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Abstract. It is shown that the duals of several categories of topological flavour, like the
categories of ordered sets, generalised metric spaces, probabilistic metric spaces, topological
spaces, approach spaces, are quasivarieties, presenting a common proof for all such results.

Introduction

It is known since the work of Manes [18] that the category CompHaus of compact Hausdorff
spaces and continuous maps, traditionally belonging to the realm of topology, can be also un-
derstood as a variety of algebras (without rank). Approximately at the same time, Duskin [10]
pointed out that also the dual category of CompHaus is a variety: by Urysohn’s Lemma, the unit
interval [0, 1] is a regular injective regular cogenerator of CompHaus; moreover CompHausop is
exact (see [5, Corollary 1.11 of Chapter 9]). On the other hand, the category Top of topological
spaces and continuous maps is probably “as far as one can get” from algebra, so it might come
“as some surprise . . . that the situation is quite different when it comes to the dual category”
[4]. In fact, once suspected, it is not hard to see from an abstract point of view that Topop

is a quasivariety: Top is (co)complete, and the space 3 — an amalgamation of the Sierpinski
space and the two-element indiscrete space — is a regular injective regular cogenerator of Top.
It is also noted that Topop is not exact. In concrete terms, [4] gives an explicit description of
the corresponding algebraic theory. Later, in [1], Adámek and Pedicchio described Topop as a
regular epireflective subcategory of the variety of topological systems. Later, in [20] Pedicchio
and Wood pointed out that analogous arguments show that the dual of the category Ord of
(pre)ordered sets and monotone maps is a quasivariety. Here we use the ideas of Adámek and
Pedicchio [1], namely the equivalence between the category of topological systems and a special
comma category, and results of Barr [3], to give a common proof that a variety of categories of
topological nature have quasivarieties as duals.

1. The global construction

We recall that a varietal category, or just a variety, is a category monadic over Set, while
a quasivariety is a regular epireflective (full) subcategory of a variety, or, equivalently, a (full)
subcategory closed under subobjects and products. The goal of this section is to identify certain
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comma categories of functors between varieties as (two-sorted) varieties. We start with the
following observation.

Lemma 1.1. Let I : B → A be a functor. Then the functor

F : A ↓ I −→ A× B

sending A→ IB to (A,B) and acting as identity on morphisms has a right adjoint provided that
A has binary products. If I has a left adjoint and A has binary coproducts, then F has a left
adjoint.

Proof. The right adjoint R of F is defined by R(A,B) = ( A× IB
π2
// IB ), and R(f, h) =

(f × Ih, h), which clearly makes the diagram

A× IB

f×Ih
��

π2
// IB

Ih
��

A′ × IB′
π2

// IB′

commute. Again, it is straightforward to show that F ⊣ R, with unit γ given by γg = (⟨1A, g⟩, 1B)
as in the diagram

A
g

//

⟨1A,g⟩
��

IB

I1B
��

A× IB
π2

// IB.

Assume now that I has a left adjoint J : A → B, with unit η. Then define

L(A,B) = (A
ηA−−→ IJA

IιJA−−−−→ I(JA+B))

where ιJA : JA→ JA+B is the coproduct projection, and define L(f, h) = (f, Jf +h) as in the
commutative diagram

A
ηA
//

f
��

IJA

IJf
��

IιJA
// I(JA+B)

I(Jf+h)
��

A′
ηA′
// IJA′

IιJA′
// I(JA′ +B′)

It is straightforward to check that L is left adjoint to F , with unit ρ given by ρ(A,B) =

(1A, ιB) : (A,B) → (A, JA+B), where ιB : B → JA+B is the coproduct coprojection. □

Assume now that A and B are varieties, with forgetful functor G : A → Set and H : B → Set,
respectively. Then also G × H : A × B → Set × Set is monadic, and so is F : A ↓ I → A × B,
for every right adjoint functor I : B → A. In fact, A ↓ I is cocomplete, F is left and right
adjoint and therefore preserves in particular coequalizers, and one easily verifies that F reflects
isomorphisms. We wish to conclude that then also A ↓ I is monadic over Set × Set; however,
monadic functors are not stable under composition in general. In [3] Barr presented a criterion
to identify monadic functors as composite of functors with suitable properties which we recall
next.

Definition 1.2. A parallel pair of morphisms X Y
f

g
in a category C is said to be a split

coequalizer pair (or simply a split pair) if there exists an object Z in C and morphisms h : Y → Z,
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k : Z → Y , s : Y → X

X Y Z
f

g h
s

k

such that hf = hg, gs = 1Y , fs = kh.

