An algebraic description of regular epimorphisms in topology

Dirk Hofmann

Departamento de Matemática, Universidade de Aveiro, 3810-193 Aveiro, PORTUGAL

Abstract

Recent work of G. Janelidze and M. Sobral on descent theory of finite topological spaces motivated our interest in ultrafilter descriptions of various classes of continuous maps. In earlier papers we presented such characterizations for triquotient maps and local homeomorphisms, here we do it for regular epimorphisms. To do so, we give an alternative description of the “obvious” reflection of pseudotopological spaces into topological spaces. Topological spaces, when presented as ultrafilter convergence structures, are examples of \((\mathcal{T}; \mathcal{V})\)-algebras introduced by M.M. Clementino and W. Tholen in “Metric, Topology and Multicategory – a Common Approach”. In this paper we work in this general setting and hence obtain at once characterizations of regular epimorphisms between topological spaces, approach spaces and (generalized) metric spaces, as well as the characterization for preordered sets which motivated our work.

Key words: Monad, \((\mathcal{T}; \mathcal{V})\)-algebra, co-Kleisli composition, regular epimorphism, topological space, metric space, ordered set.

Introduction

In [9] and [10] the authors prove characterizations of various kinds of topological descent maps between finite topological spaces, “which become very simple and natural as soon as they are expressed in the language of finite preorders” [10]. Although these “finite results” are very helpful to understand and motivate the theory of topological descent and a great source for (counter-)examples, it is of interest to know their infinite extensions. Obviously, instead

Email address: dirk@mat.ua.pt (Dirk Hofmann).
of considering the preorder relation one must study the convergence relation between ultrafilters and points, between ultrafilters of ultrafilters and ultrafilters and so on; hence one has to deal with a much more complicated situation. In our recent work we succeeded in the case of triquotient maps [2] and local homeomorphisms [4]. It is the purpose of the present paper to obtain the ultrafilter version of the following characterization of regular epimorphisms between preordered sets.

Theorem. An order-preserving map \(f : X \to Y \) is a regular epimorphism in \(\text{Ord} \) if and only if the order relation on \(Y \) can be obtained from “zigzags” in \(X \); that is, for each \(y_1 \to y_0 \) in \(Y \) there is a “zigzag”

\[
\begin{array}{c}
\vdots \\
\end{array}
\]

in \(X \) of length \(n \), for some \(n \in \mathbb{N} \), with \(f(x_n) = y_1 \) and \(f(x_0) = y_0 \), where \(\sim_f \) denotes the kernel relation of \(f \).

In order to obtain a characterization of topological quotient maps in terms of ultrafilters we need a description of topological spaces in terms of their convergence structure. This is most elegantly expressed in [1] where topological spaces are presented as sets \(X \) equipped with a relation \(x \to x \) between ultrafilters and points, subject to the reflexivity and the transitivity condition

\[
e_X(x) = \hat{x} \to x, \quad (X \to x \& x \to x) \Rightarrow m_X(X) \to x,
\]

for all \(x \in X \), \(\mathfrak{r} \in UX \) and \(X \in UUX \). As Barr observed, these two conditions are exactly the laws of a lax Eilenberg-Moore algebra for the natural extension of the ultrafilter monad \(U = (U, e, m) \) to a lax monad on \(\text{Rel} \).

A preorder \(a \) on a set \(X \) may also be viewed as an internal monoid in \(\text{Rel} \); it is an endorelation \(a \) of \(X \) such that

\[
\Delta_X \leq a, \quad a \cdot a \leq a.
\]

In order to transport this idea to topological spaces, we introduce the co-Kleisli composition \(a * b := a \cdot Ub \cdot m_X^{op} \) between ultrarelations (i.e. relations between ultrafilters and points) which has the inverse image relation \(e_X^{op} : UX \to X \) of the function \(e_X : X \to UX \) as a (lax) identity. Using this composition we can present topologies as monoids as well: an ultrarelation \(a : UX \to X \) (which
can be considered as an endomorphism of X in the co-Kleisli (lax) category is the convergence structure of a topology precisely if

$$e_X^{\text{op}} \leq a, \quad a \cdot a \leq a.$$

Replacing Rel by another suitable 2-category as well as U by a suitable monad T which has a lax extension to this 2-category, we obtain further interesting categories as categories of lax Eilenberg-Moore algebras such as (generalized) metric spaces and approach spaces. In order to capture all these examples, [7] develops the notion of $(T; V)$-algebras for a complete, cocomplete, symmetric monoidal closed category V and a V-admissible monad $T = (T, e, m)$. The general framework of [7], with V being a lattice, will be our basic setting.

In this setting, a characterization of regular epimorphisms can be obtained by a standard argument. We forget first the transitivity axiom and hence work in the larger category of reflexive lax algebras, of which transitive structures form a reflective full subcategory (see [3], for instance). There, regular epimorphisms are exactly those lax homomorphisms which are surjective on both points and structure. A lax homomorphism $f : (X, a) \to (Y, b)$ between transitive structures is a regular epimorphism if and only if it is surjective and the structure b on Y is the transitive reflection of the (not-necessarily-transitive) image structure of f. Now the standard description of this reflection – as the largest element of the chain b_α of structures on Y where $b_{\alpha+1} = b_\alpha \cdot m_Y$, and hence the reflection is a mixture of b-terms and m-terms. In this paper we present an improvement of this description where these terms are separated. This improvement gives indeed the expected characterization of regular epimorphisms.

