ℓy
′ = sn,ℓy

′′. Since, by the definition of the V-norm in V-Lip, the inequal-
ities ε ≤ |sm,ℓ| and ε ≤ |sn,ℓ| imply Xm(x

′, y′) ⊗ ε ≤ Xℓ(sm,ℓx
′, sm,ℓy

′) and Xn(y
′′, z′) ⊗ ε ≤

Xℓ(sn,ℓy
′′, sn,ℓz

′), we obtain

X(x, y)⊗ ε⊗ ε⊗X(y, z)⊗ ε⊗ ε ≤ Xℓ(sm,ℓx
′, sm,ℓy

′)⊗Xℓ(sn,ℓy
′′, sn,ℓyz

′)

≤ Xℓ(sm,ℓx
′, sn,ℓz

′)

≤ X(x, z),

with the last inequality holding since N was given arbitrarily. The desired inequality X(x, y)⊗
X(y, z) ≤ X(x, z) follows since, with the up-directed set ⇓k, we have

k = k⊗ k = (
∨
ε≪k

ε)⊗ (
∨
ε≪k

ε) =
∨
ε≪k

ε⊗ ε

and then, likewise, k =
∨
ε≪k ε⊗ ε⊗ ε⊗ ε.

(C2a) In order to show k ≤
∨
N∈N

∧
n≥N |γn|, let ε ≪ k and, as above, pick M ∈ N with

ε ≤
∧
n≥m≥M |sm,n|. For every m ≥ M and all z, w ∈ Xm, we have (similarly as in the proof of

Theorem 8.3) X(γmz, γmw) =
∧
K∈NΦ(K), where

Φ(K) =
∨

{Xℓ(z
′, w′) | ℓ ≥ K, z′, w′ ∈ Xℓ, γℓz

′ = γmz, γℓw
′ = γmw}
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is monotonely decreasing in K. Therefore,

X(γmz, γmw) =
∧
n≥m

Φ(n) ≥
∧
n≥m

Xn(sm,nz, sm,nw)

≥
∧
n≥m

(|sm,n| ⊗Xm(z, w))

≥ (
∧
n≥m

|sm,n|)⊗Xm(z, w).

This gives

ε ≤
∧

n≥m≥M
|sm,n| ≤

∧
m≥M

[Xm(z, w), X(γmz, γmw)] ≤
∧
m≥M

|γm| ≤
∨
N

∧
n≥N

|γn|

and, with k =
∨
ε≪k ε, the desired inequality.

(C2b) For any mapping f : X → Y of V-categories, we must show∨
N

∧
n≥N

|f · γn| ≤ |f | =
∧

x,y∈X
[X(x, y), Y (fx, fy)] ;

equivalently,
∧
n≥N |f · γn| ⊗ X(x, y) ≤ Y (fx, fy), for all N ∈ N and x, y ∈ X. To this end,

discarding the trivial case X(x, y) = ⊥, we consider ε≪ k and have X(x, y)⊗ ε≪ X(x, y) and
may pick m ≥ N and x′ ∈ γ−1

m x, y′ ∈ γ−1
m y with X(x, y)⊗ ε ≤ Xm(x

′, y′). Therefore,∧
n≥N

|f · γn| ⊗X(x, y)⊗ ε ≤ |f · γm| ⊗X(x, y)⊗ ε ≤ |fγM | ⊗Xm(x
′, y′) ≤ Y (fx, fy),

which implies the desired inequality.

Examples 9.2. The quantales 2, R+ and R× = ([0,∞],≥, ·, 1) satisfy the hypotheses of The-
orem 9.1. Therefore, the 2-normed category 2-Lip of preordered sets and arbitrary maps is
Cauchy-cocomplete, and likewise for R+-Lip and R×-Lip.

Recall that a monotone map φ : V → W to a quantale (W,≤,⊠, n) is a lax homomorphism of
quantales if n ≤ φk and φv ⊠ φv′ ≤ φ(v ⊗ v′) for all v, v′ ∈ V. Such lax homomorphism induces
the change-of-base functor

Bφ : CAT//V −→ CAT//W, (X, |-|) 7−→ (X, |-|φ),

which regards a V-normed category X as a W-normed category via |f |φ := φ(|f |) for all mor-
phisms f in X, and which makes V-normed functors become W-normed.

Furthermore, if we also have a lax homomorphism ψ : W → V which, as a monotone map, is
right adjoint to φ, then we have the induced adjunction Bφ ⊣ Bψ. Indeed, a V-normed functor
F : X → BψY may be considered equivalently as a W-normed functor F : BφX → Y, since the
adjunction φ ⊣ ψ facilitates, for all morphism f in X, the equivalence

|f | ≤ |Ff |ψ ⇐⇒ |f |φ ≤ |Ff | .
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Proposition 9.3. Let φ ⊣ ψ : W → V be adjoint lax homomorphisms of quantales, with ψ

preserving joins of monotone sequences in W. Then, if the W-normed category Y is Cauchy
cocomplete, so is the V-normed category BψY.