If F : C → D is a functor, X Y
f

g
is said to be an F -split pair if FX FY

Ff

Fg
is a

split pair in D.

Proposition 1.3 ([3]). A functor (A
U−−→ D) = (A

F−−→ B
G−−→ C

H−−→ D) is a monadic functor
provided that:

(1) A has coequalizers of U -split pairs;
(2) H creates limits and every H-split pair is a split pair;
(3) G creates limits, and coequalizers of G-split pairs exist in B and are preserved by G;
(4) F creates limits and preserves all coequalizers;
(5) HGF has a left adjoint.

Corollary 1.4. Let G : A → Set and H : B → Set be monadic functors and I : B → A be a right
adjoint functor. Then the composite functor

A ↓ I F−−−−−→ A× B
G×H−−−−−−−→ Set× Set

is monadic.

Proof. First note that with G : A → Set and H : B → Set also G × H : A × B → Set × Set is
monadic. As A and B are cocomplete, A ↓ I is a cocomplete category. By Lemma 1.1, the
functor F : A ↓ I → A×B has both a left and a right adjoint. Therefore F preserves both limits
and colimits. Since I preserves limits, one easily verifies that F creates limits. Therefore the
assertion follows from Proposition 1.3. □

Remark 1.5. Recall that every concrete functor I : B → A between varieties has a left adjoint.
Hence, in this situation, we can think of A ↓ I as a category of two sorted algebras: with sorts
A and B, with the algebraic theory of G : A → Set at sort A and of H : B → Set at sort B,
and an operation of type A → B together with the equations identifying this operation as a
homomorphism.

Proposition 1.6. If A and B are varieties and I : B → A is a right adjoint functor, then the
full subcategory A

↣

I of the comma category A ↓ I consisting of those objects A g−→ IB with g
monic is a regular epireflective subcategory of A ↓ I.

Proof. First of all we note that, as a variety, A admits the (regular epi, mono)-factorization
system. For each object A g−→ IB, let A g−→ IB = A

e−→ X
m−−→ IB be its (regular epi,mono)-

factorization. Then (e, 1B) is the regular epireflection of A in A

↣

I: indeed, given a morphism

(f, h) : (A
g−→ IB) → (X ′ m′

−→ IB′) with m′ monic, commutativity of the diagram

A IB

X

X ′ IB′

g

e

f Ih

m

d

m′
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gives, by orthogonality of the factorization system, a unique morphism d : X → X ′ such that
m′·d = Ih·m and d·e = f . This yields a (unique) morphism (d, h) : (X

m−−→ IB) → (X ′ m′
−−→ IB′)

so that (d, h) · (e, 1B) = (f, h) as required. □

In the situation of Remark 1.5, the category A

↣

I can be described as the category of those
algebras (g : A→ IB) of A ↓ I satisfying the implication

∀x, y . (g(x) = g(y) =⇒ x = y).

The main point to make here is that, making again use of [3], A
↣

I can be also presented as
a quasivariety over Set.

Theorem 1.7. If A and B are varieties admitting constants and I : B → A is a right adjoint
functor, then the comma category A ↓ I is monadic over Set.

Proof. Similarly to Corollary 1.4, we obtain immediately that the composite

A ↓ I F−−−−→ A×B
G×H−−−−−−−→ (Set× Set)∗

is monadic, where

• F (A→ IB) = (A,B) and F (f, h) = (f, h);
• G : A → Set and H : B → Set are monadic functors, and G×H is their product restricted

to the full subcategory of Set × Set consisting of pairs (X,Y ) of sets where either both
are empty or both are non-empty.

Consider now also the product functor

(Set× Set)∗
P−−−−→ Set.

The functor P has a left adjoint, namely the diagonal functor Set → (Set× Set)∗. Furthermore,
that P creates limits and every P -split pair is a split pair follows from [3, Theorem 2]. Therefore,
by Proposition 1.3, the composite

A ↓ I F−−−−→ A×B
G×H−−−−−−−→ (Set× Set)∗

P−−−−→ Set

is monadic. □

Hence, together with Proposition 1.6, we obtain

Theorem 1.8. If A and B are varieties admitting constants and I : B → A is a right adjoint
functor, then A

↣

I is a quasivariety over Set.

In the remaining sections we will show that the results of this section can be used to deduce
that several categories – dual to categories of topological nature – are quasivarietal.