1 $(T; V)$-algebras

1.1 V-matrices. Throughout V denotes a symmetric monoidal closed complete lattice, with tensor \otimes and neutral element k. Important examples are the two-element chain $2 = \{\text{false} \vdash \text{true}\}$ with tensor given by “and” $\&$ and neutral element true; and the extended real half-line $\mathbb{R}_+ = [0, \infty]$ ordered by the “greater or equal”-relation \geq, with tensor given by addition (where $\infty + x = x + \infty = \infty$) and 0 as neutral element.

The category $\text{Mat}(V)$ of V-matrices has sets as its objects, and a morphism $r : X \to Y$ in $\text{Mat}(V)$ is a V-matrix $r : X \times Y \to V$. Composition of V-matrices $r : X \to Y$ and $s : Y \to Z$ is defined as matrix multiplication

$$s \cdot r(x, z) = \bigvee_{y \in Y} r(x, y) \otimes s(y, z)$$
and the \(\mathbf{V} \)-matrix \(\text{id}_X : X \to X \), which sends all diagonal elements \((x,x)\) to \(k \) and all other elements to the bottom element \(\perp \) of \(\mathbf{V} \), acts as an identity. The order of \(\mathbf{V} \) induces a complete order relation on \(\text{Mat}(\mathbf{V})(X,Y) \): for \(\mathbf{V} \)-matrices \(r, r' : X \to Y \) we define

\[
r \leq r' : \iff \forall x \in X \forall y \in Y \ r(x,y) \leq r'(x,y).
\]

This order relation is preserved by composition. Therefore \(\text{Mat}(\mathbf{V}) \) is actually a \(2 \)-category. In addition, composition preserves suprema in each variable since \(\otimes \) does, that is:

\[
\bigvee_{j \in J} s_j \cdot r_i = \bigvee_{j \in J} \bigvee_{i \in I} s_j \cdot r_i.
\]

\(\text{Mat}(\mathbf{V}) \) has an order-preserving involution \(\cdot \) sending each \(r : X \to Y \) to its transpose \(r^\text{op} : Y \to X \) defined by \(r^\text{op}(y,x) = r(x,y) \). This involution induces a contravariant 2-endofunctor on \(\text{Mat}(\mathbf{V}) \).

1.2 Examples. \(\text{Mat}(2) \cong \text{Rel} \) and a morphism \(a : X \to Y \) of \(\text{Mat}(\mathbb{R}_+) \) is a generalized distance \(a : X \times Y \to \mathbb{R}_+ \). Composition in \(\text{Mat}(\mathbb{R}_+) \) is given by

\[
b \cdot a(x,z) = \inf \{ a(x,y) + b(y,z) \mid y \in Y \},
\]

\(\text{id}_X : X \to X \) is the discrete distance sending the diagonal to 0 and all other pairs \((x,x')\) to \(\infty \).

1.3 Embedding Set. There is a natural embedding of \(\text{Set} \) into \(\text{Mat}(\mathbf{V}) \) leaving objects unchanged and sending each map \(f : X \to Y \) to the \(\mathbf{V} \)-matrix

\[
f(x,y) = \begin{cases} k & \text{if } f(x) = y, \\ \perp & \text{else}. \end{cases}
\]

In the sequel we will write \(f : X \to Y \) rather then \(f : X \to Y \) for a \(\mathbf{V} \)-matrix induced by a \(\text{Set} \)-map in the sense above. We remark that each \(f : X \to Y \) satisfies the inequations \(\text{id}_X \leq f^{\text{op}} \cdot f \) and \(f \cdot f^{\text{op}} \leq \text{id}_Y \), i.e. \(f \) is left adjoint to \(f^{\text{op}} \).

1.4 \(\mathbf{V} \)-admissible monads. A monad \(T = (T,e,m) \) on \(\text{Set} \) is called \(\mathbf{V} \)-admissible if the endofunctor \(T : \text{Set} \to \text{Set} \) admits an extension to \(\text{Mat}(\mathbf{V}) \) such that

- \(T \cdot T \cdot T \leq T(s \cdot r) \),
- \(r \leq r' \Rightarrow T r \leq T r' \),
- \(e_Y \cdot r \leq T r \cdot e_X \),
- \(m_Y \cdot T^2 r \leq T r \cdot m_X \),
- \((Tr)^{\text{op}} = T(r^{\text{op}}) \) (and we write \(T r^{\text{op}} \)),

\[
(x, y)
\]
for all \(r, r' : X \to Y \) and \(s : Y \to Z \). We remark that (i) becomes an equality in case \(r = f \) is a map, i.e. \(T \) preserves composition of \(V \)-matrices with maps from the right. A \(V \)-admissible monad may have more than one extension (see [6]). From now on we fix an extension when considering a \(V \)-admissible monad \(T \).