Proof. Let s = (sm,n)m≤n be a Cauchy sequence in Bψ. So, with |-| denoting the norm in the
given W-normed category Y, we have k ≤

∨
N

∧
n≥m≥N |sn,m|ψ and, since the left adjoint φ

preserves joins, obtain

n ≤ φk =
∨
N

φ(
∧

n≥m≥N
ψ(|sm,n|)) ≤

∨
N

∧
n≥m≥N

φψ(|sm,n|) ≤
∨
N

∧
n≥m≥N

|sm,n| .

So, s is Cauchy in Y and, hence, has a normed colimit x in Y, with colimit cocone γ. We claim
that x is also a normed colimit of s in BψY. Indeed, this is an immediate consequence of the
assumed preservation of joins of monotone sequences in W and the preservation of all meets by
the right adjoint ψ since, for all morphisms f : x → y in Y, from |f | =

∨
N

∧
n≥N |f · γn| one

obtains |f |ψ =
∨
N

∧
n≥N |f · γn|ψ.

Let us now specialize the adjunction φ ⊣ ψ of lax homomorphisms of quantales as in the Propo-
sition to the adjunction

e ⊣ log◦ : R× = ([0,∞],≥, ·, 1) −→ R+ = ([0,∞],≥,+, 0) .

The exponential function is a (strict) homomorphism of quantales, and log◦ is lax and preserves
infima (w.r.t. the natural order). Since R+-Lip is Cauchy cocomplete by Theorem 9.1, the same
is true for Blog◦(R×-Lip) = Met∞, by the Proposition. Therefore:

Corollary 9.4. The normed category Met∞ is Cauchy cocomplete.

10 Remarks on Cauchy cocompleteness for 2-normed categories

We consider the Boolean quantale V = 2 and recall that 2-normed categories are ordinary cate-
gories X which come with a wide subcategory S. In simplified form, the Cauchy cocompleteness
of (X,S) as described in Examples 6.3(2) equivalently means that the colimit of any sequence
s with all connecting morphisms in S exists in X and has a tail s|N = (sm,n)n≥m≥N (with
some N ∈ N) which is actually a colimit in the subcategory S. This, and some variations and
generalizations thereof, is a concept that has been widely studied, primarily in the context of
directed colimits and, dually, of inverse limits, rather than that of (co)limits of sequences. We
limit ourselves to mentioning only a few instances and pointers to the literature.

Examples 10.1. For the following categories X and their wide subcategories S, the 2-normed
category (X,S) is Cauchy cocomplete:
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(1) X is any locally finitely presentable category (in particular, any variety of finitary universal
algebras), and S is the class of monomorphisms in X: see Proposition 1.62 in [3]. The
same source confirms that one may take for S also the class of regular monomorphisms
whenever this class is closed under composition. But this latter provision frequently fails
since, in any category with cokernel pairs and their equalizers, it means equivalently that
all strong (or extremal) monomorphisms in X must be regular, or that X must have (epi,
regular mono)-factorizations. For example, already since [25] the provision is known to fail
in the category of semigroups; see Exercise 14I in [1] for a simple finite counter-example.
However, various generalizations of the so-called amalgamation property guarantee in a
general categorical context that extremal monomorphisms be regular: see Theorem 2 of
[37].

(2) X is the category of topological spaces, and S is either the class of monomorphisms (injective
continuous maps) or the class open embeddings: see Proposition 3.2 of [2]. However, we
may not consider the class S∗ of regular monomorphisms (arbitrary embeddings), even
though S∗ is trivially closed under composition and enjoys the property that the colimit
cocone of any directed system with connecting maps in S∗ consists of maps in S∗ again (by
Proposition 3.4 of [2]). Indeed, Example 3.5 of [2] gives a sequence of embeddings whose
colimit in X is not a colimit in S∗. For an extension of these observations from X to some
of its full subcategories we also refer to [2].

(3) X is the opposite category of the categories of compact Hausdorff spaces, or of all Haus-
dorff spaces, and S is the class of epimorphisms in these two categories, i.e. the class of
continuous surjections or of dense continuous maps, respectively: for compact Hausdorff
spaces, see Corollary 2 of Section 9.6 in [11], and for Hausdorff spaces see Example 5 in
[6]. The latter reference offers a wide array of categories from commutative algebra whose
opposites provide further examples of Cauchy-cocomplete categories.

11 Presheaf categories are Cauchy cocomplete

We continue to work with a quantale (V,≤,⊗, k) and first consider an arbitrary sequence s =

(Am
sm,n

// An)m≤n in Set||V. So, while the sets An are V-normed, the maps sm,n may not be.
Still, with the forgetful functor U : Set||V → Set, we can form the colimit A of Us in Set, with

cocone (An
γn
// A)n . Trivially, any norm on A makes the resulting V-normed set a colimit

of s in Set||V, since there is no constraint on the morphisms in that category. But there is one
norm on A that distinguishes itself by a special property, as follows.

|c| =
∧
N∈N

∨
n≥N

∨
a∈γ−1

n c

|a|;

that is, we employ the same formula as the one established for colimits of sequences in Set//V
(see Proposition 5.1), but now without any a-priori expectation that it would make the maps γn
V-normed. We call the above norm on A the γ-induced Cauchy norm since it has the important
property (C2b) (see Corollary 5.5):
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Lemma 11.1. Let the set A be provided with the γ-induced Cauchy norm as above. Then, for
any mapping f : A→ B to a V-normed set B, one has

|f | ≥
∨
N∈N

∧
n≥N

|f · γn| .