2. Diers’ affine algebraic sets

Motivated by questions in geometry, the notion of affine set was introduced by Diers in [8, 9].
Among other results, the author proves that the category of affine sets is topological over Set,
and that, moreover, many categories studied in topology are instances of this notion. Using
the results of Section 1, it is easy to deduce that the dual of the category of affine sets is a
quasivariety, as we explain next.

Given a variety A and an object A of A, an affine set is a set X equipped with a subalgebra S
of the algebra AX . A morphism of affine sets f : (X,S) → (Y, T ) is a map f : X → Y such that
Af : AY → AX (co)restricts to T → S.



A VARIETY OF CO-QUASIVARIETIES 5

The category AfSet(A) of affine sets and their morphisms admits a canonical closure operator,
called Zariski-closure: For an affine set (X,S) and M ⊆ X, the Zariski-closure of M is given by

M = {Eq(φ,ψ) | φ,ψ ∈ S,M ⊆ Eq(φ,ψ)}.

An affine set (X,S) is called separated whenever the cone S is point-separating, that is, for all
x ̸= y in X there is some φ ∈ S with φ(x) ̸= φ(y), and it is called algebraic if it is separated
and Zariski-closed in every separated affine set. The full subcategory of AfSet(A) defined by all
algebraic affine sets is denoted by AfAlgSet(A). It is shown in [8, 9] that AfAlgSet(A) is dually
equivalent to the category of functional algebras over A,

AfAlgSet(A)op ≃ FcAlg(A);

here FcAlg(A) is the full subcategory of A defined by those algebras which are subalgebras
of powers of A. The category FcAlg(A) is a regular-epireflective subcategory of A, hence a
quasivariety over Set, which identifies AfAlgSet(A)op as a quasivariety.

Using the results of Section 1 it is easy to deduce that also the dual of AfSet(A) is a (two-sorted)
quasivariety. Indeed:

(a) The functor I : Setop → A, which assigns to each X the algebra AX and to each map
f : X → Y the morphism Af : AY → AX with Af (g) = g · f , has as left adjoint the
hom-functor J = A(−, A) : A → Setop.

(b) Both A and Setop are monadic over Set, with respect to the forgetful functor A → Set

and Set(−, 2) : Setop → Set [22], respectively.
(c) AfSet(A) is dually equivalent to A

↣

I: each object (X,S) can be seen as a monomorphism
SX ↪→ IX, and a morphism f : (Y, T ) → (X,S) as a morphism in A

↣

I:

S IX

T IY

I(f)

Conversely, to every monomorphism m : B → AX one may assign its image m(B) ↪→ AX

and to every morphism (f, h) as in the diagram

B AX

C AY

m

f I(h)

n

one may assign the morphism h : (Y, n(C)) → (X,m(B)); since m and n are monomorph-
isms, f is exactly the (co)restriction of I(h).

Using Proposition 1.6 and Theorem 1.7 we can then conclude that:

Proposition 2.1. Given a variety A with constants and an object of A, AfSet(A)op is a quasi-
variety over Set.

3. Examples

3.1. Quantale-enriched categories. We recall that a complete ordered set is said to be con-
structively completely distributive (ccd for short) if the monotone map

∨
: DX → X, where

DX is the lattice of downsets of X, has a left adjoint [11]. In the more general context of V -
categories, for a commutative quantale V , a V -category (X, a) is cocomplete if and only if its
Yoneda embedding yX : X → PX admits a left adjoint

∨
X : PX → X. As for the case V = 2,
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when
∨

X admits a left adjoint X is said to be constructively completely distributive, or just ccd.
For more information on (completely distributive) V -categories we refer to [23, 24]. We point
out that the notion of complete distributivity in this context was introduced in [25] under the
designation totally continuous. The category V -ccd has as objects the ccd V -categories and as
morphisms the V -functors which preserve both weighted limits and weighted colimits. As shown
in [21], V -ccd is a variety with respect to the canonical forgetful functor V -ccd → Set, which in
our study above will play the role of the variety A. The role of the algebra A is played by the
ccd V -category (V,hom). That is, our functor I : Setop → V -ccd is given by IX = V X . So, in
order to conclude that (V -Cat)op is a quasivariety, it remains to show that V -Cat is equivalent
to AfSet(V ).

Proposition 3.2. The category V -Cat is concretely isomorphic to the category AfSet(V ).