1.5 Examples. The identity monad \(1 = (\text{Id}, \text{id}, \text{id}) \) on \(\text{Set} \) can be obviously “extended” to the identity monad on \(\text{Mat}(V) \) and hence is \(V \)-admissible. In the sequel we will only consider this canonical extension of 1. The ultrafilter monad \(U = (U, e, m) \) on \(\text{Set} \) is induced by the dual adjunction

\[
\text{Bool} \xrightarrow{\text{hom}(2)} \text{hom}(2) \xleftarrow{\text{hom}(2)} \text{Set}.
\]

Explicitly, the ultrafilter functor \(U : \text{Set} \to \text{Set} \) sends each set \(X \) to the set \(UX \) of its ultrafilters and each function \(f : X \to Y \) to the function \(Uf : UX \to UY \), which takes an ultrafilter \(x \in UX \) to the (ultra)filter generated by its \(f \)-image \(\{ f[A] \mid A \in x \} \). The natural transformations \(e \) and \(m \) are given by

\[
e_X(x) = \{ A \subseteq X \mid x \in A \} \quad \text{and} \quad m_X(\mathcal{X}) = \{ A \subseteq X \mid A^\# \in \mathcal{X} \},
\]

for all \(\mathcal{X} \in U^2X \) and \(x \in X \). Here \(A^\# \) denotes the set \(\{ a \in UX \mid A \in a \} \). In the sequel we will extend this notation to a filter \(f \) on \(X \) and write \(f^\# \) for the filter base \(\{ A^\# \mid A \in f \} \). It is shown in [1] that the ultrafilter monad \(U \) is in a canonical way \(2 \)-admissible and in [7] this result is extended to a more general class of lattices \(V \) including \(V = \mathbb{R}_+ \). We remark that \(m \) becomes a (strict) natural transformation for these extensions and that \(U \) extends to a (strict) functor to \(\text{Rel} \cong \text{Mat}(2) \).

1.6 \((T; V)\)-algebras. Given now a \(V \)-admissible monad \(T = (T, e, m) \), the category \(\text{Alg}(T; V) \) of \((T; V)\)-algebras has as its objects pairs \((X, a)\) consisting of a set \(X \) and a structure \(a : TX \rightharpoonup X \) in \(\text{Mat}(V) \) satisfying the reflexivity and transitivity laws

\[
\text{(Refl)} \quad \text{id}_X \leq a \cdot e_X, \quad \text{(Trans)} \quad a \cdot Ta \leq a \cdot m_X.
\]

A morphism \(f : (X, a) \to (Y, b) \) in \(\text{Alg}(T; V) \) is a lax homomorphism, that is, a map \(f : X \to Y \) such that \(f \cdot a \leq b \cdot Tf \).

1.7 Examples. \((T = 1, V = 2)\): A \((1; 2)\)-algebra is a pair \((X, R)\) consisting of a set \(X \) and a binary relation \(R \) on \(X \), the two basic axioms read as

\[
\text{true} \vdash xRx, \quad (xRy \& yRz) \vdash xRz.
\]
Moreover, a lax homomorphism is an order-preserving map. Hence $\text{Alg}(\mathbb{1}; \mathbb{2})$ is isomorphic to the category Ord of preordered sets.

$(T = \mathbb{1}, \mathbb{V} = \mathbb{R}_+)$: A $(\mathbb{1}; \mathbb{R}_+)$-algebra is a set X together with a (generalized) distance $d : X \times X \to \mathbb{R}_+$ satisfying

\[
0 \geq d(x, x), \quad d(x, y) + d(y, z) \geq d(x, z).
\]

A lax homomorphism is a non-expanding map. We denote the resulting category by Met.

$(T = \mathbb{1})$: More general, $(\mathbb{1}; \mathbb{V})$-algebras are exactly the categories enriched over \mathbb{V} and lax homomorphisms are \mathbb{V}-functors (see [11]).

$(T = \mathbb{U}, \mathbb{V} = \mathbb{2})$: The main result of [1] states that $\text{Alg}(\mathbb{U}; \mathbb{2}) \cong \text{Top}$.

$(T = \mathbb{U}, \mathbb{V} = \mathbb{R}_+)$: It is shown in [3] that $(\mathbb{U}; \mathbb{R}_+)$-algebras coincide with approach spaces in the sense of R. Lowen [12] and lax homomorphisms with non-expanding maps.

1.8 Reflexive algebras. Many constructions such as forming function spaces cannot be done within topological spaces, being often useful to move temporarily into the cartesian closed category of pseudotopological spaces (see [8]). Here a pseudotopology on a set X is a relation $a : UX \not\rightarrow X$, which is only required to fulfill the reflexivity law $\hat{x} \rightarrow x$. In the setting of $(T; \mathbb{V})$-algebras a similar technique can be used: we define the category $\text{Alg}(T, e; \mathbb{V})$ of reflexive lax algebras having as objects such pairs (X, a), where a is only required to fulfill the reflexivity law (RefI), and lax homomorphisms as morphisms. In [6] it is proven that – under mild assumptions – $\text{Alg}(T, e; \mathbb{V})$ is locally cartesian closed. Moreover, we have that (see [3]):

Proposition 1 A morphism $f : (X, a) \to (Y, b)$ in $\text{Alg}(T, e; \mathbb{V})$ is a regular epimorphism if and only if $b = f \cdot a \cdot Tf^{\text{op}}$.

$\text{Alg}(T, e; \mathbb{V})$ contains $\text{Alg}(T; \mathbb{V})$ as a full and reflective subcategory where the reflection morphism is identity carried [3]. We shall describe this reflection in Section 3. In analogy to the transitive reflection of a reflexive relation, the reflection of a reflexive structure $a : TX \not\rightarrow X$ can be obtained as an “iterated composite” of a; here composition must be read as co-Kleisli composition.