Proof. Since, in its first (contravariant) variable, the internal hom [-,-] of V transforms arbitrary
joins into meets, we have:

|f | =
∧
c∈A

[|c|, |fc|] =
∧
c∈A

[
∧
N

∨
n≥N

∨
a∈γ−1

n c

|a|, |fc|]

≥
∧
c∈A

∨
N

[
∨
n≥N

∨
a∈γ−1

n c

|a|, |fc|]

≥
∨
N

∧
c∈A

[
∨
n≥N

∨
a∈γ−1

n c

|a|, |fc|]

=
∨
N

∧
n≥N

∧
c∈A

∧
a∈γ−1

n c

[|a|, |fc|]

=
∨
N

∧
n≥N

∧
a∈An

[|a|, |f(γna)|]

=
∨
N

∧
n≥N

|f · γn| .

In order to strengthen the assertion of Lemma 11.1 and show that, in fact, Set||V, and even all
Set||V-valued presheaf categories, are Cauchy cocomplete, we need a small additional hypothesis
on the ⊗-neutral element k of the quantale V. Actually, we offer two alternative possibilities,
(A) or (B), for suitably augmenting our general quantalic setting, as follows:

(A) k is approximated from totally below (see Section 9), that is:

k =
∨

{ε ∈ V | ε≪ k}.

(B) k ∧-distributes over arbitrary joins, that is:

k ∧
∨
i∈I

vi =
∨
i∈I

k ∧ vi .

Remarks 11.2. (1) Condition (A) certainly holds when the lattice V is (constructively) completely
distributive in the sense of [40] since, in that case, every element in V is approximated from totally
below by definition.

(2) Condition (B) trivially holds when the quantale V is integral, i.e., when k = ⊤, and also
when the underlying lattice of the quantale V is a frame since, in the latter case every element
in V ∧-distributes over arbitrary joins by definition, whilst in the former case the map k∧ (−) is
just the identity map on V.
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(3) All examples of quantales mentioned in this paper thus far satisfy both conditions, (A) and
(B). We discuss the two conditions further in Section 15 and in particular confirm their logical
independence.

We are now ready to prove the main general theorem of the paper.

Theorem 11.3. When the quantale V satisfies condition (A) or (B), then the V-normed category
[X, Set||V] is Cauchy cocomplete, for every small V-normed category X.

Proof. Considering a Cauchy sequence σ = (Pm
σm,n

// Pn)m≤n∈N in the category [X,Set||V]
(given by all V-normed functors X → Set||V and their natural transformations), with the forgetful
functor U : Set||V → Set we form the colimit P of Uσ in the ordinary functor category SetX,

with cocone γ = ( Pn
γn
// P )n. Then, for every object x in X, the colimit Px of the sequence

(Uσxm,n)m≤n in Set may be provided with the Cauchy norm induced by the cocone (γxn)n (see
Lemma 11.1), and in this way P is then considered as a Set||V-valued functor.

In order to establish P as a normed colimit of σ, by Corollary 5.5, we must show:

(C1) The functor P : X → Set||V is V-normed (so that it serves as a colimit of σ in the ordinary
full subcategory [X,Set||V] of (Set||V)X, formed by all V-normed functors X → Set||V);

(C2a) γ is a k-cocone, i.e., k ≤
∨
N

∧
n≥N |γn|;

(C2b) |α| ≥
∨
N

∧
n≥N |α · γn|, for every natural transformation α : P → Q.

For showing (C1) we use (C2a) (the proof of which is presented further below, independently of
(C1)) and, since every Pn is V-normed and every γn = (γxn)x∈X : Pn → P is natural, obtain for
all morphisms f : x→ y in X

|f | = k⊗ |f | ≤ (
∨
N

∧
n≥N

|γn|)⊗ |f |

≤
∨
N

(
∧
n≥N

|γyn| ⊗ |f |)

≤
∨
N

∧
n≥N

|γyn| ⊗ |Pnf |

≤
∨
N

∧
n≥N

|γyn · Pnf |

=
∨
N

∧
n≥N

|Pf · γxn| ≤ |Pf | ,

with the last inequality following from the fact that Px carries the (γxn)n-induced Cauchy norm,
so that Lemma 11.1 applies.