Proof. We define functors

F : V -Cat → AfSet(V ) and G : AfSet(V ) → V -Cat

where F sends the V -category X to the affine set (X,V -Cat(X,V )), G sends the affine set (X,S)
to the V -category X equipped with the initial structure with respect to S, and both functors act
identically on morphisms. Since V is initially dense in V -Cat, the composite functor GF is the
identity. Now let (X,S) be an affine set and let (X, a) be the initial V -category with respect to
S. Clearly, S ⊆ V -Cat(X,V ). For every x ∈ X,

a(x,−) =
∧
φ∈S

hom(φ(x), φ(−)),

hence a(x,−) belongs to S. If ψ : (X, a) → (V,hom) is a V -functor, then, since

ψ(−) =
∨
y∈X

ψ(y)⊗ a(y,−),

ψ ∈ S, and we conclude that S = V -Cat(X,V ). Therefore FG is the identity functor. □

Proposition 3.3. Under the equivalence above, an affine set is algebraic if and only if the cor-
responding V -category is separated and Cauchy-complete. Hence, the full subcategory V -Catsep,cc
of V -Cat defined by all separated and Cauchy-complete V -categories is dually equivalent to a
quasivariety over Set.

Proof. By [15], the Zariski-closure corresponds precisely to the L-closure. □

3.4. Topological spaces. The category Top of topological spaces and continuous maps is iso-
morphic to the category AfSet(2), for A the variety Frm of frames and frame homomorphisms and
the two-element frame 2. The affine algebraic frames correspond precisely to the sober spaces.
We note that, equivalently, one might consider here the variety A = coFrm of co-frames and
homomorphisms.

The corresponding description of Topop as the two-sorted quasivariety Frm

↣

I, for the full
embedding I : CABool → Frm, is presented in [1] and constitutes one of the main motivation for
this note. Furthermore, it is shown in [1] that the slice category Frm ↓ I is equivalent to the
category of grids and homomorphisms, linking this way their approach to the one taken in [4].

3.5. Closure spaces. Let A be the category Inf of complete lattices and infima-preserving maps,
and consider the two-element complete lattice 2. Then AfSet(2) is isomorphic to the category
Cls of closure spaces and continuous maps [8]. Hence, Clsop is a quasivariety over Set.
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3.6. Approach spaces. The category App of approach spaces and contraction maps was intro-
duced by R. Lowen in [16] (see [17] for more details) as a common generalisation of topological
spaces and metric spaces. Similar to topological spaces, approach spaces can be equivalently
described by convergence, neighborhood systems, and “metric variants” of closed (respectively
open) sets. As pointed out in [7], the description via regular function frames identifies approach
spaces as affine sets for the algebraic theory of approach frames (introduced in [2] and further
studied in [26, 27]) and the approach frame [0,∞]; in other words, App is concretely isomorphic
to the category AfSet([0,∞]). Consequently, in analogy to the case of topological spaces, also
Appop is a quasivariety. It is also shown in [7] that in this context the affine algebraic sets
correspond precisely to the sober approach spaces.

Similarly to the case of Top, the category Appop is not exact.

3.7. A Łukasiewicz variant of approach spaces. It is shown in [6] that the category App

fits into the framework of monoidal topology [14]: App is concretely isomorphic to the category
(U, V )-Cat of (U, V )-categories and (U, V )-functors, for the ultrafilter monad U on Set and the
quantale V = [0,∞] with monoidal structure given by addition. This begs the question whether
the method presented in this note applies to (U, V )-Cat for other quantales V as well. At this
moment we do not have a general answer, but at least for the quantale V = [0, 1] with the
Łukasiewicz sum defined by u ⊗ v = max{u + v − 1, 0} the answer is positive. To explain
this, we observe first that the category of complete and finitely cocomplete V -categories and V -
functors preserving limits and finite colimits can be described by operations and equations: this
category is concretely isomorphic to the category of algebras and homomorphisms for a class Ω

of operation symbols and a class E of equations (similar to [19] and [12, Remark 2.10]). We then
take A to be the subvariety generated by [0, 1], that is, the full subcategory containing precisely
the homomorphic image of subobjects of powers of [0, 1]. By [13, Corollary 3.17], we have:

Proposition 3.8. For the quantale V = [0, 1] with the Łukasiewicz sum, the category (U, V )-Cat
is concretely isomorphic to the category AfSet([0, 1]), with respect to the variety A and the V -
category V = [0, 1]. Consequently, ((U, V )-Cat)op is a quasivariety.
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