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Abstract

A graph G with convex-QP stability number (or simply a convex-QP graph) is
a graph for which the stability number is equal to the optimal value of a convex
quadratic program, say P (G). There are polynomial-time procedures to recognize
convex-QP graphs, except when the graph G is adverse or contains an adverse
subgraph (that is, a non complete graph, without isolated vertices, such that the
least eigenvalue of its adjacency matrix and the optimal value of P (G) are both
integer and none of them changes when the neighborhood of any vertex of G is
deleted). In this paper, from a characterization of convex-QP graphs based on
star sets associated to the least eigenvalue of its adjacency matrix, a simplex-like
algorithm for the recognition of convex-QP adverse graphs is introduced.

Keywords: convex quadratic programming in graphs, star sets, graphs with convex-QP

stability number, simplex-like approach.

1 Introduction

Let G = (V (G), E(G)) be a simple undirected graph with at least one edge, where
V (G) = {1, 2, . . . , n} and E(G) denote respectively the vertex and the edge sets. We
will write ij ∈ E(G) to represent the edge linking nodes i and j of V (G). For each node
i ∈ V (G), NG(i) will denote the set of vertices of G which are adjacent to i and |NG(i)|
will be the vertex i degree (in general, given a finite set S, the number of elements of
S will be denoted by |S|). Given S ⊆ V, the subgraph of G induced by S is defined as
G[S] = (S,E(S)), where E(S) = {ij ∈ E : i, j ∈ S}.

The adjacency matrix AG = [aij ] of G is the symmetric matrix such that aij = 1 if
ij ∈ E(G) and 0 otherwise. The eigenvalues of AG are usually called the eigenvalues of G;
note that they are real because AG is symmetric. The minimum (maximum) eigenvalue
of AG will be denoted by λmin(G) (resp. λmax(G)). It is well known that if G has at least
one edge then λmin(G) ≤ −1. Actually, λmin(G) = 0 iff G has no edges, λmin(G) = −1 iff
G has at least one edge and every component is complete, and λmin(G) ≤ −

√
2 otherwise
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[5]. We will use the notation σ(G) for representing the multiset of eigenvalues of AG.
Then, for λ ∈ σ(G), E(λ) = ker(AG − λIn) is the eigenspace of AG associated to the
eigenvalue λ (in general, ker(M) will denote the null space of a matrix M).

A stable set (or independent set) of G is a subset of nodes of V (G) whose elements are
pairwise nonadjacent. The stability number (or independence number) of G is defined
as the cardinality of a largest stable set and is usually denoted by α(G). The stable set
problem on G is to find a maximum stable set in G, i.e., a stable set with α(G) nodes.

For any graph G, the following convex quadratic program P (G) introduced in [7]
allows to obtain the upper bound υ(G) on α(G), i.e.,

(P (G)) α(G) ≤ υ(G) = max{2eTx− xT (H + I)x : x ≥ 0}, (1)

where e is the n × 1 all-ones vector, T stands for the transposition operation, I is the
identity matrix of order n and H = AG/τ with τ = −λmin(G). Since G has at least one
edge (i.e., E(G) 6= ∅), AG is indefinite since its trace is zero. Hence λmin(H) = −1 and this
guarantees the convexity of P (G) because H + I is positive semidefinite. Consequently,
υ(G) can be computed in polynomial time.

The graphs that satisfy α(G) = υ(G) were introduced in [7] and subsequently studied
in [9, 3]. They are currently known as graphs with convex-QP stability number (or
simply convex-QP graphs, where QP means quadratic programming), a denomination
introduced in [3].

The upper bound υ(G) defined in (1) constitutes a quadratic programming approach
to the stable set problem. It should be mentioned that we may find in the literature several
different quadratic programming approaches to combinatorial problems in graphs, as it
is the case, for instance, in [1, 2, 6, 8, 10].

This paper is devoted to the recognition of convex-QP graphs. Specifically, we use
the theory of star complements (see [4, p. 136]) for giving a new characterization of
graphs with convex-QP stability number. Applying this characterization to the so called
adverse graphs (see below), we show how a simplex algorithm can be used for deciding if
a given adverse graph is a convex-QP graph.