Using this last argument again for every x ∈ X, and before turning to the more cumbersome
proof of (C2a), we can immediately show that condition (C2b) holds, as follows:

|α| =
∧
x∈X

|αx| ≥
∧
x∈X

∨
N

∧
n≥N

|αx · γxn| ≥
∨
N

∧
n≥N

∧
x∈X

|αx · γxn| =
∨
N

∧
n≥N

|α · γn| .
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For the proof of (C2a), we first calculate∨
N

∧
n≥N

|γn| =
∨
N

∧
n≥N

∧
x∈X

|γxn|

=
∨
N

∧
n≥N

∧
x∈X

∧
a∈Pnx

[|a|, |γxna|]

=
∨
N

∧
x∈X

∧
c∈Px

∧
n≥N

∧
a∈(γxn)−1c

[|a|, |c|]

=
∨
N

∧
x∈X

∧
c∈Px

[
∨
n≥N

∨
a∈(γxn)−1c

|a|,
∧
M

∨
m≥M

∨
b∈(γxm)−1c

|b| ]

=
∨
N

∧
M

∧
x∈X

∧
c∈Px

[ ||c||N , ||c||M ] , (∗)

where, for the last equality, we have used the abbreviation ||c||N :=
∨
n≥N

∨
a∈(γxn)−1c |a| for all

N ∈ N, x ∈ X, and c ∈ Px.

We now consider the alternative hypotheses (A) and (B) and finish the proof under each of them
separately, as follows.

(A) Since the Cauchy sequence σ satisfies k ≤
∨
N

∧
n≥m≥N |σm,n|, for every ε≪ k in V we find

an N ∈ N with ε ≤
∧
n≥m≥N |σm,n|, i.e.,

ε ≤ |σxm,n|

for all n ≥ m ≥ N and x ∈ X. Now, given any c ∈ Px and M ∈ N, in the case M ≤ N we
trivially have ||c||N ≤ ||c||M and obtain ε ≪ k ≤ [||c||N , ||c||M ], so certainly ε ≤ [||c||N , ||c||M ] . If
M ≥ N , with ℓ :=M −N we have

||c||M =
∨
m≥M

∨
b∈(γxm)−1c

|b| ≥
∨
n≥N

∨
a∈(γxn)−1c

|σxn,n+ℓ a|

≥
∨
n≥N

∨
a∈(γxn)−1c

|a| ⊗ |σxn,n+ℓ|

≥ (
∨
n≥N

∨
a∈(γxn)−1c

|a| )⊗ u = ||c||N ⊗ u ,

which again implies ε ≤ [||c||N , ||c||M ]. Consequently, since k =
∨
{ε | ε≪ k}, with (∗) we obtain

k ≤
∨
N

∧
n≥N |γn|, as desired.

(B) Analyzing further the equality (∗),∨
N

∧
n≥N

|γn| =
∨
N

∧
x∈X

∧
c∈Px

[ ||c||N ,
∧
M

||c||M ] ,

we note that we have

[ ||c||N ,
∧
M

||c||M ] = [ ||c||N ,
∧
M≤N

||c||M ∧
∧
M≥N

||c||M ]

= [ ||c||N ,
∧
M≤N

||c||M ] ∧ [ ||c||N ,
∧
M≥N

||c||M ]

≥ k ∧ [ ||c||N ,
∧
M≥N

||c||M ]

=
∧
M≥N

(k ∧ [ ||c||N , ||c||M ]) .
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Here, for M ≥ N , as in part (A), setting ℓ =M −N one has

||c||M ≥
∨
n≥N

∨
a∈(γxn)−1c

|a| ⊗ |σxn,n+ℓ| = ||c||N ⊗
∨
n≥N

|σxn,n+ℓ| ≥ ||c||N ⊗ |σxN,M |

and, hence, [ ||c||N , ||c||M ] ≥ |σxN,M |. Consequently, with hypothesis (B) and the Cauchyness of σ
we obtain ∨

N

∧
n≥N

|γn| ≥
∨
N

∧
x∈X

∧
M≥N

(k ∧ |σxN,M |)

=
∨
N

(k ∧
∧
M≥N

∧
x∈X

|σxN,M |)

= k ∧
∨
N

∧
M≥N

|σN,M |

≥ k ∧ k = k ,

which concludes the proof.

In conjunction with Remarks 11.2 we conclude:

Corollary 11.4. For every small V-normed category X, the V-normed category [X, Set||V] is
Cauchy cocomplete under any of the following hypotheses:

• the quantale V is integral;

• the lattice V is a frame;

• the lattice V is (constructively) completely distributive.

Problem 11.5. Is there a quantale V for which the V-normed category Set||V fails to be Cauchy
cocomplete?

12 Normed colimits as weighted colimits

In this section we assume that the quantale V satisfies condition (A) or (B) so that we can
apply Theorem 11.3. Under this condition, we show that normed colimits of Cauchy sequences
can be equivalently described as weighted (formerly indexed) colimits in the sense of [26], for an
appropriate class of weights. By definition, a normed colimit of a sequence s in a V-normed
category X is given by an object x of X together with bijections

Nat(s,∆z) ∼= X(x, z),

naturally in z, so that the induced cocone

(Nat(s|N ,∆z) −→ X(x, z))N∈N

is a colimit in Set//V.

We start with the following observation.
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Proposition 12.1. Every left adjoint V-normed functor F : X → Y preserves normed colimits
of sequences.