2 The co-Kleisli composition

2.1 Definition. For a fixed \mathbb{V}-admissible monad $T = (T, e, m)$, the category $\text{Mat}(\mathbb{V})$ has an important additional structure: the co-Kleisli composition defined as

\[
a \ast b = a \cdot Tb \cdot m^{\text{op}}_Z,
\]
for all $b : T Z \to Y$ and $a : T Y \to X$. As it is already observed in [5], this is indeed the Kleisli composition for the lax comonad (T, e^{op}, m^{op}) on $\text{Mat}(V)$. It follows from the definition that $*$ preserves suprema on the left side since the ordinary composition of $\text{Mat}(V)$ does so:

$$\bigvee_{i \in I} a_i * a = \left(\bigvee_{i \in I} a_i \right) * a.$$

The V-matrix e^{op}_X acts as a (lax) identity: $a * e^{op}_Y = a$ and $e^{op}_X * a \geq a$, where in the latter inequation becomes an equality whenever e extends to a (strict) natural transformation. Moreover, we have

$$a * (b * c) \leq (a * b) * c$$

provided that $T : \text{Mat}(V) \to \text{Mat}(V)$ is a functor, and

$$a * (b * c) \geq (a * b) * c$$

whenever m extends to a (strict) natural transformation.

2.2 $(T; V)$-algebras as monoids.

Using the co-Kleisli composition, we can express the two fundamental laws – reflexivity and transitivity – of an $(T; V)$-algebra (X, a) as a monoid structure on a: they are equivalent to

$$e^{op}_X \leq a, \quad a * a \leq a. \quad \text{1}$$

This description will be the key to our study of the transitive reflection of a reflexive structure in the next section. Before we do so, we shall have a closer look at a special example.

2.3 Co-Kleisli composition for the ultrafilter monad.

As already mentioned in (1.5), the ultrafilter functor $U : \text{Set} \to \text{Set}$ can be extended to an endofunctor on Rel such that $e : \text{Id} \to U$ extends to a op-lax natural transformation and $m : U^2 \to U$ to a (strict) natural transformation. Explicitly, for a relation $r : X \to Y$ we define $U r : UX \toUY$ by $r(Ur) \eta : \iff r[\eta] \subset \eta \iff r^{op}[\eta] \subset \bar{r}$. We shall make use of the Zariski closure on UX which is defined by $\bar{r} \in \text{cl} \mathcal{A} : \iff \bar{r} \supset \bigcap \mathcal{A}$ for $\bar{r} \in UX$ and $\mathcal{A} \subset UX$, which can be equivalently expressed by $\bar{r} \subset \bigcup \mathcal{A}$. Our next result characterizes those relations $a :UY \to X$ for which e^{op}_X acts as an identity.

Proposition 2 Let $a :UY \to X$. The following assertions are equivalent.

1. $e^{op}_X * a = a$.
2. For each $x \in X$, $a^{op}(x) = \{ \eta \in UY \mid \eta ax \}$ is closed in UY with respect to the Zariski closure.

1 Note that $e^{op}_X \leq a$ implies already $a \leq a * a$.

7
PROOF. It follows easily from the fact that, for each \(\eta \in UY \) and each \(x \in X \), it holds
\[
\eta \subset \bigcup a^{op}(x) \iff \exists Y \in U^2Y \ (m_Y(Y) = \eta \& Y(Ua) \check{=} \).
\]

Given now sets \(X \) and \(Y \), each relation \(a : UY \rightharpoonup X \) defines a function
\[
\psi(a) : PY \to PX, \quad M \mapsto a[M^\#] = \{x \in X \mid \exists \eta \in UY \ (\eta x \& M \in \eta)\}
\]
and, conversely, each function \(c : PY \to PX \) defines a relation \(\phi(c) : UY \rightharpoonup X \) by
\[
\eta \phi(c)x : \iff \forall M \in \eta \ x \in c(M).
\]
We obtain a pair of order-preserving functions
\[
\{\text{functions } c : PY \to PX\} \xleftrightarrow{\phi} \{\text{relations } a : UY \rightharpoonup X\}.
\]

It is easy to see that each function of the form \(\psi(a) \) is additive. Assume now that \(c : PY \to PX \) is additive. We have to show that \(c \leq \phi \psi \). To do so, let \(M \subset Y \) and \(x \in X \) be such that \(x \in c(M) \). Since \(c \) is additive,
\[
i = \{N \subset Y \mid x \notin c(N)\}
\]
is an ideal which does not contain \(M \). Therefore there exists an ultrafilter \(\eta \in UY \) containing \(M \) and disjoint from \(i \). Hence \(\eta \phi(c)x \) and consequently \(x \in \psi(c)(M) \). \(\square \)

2 More precisely, we should write \(\phi_{Y,X} \) and \(\psi_{Y,X} \). For the sake of simplicity we omit the indexes.
Proposition 4 For all \(d : PZ \to PY, \ c : PY \to PX \) and \(b : UZ \to Y, \ a : UY \to X, \)

\[
\psi(e^\text{op}_X) = \text{id}_{PX}, \quad \psi(a \cdot b) = \psi(a) \cdot \psi(b), \\
\phi(\text{id}_{PX}) = e^\text{op}_X, \quad \phi(c \cdot d) \geq \phi(c) \cdot \phi(d);
\]

with equality whenever \(c \) and \(d \) are additive.

PROOF. The equalities \(\phi(\text{id}_{PX}) = e^\text{op}_X \) and \(\psi(e^\text{op}_X) = \text{id}_{PX} \) hold obviously.

Assume first that \(x \in \psi(a \cdot b)(M) \). Hence there exist \(3 \in U^2Z \) and \(\eta \in UY \) such that

\[
M^# \in 3, \quad 3(Ub)\eta \quad \text{and} \quad \eta_{ax}.
\]

Therefore \(\psi(b)(M) = b[M^#] \in \eta \) and consequently \(x \in \psi(a)(\psi(b)(M)) \).