The remaining sections of this paper are organized as follows. In section 2 we will
review and extend some facts about the convex-QP graphs to be used in the sequel.
Next, in section 3, some results which are fundamental to the theory of star complements
are recalled. Also, the above mentioned characterization of convex-QP graphs is proved,
introducing the concept of star solutions of P (G). In section 4, the notion of adverse graph
is precisely defined and some issues related to the recognition of convex-QP graphs are
recalled. The open question of recognizing convex-QP adverse graphs, which is studied
in the next sections, is stated. In section 5, several properties of adverse graphs are
established and the equivalence between a star solution and a basic feasible solution of
a linear problem with a set of constraints defined by a particular star set for λmin(G)
is proved. In section 6, a simplex algorithm for recognizing if a given adverse graph is
a convex-QP graph is given as well as some computational experiments. Finally, some
conclusions are presented in section 7.
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2 Convex-QP Graphs

If x is an optimal solution of convex program P (G) given in (1), the Karush-Kuhn-Tucker
optimality conditions guarantee the existence of vector y ≥ 0 such that

(H + I)x = e+ y and xT y = 0. (2)

Such vector y is called the complementary solution associated to x and is unique as it
was proved in [9].

Theorem 1 [9] Let G be a graph with at least one edge. If x∗
1 and x∗

2 are optimal solutions
for program P (G), the difference x∗

1 − x∗
2 belongs to E(λmin(G)). Additionally, y∗1 = y∗2 ,

where y∗1 and y∗2 are the complementary solutions associated to x∗
1 and x∗

2, respectively.

When y = 0 in (2), x is a critical point for the objective function of P (G) and then
all the optimal solutions are also critical points for that objective function. In such case,
a nonnegative real vector x is an optimal solution of P (G) if and only if it is a solution
of the system

(AG + τI) x = τe. (3)

Based on the Karush-Khun-Tucker conditions (2) the following necessary and suffi-
cient optimality conditions for P (G) can be obtained.

Theorem 2 [3] Consider a graph G with n vertices and at least one edge and let aiG be
the i-th row of the matrix AG. Then the n-tuple of real numbers x is an optimal solution
P (G) if and only if

∀i ∈ V (G), xi = max

{

0, 1− aiG x

τ

}

,

where xi is the i-th entry of x.

According to Theorem 2, considering a graph G of order n with at least one edge, it
is immediate that an optimal solution x and the optimal value υ(G) of P (G), have the
following properties:

∀i ∈ V (G) : 0 ≤ xi ≤ 1 and 1 ≤ υ(G) ≤ n.

Furthermore,
∀U ⊂ V (G), υ(G− U) ≤ υ(G).

Another consequence of Theorem 2 is the following:

Corollary 2.1 Let G be a graph with at least one edge and x a 0-1 optimal solution of
P (G). Then the vertex subset S = {i ∈ V (G) : xi = 1} is a maximum stable set and
α(G) = υ(G).

Proof. According to the optimality conditions of Theorem 2, S is a stable set (since
every vertex u adjacent to a vertex v ∈ S is such that xu = 0 and thus u 6∈ S). Since x
is the characteristic vector of S, υ(G) = |S|. Therefore, from |S| = υ(G) ≥ α(G) ≥ |S|
the result follows.

From now on, the class of convex-QP graphs is denoted byQ and the graphs belonging
to Q will also be called Q-graphs.
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3 A Characterization of Q-graphs Based on Star Sets

In [7] a characterization of Q-graphs was given. This section presents a new character-
ization of Q-graphs based on star sets. With this aim we recall some basic concepts of
the theory of star complements (see [4, pp. 136-140]).

Considering a graphG with n vertices and an eigenvalue λ ∈ σ(G), let P be the matrix
of the orthogonal projection of Rn onto E(λ) with respect to the standard orthonormal
basis {e1, . . . , en} of Rn. Then the set of vectors Pej (j = 1, . . . , n) spans E(λ) and
therefore there exists X ⊆ V (G) such that the vectors Pej (j ∈ X) form a basis for E(λ).
Such a set X is called a star set for λ in G. If X is a star set for the eigenvalue λ then
X̄ = V (G) \X is said a co-star set while G−X = G

[

X̄
]

is called a star complement for
λ in G.

The next result, which can be seen in [4], gives other two ways for characterizing star
sets.

Theorem 3 [4, Proposition 5.1.1] Let G be a graph with λ ∈ σ(G) as an eigenvalue of
multiplicity k > 0. The following conditions on a subset X of V (G) are equivalent:

1. X is a star set for λ;

2. R
n = EG(λ)⊕ V, where V =

〈

ei : i ∈ X̄
〉

;

3. |X | = k and λ is not an eigenvalue of G−X.