Proof. Let G : Y → X be right adjoint of F in Cat//V, so that we have isomorphisms

X(x,Gy) → Y(Fx, y),

in Set//V, naturally in x and y. Therefore, for every sequence s = (xm
sm,n−−−→ xn)m≤n∈N in X,

every N ∈ N and every object y in Y, we also have an isomorphism

Nat(s|N ,∆Gy) → Nat(Fs|N ,∆y)

in Set//V, naturally in s and y. Let x be a normed colimit of s in X. For every object y in Y,
the diagram

Nat(s|N ,∆Gy) Nat(Fs|N ,∆y)

X(x,Gy) Y(Fx, y)

∼

∼

commutes. Since the cocone (Nat(s|N ,∆Gy) → X(x,Gy))N∈N is a colimit in Set//V, so is the
cocone (Nat(Fs|N ,∆y) → Y(Fx, y))N∈N. This proves that Fx is a normed colimit of Fs in
Y.

Recall from [26] that, for V-normed functors F : A → X and ϕ : Aop → Set||V, a ϕ-weighted
colimit of F is given by an object x in X together with V-normed isomorphisms

X(x, y) ∼= Nat(ϕ,X(F−, y)),

naturally in y. In this context it is convenient to use the language of (Set||V)-valued distributors
X −◦−→ Y which, just like the V-valued distributors in Section 4, are defined as V-normed functors
Xop ⊗ Y → Set||V. Every V-normed functor F : X → Y induces a pair of distributors

F∗ : X −◦−→ Y, F∗(x, y) = Y(Fx, y),

F ∗ : Y −◦−→ X, F ∗(y, x) = Y(y, Fx).

In particular, interpreting an object x in X as a V-normed functor x : E → X, one obtains

x∗ : E −◦−→ X, x∗ = X(x,−) and x∗ : X −◦−→ E, x∗ = X(−, x).

For distributors ϕ : X −◦−→ A and ψ : A −◦−→ X and objects x in X and y in Y, one considers

(ψ · ϕ)(x, y) ∼=
∫ a∈A

ψ(a, y)⊗ ϕ(x, a)

whenever this coend exists (see [33, 32]). This is certainly the case when A is small (since Set||V,
being equivalent to Set, is small-cocomplete), and then the formula above defines the composite
distributor ψ ·ϕ : X −◦−→ Y. Another important case is ϕ = F∗ for a V-normed functor F : X → A,
since then one simply has

(ψ · F∗)(x, y) ∼= ψ(Fx, y)
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for all objects x in X and y in Y. Hence, the presheaf X(F−, y) can be written as the composite
X(F−, y) = y∗ ·F∗ : A −◦−→ E. Moreover, for A small, any presheaf ϕ : A −◦−→ E may be composed

with F ∗ : X −◦−→ A to yield ϕ · F ∗ : X −◦−→ E, and − · F ∗ ⊣ − · F∗ is an adjunction between
[Aop, Set||V] and the higher-universe V-normed category [Xop,Set||V]. Therefore we have natural
isomorphisms

Nat(ϕ · F ∗, y∗) ∼= Nat(ϕ, y∗ · F∗).

It follows that x is a ϕ-weighted colimit of F if, and only if, x is a (ϕ · F ∗)-weighted colimit of
the identity functor X → X, and in that case we simply speak of a (ϕ · F ∗)-weighted colimit in
X.

For a V-normed category X we consider the Yoneda embedding

yX : X → [Xop, Set||V], x 7→ x∗ = X(-, x),

whose codomain (irrespective of potentially having to be formed in a higher universe) is V-normed
again. Actually, yX preserves norms since, for every f : x→ y in X, one has

| yX f | = |X(-, f)| =
∧
z∈X

|X(z, f)| =
∧

h:z→x

[|h|, |f · h|] = |f |.

We now let PX denote the full V-normed subcategory of [Xop,Set||V] defined by all accessible
presheaves (see [28]). By definition, these are the small-weighted colimits of representables.
Viewing a presheaf ϕ : Xop → Set||V as a distributor ϕ : X −◦−→ E, this means that ϕ belongs to
PX if, and only if, there is a fully faithful V-normed functor F : A → X with A small and a
distributor ψ : A −◦−→ E with ϕ = ψ · F ∗. Of course, for X small, one has PX = [Xop, Set||V].

Proposition 12.2. For every V-normed category X, the V-normed category PX is Cauchy cocom-
plete. Moreover, for every V-normed functor F : X → Y, the V-normed functor PF : PX → PY
preserves normed colimits of sequences.

Proof. Let σ : N → PX be a Cauchy sequence in PX. Since N is a (countable) set, there is a
small full V-normed subcategory A of X (with inclusion functor I : A → X) such that σ factors
as

N

PA PX,

σ
σ0

PI=−·I∗

and σ0 : N → PA is Cauchy in PA. By Theorem 11.3, PA is Cauchy cocomplete; we let Q be
a normed colimit of σ0 in PA. By Proposition 12.1, PI(Q) is a normed colimit of σ in PX.
Finally, since PF · PI is left adjoint, PF (PI(Q)) is a normed colimit of PF · σ.

For a Cauchy sequence s in X, we let ϕs denote the normed colimit of yX ·s in PX. Then, for
every object y in X, the cocone

Nat(s|N ,∆y) ∼= Nat(yX ·s|N ,∆ yX y) −→ Nat(ϕs, yX y), N ∈ N,

is a colimit in Set//V.
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Proposition 12.3. Let s be a Cauchy sequence in X. Then X has a normed colimit of s if, and
only if, X has a ϕs-weighted colimit.