Assume now that \(x \in \psi(a)(\psi(b)(M)) \). Hence there exists \(\eta \in UY \) with \(\eta_{ax} \) and \(b[M^#] = \psi(b)(M) \in \eta \). Therefore we can find \(3 \in UZ \) with \(M^# \in 3 \) and \(3(Ub)\eta \), which implies \(x \in \psi(a \cdot b)(M) \).

Assume now that \(3(\phi(c) \ast \phi(d))x \), that is, there exist \(3 \in U^2Z \) and \(\eta \in UY \) such that

\[
3 = m_X(3), \quad 3U\phi(d)\eta \quad \text{and} \quad \eta\phi(c)x.
\]

Hence \(d(M) \supset \psi\phi(d)(M) = \phi(d)[M^#] \in \eta \) for each \(M \in 3 \), which, together with \(\eta\phi(c)x \), implies

\[
\forall M \in 3 \ x \in c(d(M)).
\]

Finally, assume that \(c \) and \(d \) are additive functions and that \(3\phi(c \cdot d)x \). Hence for all \(M \in 3 \) we have \(x \in c(d(M)) \). This together with additivity of \(c \) and \(d \) implies that

\[
\mathcal{f} = \{d(M) \mid M \in 3\}
\]

is a filterbase disjoint from the ideal

\[
i = \{N \subset Y \mid x \notin c(N)\}.
\]

Therefore there exists \(\eta \in UY \) containing \(\mathcal{f} \) and disjoint from \(i \), hence \(\eta\phi(c)x \).

From \(d(M) = \psi\phi(d)(M) = \phi(d)[M^#] \) we deduce \(\phi(d)[3^#] = \mathcal{f} \). Consequently there exists \(3 \in U^2Z \) containing \(3^# \) such that \(3U\phi(d)\eta \). We conclude then that \(3(\phi(c) \ast \phi(d))x \). \(\square \)

3 The transitive reflection

3.1 Description of the reflection. As it is already worked out in [1] (for \(V = 2 \)) and [3], the transitive reflection of a reflexive lax algebra \((X, a) \)
for a given \(\mathbf{V} \)-admissible monad \((T, e, m)\) can be obtained by the following transfinite process: we define an ascending chain of \(\text{Mat}(\mathbf{V}) \)-morphisms \(\hat{a}_\alpha : TX \to X \) (\(\alpha \) any ordinal larger than 0) by putting

\[
\hat{a}_1 = a, \quad \hat{a}_{\alpha+1} = \hat{a}_\alpha \ast \hat{a}_\alpha, \quad \hat{a}_\lambda = \bigvee_{\alpha < \lambda} \hat{a}_\alpha.
\]

Since there is only a set of functions from \(TX \times X \) to \(\mathbf{V} \), there must exist an ordinal \(\gamma \) such that \(\hat{a}_{\gamma+1} = \hat{a}_\gamma \). This \(\hat{a}_\gamma \) is obviously transitive and \((X, \hat{a}_\gamma)\) is indeed the transitive reflection of \((X, a)\).

Besides the exponential growing of the number of terms in this iteration process, it has another disadvantage for our purpose: it gives us a structure \(\hat{a}_\gamma \) which is a mixture of \(a \)-terms and \(m \)-terms. We will now describe an alternative iteration process where in the induction step \(a \)-terms are only inserted on the left and \(m \)-terms on the right side. Concretely, we will consider

\[
a_{\alpha+1} = a \ast a_\alpha
\]

instead of \(\hat{a}_{\alpha+1} = \hat{a}_\alpha \ast \hat{a}_\alpha \) and then show that \(a_\gamma = a^\alpha \cdot (\mu_X^\alpha)^{\text{op}} \) where \(a^\alpha \) is obtained as an iteration of \(a \) and \(\mu_X^\alpha \) as an iteration of \(m_X \). To do so, we shall use lax associativity of the co-Kleisli composition and therefore assume from now on that \(m \) extends to a (strict) natural transformation.

Let \((X, a)\) be a reflexive lax algebra. We define an ascending chain of \(\mathbf{V} \)-matrices \(a_\alpha : TX \to X \) (\(\alpha \) any ordinal) by putting

\[
a_0 = e_X^{\text{op}}, \quad a_{\alpha+1} = a \ast a_\alpha, \quad a_\lambda = \bigvee_{\alpha < \lambda} a_\alpha.
\]

As before, there must exist an ordinal \(\gamma \) such that \(a_{\gamma+1} = a_\gamma \).

Lemma 5 For all ordinals \(\alpha, \beta > 0 \): \(a_\beta \ast a_\alpha \leq a_{\alpha+\beta} \).

PROOF. Let \(\alpha \) be any ordinal larger than 0. For \(\beta = 1 \) we have

\[
a_{\alpha+1} = a \ast a_\alpha = a_1 \ast a_\alpha.
\]

Assume now \(a_\beta \ast a_\alpha \leq a_{\alpha+\beta} \) for an ordinal \(\beta > 0 \). It implies

\[
a_{\alpha+(\beta+1)} = a_{(\alpha+\beta)+1} = a \ast a_{\alpha+\beta} \geq a \ast (a_\beta \ast a_\alpha) \geq (a \ast a_\beta) \ast a_\alpha = a_{\beta+1} \ast a_\alpha.
\]

Finally, let \(\lambda \) be a limit ordinal such that the assertion is true for all \(\beta < \lambda \). We obtain

\[
a_{\alpha+\lambda} = \bigvee_{\beta < \lambda} a_{\alpha+\beta} \geq \bigvee_{\beta < \lambda} a_\beta \ast a_\alpha = \left(\bigvee_{\beta < \lambda} a_\beta \right) \ast a_\alpha = a_\lambda \ast a_\alpha. \quad \square
\]

Hence we have \(a_\alpha \ast a_\alpha \leq a_{\alpha+a} \) for each ordinal \(\alpha \). As a consequence we obtain that \(a_\gamma \) is transitive: \(a_\gamma \ast a_\gamma \leq a_{\gamma+\gamma} = a_\gamma \). It is easy to see that
id_x : (X, a) → (X, a)γ has indeed the required universal property and therefore it is the transitive reflection of (X, a).