0

1

−2 0

3

−2

Figure 1: Graph whose vertices of star sets are labelled with the eigenvalues.

In Figure 1, the vertices having the same label form a star set for the eigenvalue
that coincides with the label. For instance, −2 is an eigenvalue of multiplicity 2 and if
we eliminate the two vertices labelled −2, we obtain a graph that does not have −2 as
eigenvalue.

We recall another result, known as the Reconstruction Theorem, that states another
characterization of star sets needed in the sequel.

Theorem 4 [4, pp. 140] Let X ⊂ V (G) be a set of vertices of graph G, X̄ = V (G)\X
and assume that G has adjacency matrix AG =

[

AX NT

N CX̄

]

, where AX and CX̄ are

the adjacency matrices of the subgraphs induced by X and X̄, respectively. Then X is a
star set for λ in G if and only if λ is not an eigenvalue of CX̄ and

AX − λIX = NT (CX̄ − λIX̄)−1N,
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where IX and IX̄ are respectively the identity matrices of orders |X | and
∣

∣X̄
∣

∣ .
Furthermore, E(λ) is spanned by the vectors

[

x

− (CX̄ − λI)
−1

Nx

]

, (4)

where x ∈ R
|X|.

Returning to problem P (G), we now introduce the star solution concept.

Definition 1 An optimal solution x of P (G) is called a star solution of P (G) if there
exists a star set X for λmin(AG) such that xi = 0, for all i ∈ X. The star set X is said
to be associated with the star solution x and vice-versa.

For example, denoting the Petersen graph depicted in Figure 2 by G, an optimal
solution x of P (G) associated to the star set X = {2, 4, 8, 10} for λmin(G) = −2 is
x2 = x4 = x8 = x10 = 0, x3 = x5 = x6 = x7 = 1 and x1 = x9 = 0.

1

2

3 4

5
6

7

8 9

10

Figure 2: The Petersen graph

The main result of this section follows from the next two theorems. To prove the first
one it is worth to recall a lemma of [4]. The second theorem was proved in [3] and hence
it will be presented without proof.

Lemma 1 [4, pp. 139] If the column space of the symmetric matrix

[

C DT

D E

]

has the

columns of

[

C
D

]

as a basis, then the columns of C are linearly independent.

This lemma allows to prove:

Theorem 5 Let G be a graph with vertices 1, 2, . . . , n and at least one edge. If x is a 0-1
optimal solution of P (G) and S = {i ∈ V (G) : xi = 1} , then there is a star complement
for λmin(G) containing the subgraph of G induced by S. Consequently, x is a 0-1 star
solution of P (G).
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Proof. Since P (G) has a 0-1 optimal solution x, from Corollary 2.1 we may conclude
that the vertex set S = {i ∈ V (G) : xi = 1} is a maximum stable set and G is a
convex-QP graph. Let us assume, without loss of generality, that S = {1, . . . , α(G)}.
Then, considering the matrix AG−λmin(G)I, it is immediate that the first α(G) columns
are linearly independent. Denote by c1, . . . , cn the columns of matrix A − λmin(G)I
and let {cj : j ∈ Y } be the basis of the column space of A − λmin(G)I, obtained by
deleting each column which is a linear combination of the previous ones. It is immediate
that {1, . . . , α(G)} ⊆ Y . By Lemma 1, we conclude that the principal submatrix of
A− λmin(G)I determined by Y is invertible, hence the subgraph induced by Y does not
have λmin(G) as an eigenvalue. Since |Y | = n− dim(E(λmin(G)), Ȳ = V (G)\Y is a star
set for λmin(G) and the subgraph of G induced by Y is a star complement for λmin(G)
containing the subgraph induced by S. Finally, since xi = 0, for all i ∈ Ȳ , x is a star
solution of P (G).

Theorem 6 [3] Let G be a graph such that, for any subset of vertices U ⊆ V (G), G−U
has at least one edge and υ(G − U) = υ(G). If λmin(G) < λmin(G − U), then G is a
Q-graph.

We may now present the main result of this section.

Theorem 7 Let G be a graph with at least one edge. Then, G is a Q-graph if and only
if there is a star set X associated to the eigenvalue λmin(G) such that υ(G−X) = υ(G).