Proof. Assume first that x is a normed colimit of s. Then, for every object y ∈ X, the cocone

Nat(s|N ,∆y) −→ X(x, y), N ∈ N,

is a colimit in Set//V. Therefore we obtain an isomorphism

(12.i) X(x, y) → Nat(ϕs, yX y),

naturally in y. This tells us that x is also a ϕs-weighted colimit.

Conversely, if x is a ϕs-weighted colimit so that there is a natural isomorphism (12.i), then also

Nat(s|N ,∆y) → X(x, y), N ∈ N

is a colimit cocone in Set//V, and therefore x is a normed colimit of s in X.

We conclude that normed colimits of Cauchy sequences are equivalently described as certain
weighted colimits. Below we explain that it suffices to consider “countable diagram shapes”. As
usual, we call a (V-normed) category X countable whenever the class of arrows of X is actually
a countable set.

Facts 12.4. Let σ : N → X be a Cauchy sequence in a V-normed category X, and let ϕ : X −◦−→ E
be a colimit of yX ·σ in PX.

1. Consider the V-normed subcategory A of X generated by the image of σ, with inclusion
functor I : A → X. By construction, A is countable. Moreover, with σ0 : N → A denoting
the sequence in A with I · σo = σ, also σ0 is a Cauchy sequence in A. Letting ϕ0 : A −◦−→ E
be the normed colimit of yA ·σ0 in A, we have ϕ = ϕ0 · I∗. Therefore, X has a ϕ-weighted
colimit if, and only if, X has a ϕ0-weighted colimit of I : A → X.

2. Consider N just as an ordinary category (given by its order). By Proposition 3.3, N may be
equipped with the initial normed structure with respect to the ordinary functor σ : N → X
and the given norm of X. Then, since σ is Cauchy in X, the sequence

0 ≤ 1 ≤ 2 . . .

becomes Cauchy in N as well, and we can form the normed colimit ϕ0 of yN in PN. With
ϕ defined as above, X has a ϕ-weighted colimit if, and only if, X has a ϕ0-weighted colimit
of I : N → X.

All told, we have the following characterisation of Cauchy cocompleteness.

Corollary 12.5. Let X be a V-normed category. Then the following assertions are equivalent.

(i) X is Cauchy cocomplete.
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(ii) X has all weighted colimits of normed colimits of Cauchy sequences of representables.

(iii) X has all weighted colimits of diagrams F : A → X, Φ: A −◦−→ E, where A is countable and
Φ is a normed colimit of a Cauchy sequence of representables in PA.

(iv) X has all weighted colimits of diagrams F : A → X, Φ: A −◦−→ E, where the underlying
category of A is N and Φ is a normed colimit of a Cauchy sequence of representables in
PA.

13 Cauchy cocompletion of V-normed categories

In the previous section we have shown that normed colimits of Cauchy sequences can be equiv-
alently described as weighted colimits, for a certain choice of weights – under the assumption
that the quantale V satisfies condition (A) or (B), which we also make in this section. Following
the nomenclature of [28, 5], for every small V-normed category A we consider the class Φ[A] of
presheaves ϕ ∈ PA that are normed colimits of Cauchy sequences of representables, and put

Φ =
∑

A small

Φ[A].

A V-normed category X is called Φ-cocomplete whenever, for all V-normed functors F : A → X
and ϕ : Aop → Set||V with A small and ϕ ∈ Φ[A], the ϕ-weighted colimit of F in X exists.
Moreover, a V-normed functor is called Φ-cocontinuous whenever it preserves all weighted colimits
with weight in Φ.

By Corollary 12.5, a normed category X is Cauchy cocomplete if, and only if, X is Φ-cocomplete.
Furthermore, since the diagram

X Y

PX PY

F

yX yY

PF

commutes (up to isomorphism) for every V-normed functor F : X → Y, using the notation of
Proposition 12.3 and writing ncolim instead of just colim to stress the normedness of a colimit,
for every Cauchy sequence s : N → X we have

PF (ϕs) ∼= PF (ncolim(yX ·s)) ∼= ncolim(yY ·F · s) ∼= ϕF ·s.

Therefore, F preserves normed colimits of Cauchy sequences if, and only if, F is Φ-cocontinuous.
We define

Φ-Cocts

to be the 2-category of Φ-cocomplete small V-normed categories, Φ-cocontinuous V-normed func-
tors, and their natural transformations, and write

Φ-COCTS
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for its higher universe counterpart. For every V-normed category X, we let Φ(X) denote the
smallest replete full V-normed subcategory of PX containing X and closed under Φ-colimits.
Then the Yoneda functor of X restricts to

yX : X → Φ(X),

and we have that Φ(X) is Φ-cocomplete and the inclusion functor Φ(X) → PX is Φ-cocontinuous.
We now show that Φ(X) serves as a correct-size Cauchy cocompletion of the V-normed category
X, both for small and large X.