3.2 Separation of terms. Our final goal in this section is to separate the a-part and the m-part in aγ. More precisely, we give a presentation aγ = aγ · (µγ)op with a V-matrix aγ : TγX → X coming from an iteration of a and a natural transformation µγ : Tγ → T obtained from an iteration of m. To do so, we assume from now on that T : Mat(V) → Mat(V) preserves composition of V-matrices with maps from the left. We define, for all ordinals α ≤ β, functors Tα : Set → Set and natural transformations eα,β : Tα → Tβ obtained from an iteration of a and a natural transformation µα : Tα → Tβ by putting

\[
T^0 = \text{Id}, \quad T^{\alpha+1} = TT^\alpha, \quad e^{\alpha,\alpha+1} = e_{T^\alpha},
\]

Moreover, for each ordinal α we define a natural transformation µα : Tα → T by putting

\[
µ^0 = e, \quad µ^{\alpha+1} = m \cdot Tµ^\alpha, \quad µ^\lambda = [µ^\alpha]_{\alpha<\lambda}.
\]

Note that in the limit step we make use of the fact that (µα)α<λ forms a compatible cone, i.e.

\[
µ^{\alpha+1} \cdot e^{\alpha,\alpha+1} = m \cdot Tµ^\alpha \cdot e_{T^\alpha} = m \cdot e_T \cdot µ^\alpha = µ^\alpha.
\]

TγX = colimα<λ TαX is also a lax colimit in Mat(V) in the following sense. For any family (cα : TαX → Z)α<λ satisfying cα+1 · eα+1X ≥ cα, there is a V-matrix c : TγX → Z such that c ≥ cα for each ordinal α < λ. Moreover, c is universal with this property: it holds c ≤ c′ for any c′ : TγX → Z such that c′ ≥ cα for each ordinal α < λ. Explicitly, c is given by

\[
c(\mathcal{X}, x) = \bigvee_{\alpha<\lambda} \bigvee_{a \in T^\alpha X, \ e^\alpha(a) = x} a^\alpha(a, x),
\]

for each \(\mathcal{X} \in T^\lambda X \) and x \(\in X \).

Lemma 6 Let λ be a limit ordinal and assume that the following data is given.

1. A diagram (Xα ↠ Xβ)α≤β<λ in Set with colimit cone (Xα ↠ Xλ)α<λ.
2. A compatible cone (Xα ↠ Y)α<λ with induced map hλ : Xλ → Y.
3. A lax compatible cone (Xα ↠ Z)α<λ with induced V-matrix rλ : Xλ ↠ Z.

Then rλ · hλop = \(\bigvee_{\alpha<\lambda} r^\alpha \cdot h^\alpha \).
PROOF. Let \(y \in Y \) and \(z \in Z \). We have

\[
 r_\lambda \cdot h_\lambda^\text{op}(y, z) = \bigvee_{x \in X_\lambda, \ h_\lambda(x) = y} r_\lambda(x, z)
 = \bigvee_{x \in X_\lambda, \ a < \lambda, \ a \in X_a, \ \ e^{a, \lambda}(a) = x} r_\lambda(a, z)
 = \bigvee_{a < \lambda, \ a \in X_a, \ \ h_\lambda(a) = x} r_\lambda(a, z) \quad \text{(since } h_\lambda \cdot e^{a, \lambda} = h_a)\]

\[
 = \bigvee_{a < \lambda} r_\lambda^\text{op}(y, z). \quad \square
\]

Let \((X, a)\) be a reflexive lax algebra. For each ordinal \(\alpha \) we define a \(V \)-matrix \(a_\alpha : T^\alpha X \to X \) by putting

\[
a_0 = \text{id}_X, \quad a_\alpha^{+1} = a \cdot T a_\alpha, \quad a_\lambda = [a_\alpha]_{\alpha < \lambda}.
\]

In the limit step we make use of the fact that \((a_\alpha)_{\alpha < \lambda}\) forms a lax natural transformation, i.e.

\[
a_\alpha^{+1} \cdot e^{a, \alpha^{+1}}_X = a \cdot T a_\alpha \cdot e_T \geq a \cdot e_X \cdot a_\alpha \geq a_\alpha.
\]

Proposition 7 For each ordinal \(\alpha \), \(a_\alpha = a^\alpha \cdot (\mu^X_\alpha)^\text{op} \).