Lemma 13.1. For each small normed category X, the presheaf category PX is small.

Proof. Consider
Φ0 =

∑
A countable

Φ[A],

hence Φ0 is small. By Corollary 12.5, Φ(X) = Φ0(X) for every normed category X. By [5,
Section 7], Φ0(X) is small.

Theorem 13.2 (Proposition 3.6 in [28]). For every V-normed category X and every Cauchy
cocomplete V-normed category Y, the composition with yX : X → Φ(X) defines an equivalence

Φ-COCTS(Φ(X),Y) → CAT//V(X,Y);

that is, Φ(−) provides a left biadjoint to the inclusion 2-functor Φ-Cocts → CAT//V. This
equivalence restricts to

Φ-Cocts(Φ(X),Y) → Cat//V(X,Y),

when X and Y are small.

14 The Banach Fixed Point Theorem for normed categories

At first, letting the quantale V remain general, but then specializing it to V = R+, we consider
a V-normed category X and a V-normed endofunctor F of X and give sufficient conditions
guaranteeing the existence of an object x with x ∼= Fx, in such a way that they reproduce
Banach’s Fixed Point Theorem when X = iX for a metric space X. The following terminology
makes precise what x ∼= Fx may mean in the V-normed context.

Definition 14.1. For a V-normed functor F : X → X, we say that an object x in X is

• a forward fixed point of F if there is an isomorphism f : x→ Fx of (the ordinary category)
X with k ≤ |f |;

• a backward fixed point of F if there is an isomorphism f : Fx→ x of (the ordinary category)
X with k ≤ |f |;

• a fixed point of F if there is an isomorphism f : x→ Fx in X◦.
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Facts 14.2. (1) Trivially, a fixed point of F is both, a forward fixed point and a backward fixed
point of F . By Facts 5.8(2), if X is forward (backward) symmetric, every forward (backward,
respectively) fixed point of F is already a fixed point of F .

(2) Here is a normed functor F of a normed category X in which every object is a forward fixed
point of F , but which has no backward fixed point of F : consider X = iX for X = {0, 1, 2, ...}
with X(m,n) = 0 for m ≤ n and X(m,n) = 1 otherwise, and let F be given by Fn = n+ 1 for
all n. (Note that F is even norm preserving.)

(3) For X as in (2), considering X = i(X ⊗Xop) and its normed endofunctor F ⊗ F op, we have
(infinitely many) simultaneously forward and backward fixed points of F ⊗ F op, but no fixed
point.

For a V-normed endofunctor F : X → X, let us first consider any morphism f : x → Fx and
form the iteration sequence sf of f :

x
f
// Fx

Ff
// F 2x

F 2f
// F 3x

F 3f
// ... .

Assuming that, at the ordinary category level, there is a colimit cocone γf : sf → ∆y in X, we
obtain a comparison morphism f : y → Fy with ∆f ·γf = Fγf , which is an isomorphism precisely
when the (ordinary) functor F preserves the colimit. Assuming further that γf actually exhibits
y as a normed colimit of sf , since F is V-normed, in the terminology of Lemma 5.4 not only γf
must be k-cocone, but also Fγf , so that with property (C2b) of Corollary 5.5 one concludes that
f must be k-morphism:

|f | ≥
∨
N

∧
n≥N

|f · (γf )n| =
∨
N

∧
n≥N

|F (γf )n| ≥
∨
N

∧
n≥N

|(γf )n| ≥ k .

Furthermore, if F preserves y as a normed colimit of sf , then trivially also f−1 must be a k-
morphism. This normed preservation of the colimit y is particularly guaranteed if X is forward
or backward symmetric, since with Facts 5.8(2) and the proof of Corollary 5.7 we again obtain
that f−1 is k-morphism.

In summary, we proved:

Proposition 14.3. Let F : X → X be a V-normed functor preserving ordinary colimits of
sequences, and let f : x → Fx be a morphism for which the iterated sequence sf has a normed
colimit y in X. Then y is a forward fixed point of F in X, and it is even a fixed point if F
preserves the colimit y as a normed colimit, in particular if X is forward or backward symmetric.

We now consider V = R+ and provide a sufficient condition à la Banach for the existence of
a normed colimit of the iterated sequence of a morphism x → Fx, for a contractive functor
F : X → X, so that there is a (non-negative) Lipschitz factor L < 1, i.e., |Fh| ≤ L|h| for all
morphisms h in X.
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Theorem 14.4. Let X be a Cauchy cocomplete normed category, and let F : X → X be a
contractive functor which preserves (ordinary) colimits of sequences. Then, if X contains any
morphism f : x→ Fx with |f | <∞, then X contains a forward fixed point of F , and even a fixed
point of F if F preserves normed colimits of Cauchy sequences; in particular, if X is forward or
backward symmetric.

Proof. In light of the Proposition, it suffices to show that the iterated sequence sf of the given
morphism f with |f | < ∞ is Cauchy. This, however, follows just like in the classical case of a
contraction of a metric space from the Cauchyness of the geometric series given by L: indeed,
for all m ≤ n one has

|(sf )m,n : Fmx→ Fnx| = |Fn−1f · ... · Fmf | ≤ (Ln−1 + · · ·+ Lm)|f | .