PROOF. It holds \(a_0 = e^\text{op}_X = \text{id}_X \cdot (\mu^0_X)^\text{op} \). Assume now that the assertion is true for an ordinal \(\alpha \). Then we have

\[
a_{\alpha+1} = a \ast a_\alpha = a \ast (a^\alpha \cdot (\mu^X_\alpha)^\text{op})
= a \cdot T a^\alpha \cdot T (\mu^X_\alpha)^\text{op} \cdot m^\text{op}_X
= a^{\alpha+1} \cdot (\mu^X_{\alpha+1})^\text{op}.
\]

Finally, let \(\lambda \) be a limit ordinal and assume that the assertion is true for each ordinal \(\alpha < \lambda \). Applying Lemma 6 we obtain

\[
a_\lambda = \bigvee_{\alpha < \lambda} a_\alpha = \bigvee_{\alpha < \lambda} a^\alpha \cdot (\mu^X_\alpha)^\text{op} = a_\lambda \cdot (\mu^X_\lambda)^\text{op}. \quad \square
\]

4 The characterization of regular epimorphisms

4.1 “Zigzags”. A regular epimorphism in \(\text{Alg}(T ; V) \) may fail the condition of Proposition 1 simply because \(f \cdot a \cdot T f^\text{op} \) need not be transitive. However,
we have

Proposition 8 A morphism \(f : (X, a) \to (Y, b) \) in \(\text{Alg}(T; V) \) is a regular epimorphism if and only if \(f \) is surjective and \(b \) is the transitive reflection of the reflexive structure \(f \cdot a \cdot T f^{\text{op}} \).

According to the previous section, this reflection is given by \((f \cdot a \cdot T f^{\text{op}})^\gamma = (f \cdot a \cdot T f^{\text{op}})^\gamma \cdot (\mu_{V}^\gamma)^{\text{op}}\) for some ordinal \(\gamma \). Our final aim is to present the first component as the image of a “zigzag” on \(X \).

Let \((X, a)\) be a reflexive lax algebra and \(f : X \to Y \) a map. For each ordinal \(\alpha \) we define a “zigzag” structure \(a_f^\alpha : T^\alpha X \to X \) by putting

\[
\begin{align*}
a_f^0 &= \text{id}_X, & a_f^{\alpha+1} &= a \cdot T f^{\text{op}} \cdot T f \cdot T a_f^\alpha, & a_f^\lambda &= [a_f^\alpha]_{\alpha < \lambda}.
\end{align*}
\]

As before, in the limit step we make use of the fact that \((a_f^\alpha)_{\alpha < \lambda}\) forms a lax natural transformation, i.e.

\[
a_f^{\alpha+1} \cdot e_X^{\alpha+1} = a \cdot T f^{\text{op}} \cdot T f \cdot T a_f^\alpha \cdot e_{T^\alpha X} \geq a \cdot \text{id}_{T^\alpha X} \cdot e_X \cdot a_f^\alpha \geq a_f^\alpha.
\]

Proposition 9 For each ordinal \(\alpha \) and surjective \(f \), it holds

\[
(f \cdot a \cdot T f^{\text{op}})^\alpha = f \cdot a_f^\alpha \cdot T^\alpha f^{\text{op}}.
\]

PROOF. For \(\alpha = 0 \) we have

\[
f \cdot a_f^0 \cdot T^0 f^{\text{op}} = f \cdot \text{id}_X \cdot f^{\text{op}} = \text{id}_Y = (f \cdot a \cdot T f^{\text{op}})^0.
\]

Assume now that the assertion is true for an ordinal \(\alpha \). Then it holds

\[
(f \cdot a \cdot T f^{\text{op}})^{\alpha+1} = (f \cdot a \cdot T f^{\text{op}}) \cdot T((f \cdot a \cdot T f^{\text{op}})^\alpha) = f \cdot a \cdot T f^{\text{op}} \cdot T f \cdot T a_f^\alpha \cdot T^{\alpha+1} f^{\text{op}} = f \cdot a_f^{\alpha+1} \cdot T^{\alpha+1} f^{\text{op}}.
\]

Finally, let \(\lambda \) be a limit ordinal and assume that the assertion is true for each ordinal \(\alpha < \lambda \). An application of Lemma 6 gives

\[
(f \cdot a \cdot T f^{\text{op}})^\lambda = [(f \cdot a \cdot T f^{\text{op}})^\alpha]_{\alpha < \lambda} = [f \cdot a_f^\alpha \cdot T^\alpha f^{\text{op}}]_{\alpha < \lambda} = f \cdot [a_f^\alpha]_{\alpha < \lambda} \cdot T^\lambda f^{\text{op}}.
\]

4.2 The characterization. Putting everything together we have proved

Theorem 10 Let \((T, e, m)\) be a \(V \)-admissible \(\text{Set} \)-monad and assume that \(m \) extends to a (strict) natural transformation and \(T : \text{Mat}(V) \to \text{Mat}(V) \) (strictly) preserves composition of \(V \)-matrices with maps from the left. Then
f : (X, a) → (Y, b) in Alg(T; V) is a regular epimorphism if and only if there exists an ordinal γ such that

\[b = f \cdot a_γ^T \cdot T^\gamma f^{\text{op}} \cdot (\mu_X^\gamma)^{\text{op}} = f \cdot a_γ^T \cdot (\mu_X^\gamma)^{\text{op}} \cdot T f^{\text{op}}. \]