Remarks 14.5. (1) The classical Banach Fixed Point Theorem for the contraction φ of a (non-
empty) complete (classical) metric space X follows when we consider X = iX and F = iφ.

(2) One cannot expect the uniqueness statement for fixed points in the classical metric case to
extend verbatim to normed categories, not even for Lawvere metric spaces: just consider the
coproduct in Met1 of two copies of the Euclidean line. However, the classical uniqueness is an
obvious consequence of the following general statement: Suppose we are given a forward fixed
point x and a backward fixed point y of the contraction F : X → X, with the property that the
minimum

min{|h| | h : x→ y in X}

exists and is positive; then such minimal morphism h0 must be a 0-isomorphism. Indeed, since
we have isomorphisms f : x → Fx and g : Fy → y with |f | = 0 = |g|, the minimality of |h0|
forbids |h0| > 0, as this would imply

|h0| ≤ |g · Fh0 · f | ≤ |g|+ |Fh0|+ |f | = |Fh0| < |h0| .

(3) Theorem 14.4 improves Kubiś’s Corollary 4.2 in [29], since the normed sequential colimits
considered there are not necessarily unique up to 0-isomorphism: see Facts 5.8(3). Actually,
we have not been able to establish a valid proof of Kubǐs’s version of the Banach Fixed Point
Theorem since, in the absence of Condition (C2b), one cannot argue as in our proof of Proposition
14.3.

15 Appendix: Condition A vs. Condition B

For a (unital and commutative) quantale V = (V,≤,⊗, k), we show the logical independence of
conditions (A) and (B) of Section 11.1, i.e., of the conditions

(A) k =
∨

{u ∈ V | u≪ k} and (B) k ∧ (−) : V → V preserves arbitrary joins.
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(B) ⇏ (A):

It suffices to find an integral quantale which does not satisfy (A) (see Remarks 11.2(2)). This is
not hard; for example, for any infinite set X, consider the cofinite topology O(X) on X (so that
a non-empty subset U ⊆ X is open precisely when X \U is finite) as a quantale (O(X),⊆,∩, X).
Then any open set U with U ≪ X must be empty since, otherwise, the finiteness of X \U makes
the infinite set X satisfy

X =
⋃
x∈U

X \ {x},

whereas no x ∈ U allows U ⊆ X \ {x}. Consequently, (A) is violated in O(X).

(A) ⇏ (B) (see [18]):

Consider the 3-element cyclic group Z3 = ({0, 1, 2},+) as a discretely ordered set. Its MacNeille
completion adds the top and bottom elements ⊤ and ⊥ to it, giving the complete 5-element
diamond lattice M3, with atoms 0, 1, 2. This lattice carries the operation ⊗ of a quantale which
coincides with + when restricted to Z3, and which satisfies ⊤⊗α = ⊤ (and necessarily ⊥⊗α = ⊥)
for all α ∈ M3, α ̸= ⊥. Finally we extend the lattice M3 by two new elements, k and ⊤, to
obtain the desired 7-element quantale M3 satisfying (A) but not (B). Its quantalic operation ⊗
extends the tensor product of M3 and makes k a new tensor-neutral element in M3, above only
0 and ⊥, while ⊤ becomes a new top element in M3; tensoring by ⊤ is defined by ⊤ ⊗ ⊤ = ⊤
and ⊤⊗ α = ⊤ for all α ∈M3, α ̸= ⊥.

⊤

⊤ k

1 0 2

⊥

⊗ ⊤ k ⊤ 0 1 2 ⊥
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊥
k ⊤ k ⊤ 0 1 2 ⊥
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊥
0 ⊤ 0 ⊤ 0 1 2 ⊥
1 ⊤ 1 ⊤ 1 2 0 ⊥
2 ⊤ 2 ⊤ 2 0 1 ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Remarks 15.1. (1) Following a question posed at the occasion of the second-named author’s
presentation of some of the results of this paper at the Portuguese Category Seminar in October
2023, a first witness for (A) ⇏ (B) was communicated to the authors shortly afterwards by Javier
Gutiérrez-García. His subsequent paper [18] with Ulrich Höhle comprehensively analyzes and
characterizes many types of quantales with (A) ⇏ (B), even in the context of not necessarily
commutative or unital quantales. The above example of a quantale witnessing (A) ⇏ (B) is
smallest with that property, but there are other such 7-element quantales. Remarkably, it is also
shown in [18] that the procedure of finding counterexamples as sketched here starting with the
group Z3 may in fact be followed with any group G of at least 3 elements instead.

(2) There are many infinite topological spaces X (other than those carrying the cofinite topology)
such that O(X) witnesses (B) ⇏ (A), but none of them can be Alexandroff (so that O(X) would
be closed under arbitrary intersection). Indeed, one easily verifies that the quantale O(X)

48



is completely distributive for every Alexandroff space X. Other types of integral quantales
satisfying (B) but violating (A) include those complete MV-algebras whose underlying lattice
fails to be completely distributive. Indeed, by Proposition 3.13 of [17], such MV-algebras must
fail condition (A).
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