5 Examples

5.1 V-categories. We consider first \(T = 1 \). Since the co-Kleisli composition coincides with the ordinary composition, the transitive reflection of a reflexive structure \(b : X \times X \to V \) is given by \(b^\circ \). Writing \(x \xrightarrow{\xi} x' \) instead of \(a(x, x') = \xi \), Theorem 10 implies

\[\text{Theorem 11} \ A \text{ V-functor } f : (X, a) \to (Y, b) \text{ is a regular epimorphism if and only if, for each } y_1 \xrightarrow{\theta} y_0 \text{ in } (Y, b), \theta \text{ is the supremum of all } \xi_n \otimes \cdots \otimes \xi_1 \text{ obtained from "zigzags" } \]

\[\xymatrix{ x_n \ar[d]^{\xi_n} \ar@{~}[d] \ar@{~}[r]_{x_{n-1} \sim_f x'_{n-1}} \ar[d]^{\xi_{n-1}} & x'_{n-1} \ar@{~}[d] \ar@{~}[r]_{x_{n-2} \sim_f x'_{n-2}} \ar[d]^{\xi_{n-2}} \ar@{~}[r]_{x_1 \sim_f x'_1} \ar[d]^{\xi_1} & x_1 \ar[d]^{\xi_1} \ar@{~}[r]_{x_0 \sim_f x'_0} \ar[d]^{\xi_0} \ar@{~}[r]_{x_{n-2} \sim_f x_0} & x_0 } \]

in \((X, a) \ (n \in \mathbb{N}) \) with \(f(x_n) = y_1 \) and \(f(x_0) = y_0 \), where \(\sim_f \) denotes the kernel relation of \(f \).

Note that this applies in particular to Met and Ord (see (1.7)). In the latter case we obtain the characterization which motivated our work.

5.2 Topological spaces. For \(V = 2 \) and \(T = U = (U, e, m) \) the ultrafilter monad we have \(\text{Alg}(U; 2) \cong \text{Top} \). Theorem 10 specializes to

\[\text{Theorem 12} \ A \text{ continuous map } f : X \to Y \text{ in } \text{Top} \text{ is a regular epimorphism if and only if there exists an ordinal } \gamma \text{ such that, for any } \eta \in UY \text{ and } y \in Y, \]

\[\eta \to y \iff \left\{ \begin{array}{l} \text{there exist } \mathcal{X} \in U^\gamma X \text{ and } x \in X \text{ such that } \\ Uf \cdot \mu_X^\gamma(\mathcal{X}) = \eta \text{ and } f(x) = y \text{ and } \mathcal{X} a_\gamma^T x. \end{array} \right. \]
Quotient maps with respect to a closure operator are characterized in [13]. We will now show how this characterization, specialized to the Kuratowski closure operator, is related to our result. Recall that a pretopology c on a set X is an additive function $c : PX \to PX$ such that $A \subseteq c(A)$ holds for all $A \subseteq X$. A topology is a pretopology which is in addition idempotent, i.e. $c \cdot c = c$. A map $f : (X, c) \to (Y, d)$ between pretopological spaces is continuous if

$$f_* \cdot c \leq d \cdot f_*,$$

which can be equally expressed by

$$f_* \cdot c \cdot f^* \leq d,$$

where $f_* : PX \to PY$ is the direct image and $f^* : PY \to PX$ the inverse image function. For a pretopology c on X and a map $f : X \to Y$ we have the function $F_c = f_* \cdot c \cdot f^* : PY \to PY$, that gives rise to an ascending chain of additive functions $F_c^\alpha : PY \to PY$ (α any ordinal) by putting

$$F_c^0 = \text{id}_{PX}, \quad F_c^{\alpha+1} = F_c \cdot F_c^\alpha, \quad F_c^\lambda = \bigvee_{\alpha<\lambda} F_c^\alpha.$$

Note that F_c and consequently each F_c^α is indeed a pretopology provided that f is surjective. This iteration process must become stationary at some ordinal γ. A continuous map $f : (X, c) \to (Y, d)$ between topological spaces is a quotient map if and only if $d \leq F_c^\gamma$ (see [13]). In (2.3) we have shown that co-Kleisli composition of convergence structures corresponds precisely to composition of additive functions. From this the following lemma can be easily deduced.

Lemma 13 Let X be a topological space, with convergence structure a and closure operator c. Let $f : X \to Y$ be a surjective map. For each ordinal α, it holds

1. $F_c^\alpha = \psi((f \cdot a \cdot U f^{\text{op}})_\alpha) = f_* \cdot \psi(a_f^\alpha \cdot (\mu^X_\alpha)^{\text{op}}) \cdot f^*$ and
2. $\phi(F_c^\alpha) \leq (f \cdot a \cdot U f^{\text{op}})_{\alpha+1} = f \cdot a_f^{\alpha+1} \cdot (\mu^X_{\alpha+1})^{\text{op}} \cdot U f^{\text{op}}.$

Let now $f : X \to Y$ be a continuous map. Let a and b denote the convergence relation of X and Y respectively, and c and d its corresponding closure operator. Then $d = F_c^\gamma$ implies

$$b = \phi(d) = \phi(F_c^\gamma) \leq f \cdot a_f^{\gamma+1} \cdot (\mu^X_\gamma)^{\text{op}} \cdot U f^{\text{op}},$$

and $b = f \cdot a_f^\gamma \cdot (\mu^X_\gamma)^{\text{op}} \cdot U f^{\text{op}}$ implies

$$d = \psi(b) = \psi(f \cdot a_f^\gamma \cdot (\mu^X_\gamma)^{\text{op}} \cdot U f^{\text{op}}) = f_* \cdot \psi(a_f^\gamma \cdot (\mu^X_\gamma)^{\text{op}}) \cdot f^* = F_c^\gamma.$$
Acknowledgements

I would like to thank the referee for her/his valuable critics and suggestions, which led to a substantial improvement of the paper. I am also grateful to Maria Manuel Clementino and Walter Tholen for many fruitful discussions on the subject.

References