Proof. We will start by proving the sufficient condition. If G−X has no edges, we have
that α(G−X) = υ(G−X) = |V (G−X)| and also

υ(G) ≥ α(G) ≥ α(G−X) = υ(G−X) = υ(G).

Consequently, α(G) = υ(G). Otherwise, if E(G−X) 6= ∅, and X is a star set for λmin(G),
then λmin(G) is not an eigenvalue for G −X and hence λmin(G) < λmin(G −X). Since
we have assumed that υ(G−X) = υ(G), Theorem 6 implies that G ∈ Q.

Conversely, in order to prove the necessary condition, suppose that α(G) = υ(G). If x
is the characteristic vector of a maximum stable set of G, then x is a 0-1 optimal solution
for P (G). Theorem 5 assures that x is a star solution for P (G). Calling X to the star set
for λmin(G) associated to x, we have that α(G −X) = α(G) and hence

υ(G−X) ≥ α(G−X) = α(G) = υ(G);

as a consequence, taking into account that υ(G−X) ≤ υ(G), we have υ(G−X) = υ(G).

4 Recognizing Q-graphs: The Open Question

This section is concerned with the recognition problem which consists on being able
to know whether or not a given graph belongs to Q. This problem has resisted to be
completely solved and is currently an interesting open question. This difficulty has its
origin in the recognition of the so called adverse graphs which are defined as follows:

Definition 2 A graph G without isolated vertices is called an adverse graph if:
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• υ(G) and λmin(AG) are integers;

• For any vertex i ∈ V (G), υ(G−NG(i)) = υ(G);

• For any vertex i ∈ V (G), λmin(G−NG(i)) = λmin(G).

Note that if G is an adverse graph the equalities υ(G− i) = υ(G) and λmin(G− i) =
λmin(G) are also valid for any vertex i ∈ V (G). In fact, since G has no isolated vertices,
for any vertex i ∈ V (G), there exists a vertex j such that i ∈ NG(j) and then, taking
into account the above definition and the inequalities

υ(G−NG(j)) ≤ υ(G− i) ≤ υ(G),

the equality υ(G−i) = υ(G) holds. By similar arguments we may conclude that λmin(G−
i) = λmin(G) for any vertex i ∈ V (G).

1 2 3 4

56789

10 11 12 13

Figure 3: An adverse graph G such that λmin(G) = −2 and α(G) = υ(G) = 5.

Among others, the Petersen graph (Figure 2) and the graph depicted in Figure 3 are
two examples of adverse graphs.

Presently, we do not know how to recognize in polynomial-time whether or not an
adverse graph belongs to Q. This open question would be solved by a positive answer to
the following conjecture: “All adverse graphs belong to Q ”. Despite all performed com-
putational tests with adverse graphs support this conjecture, it remains unsettled until
now. Meanwhile, the Algorithm 1 recalled below, known as the Recognition Algorithm,
recognizes in polynomial-time if a given graph belongs or not to Q or, if none of these
conclusions is possible, identifies an adverse subgraph of that graph. This algorithm is
based on Theorem 6 presented in the above section as well as on several results proved
in [3], which are recalled next.

Theorem 8 [3] Let G be a graph with at least one edge.

(a) G belongs to Q if and only if each of its components belongs to Q.

(b) If ∃i ∈ V (G) such that υ(G) 6= max{υ(G− i), υ(G−NG(i))}, then G /∈ Q.

(c) Consider that ∃i ∈ V (G) such that υ(G− i) 6= υ(G−NG(i)).

(c.1) If υ(G) = υ(G− i) then G ∈ Q if and only if G− i ∈ Q;

(c.2) If υ(G) = υ(G−NG(i)) then G ∈ Q if and only if G−NG(i) ∈ Q.
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In the next section we give some properties of the adverse graphs having in mind to
design a simplex recognition algorithm for those graphs.

Algorithm 1 Recognition Algorithm

Require: A graph G with vertex set V and at least one edge.
Ensure: Whether or not G ∈ Q or find out an adverse subgraph of G.
1. Let Iso(G) be the set of isolated vertices of G; set G := G− Iso(G)
2. if ∃v ∈ V such that λmin(G) < λmin(G−NG(v)) then
3. If υ(G− v) = υ(G−NG(v)) then G ∈ Q → STOP endif
4. endif
5. if ∃v ∈ V such that υ(G− v) 6= υ(G−NG(v)) then
6. if υ(G) /∈ {υ(G− v), υ(G−NG(v))} then
7. G /∈ Q → STOP
8. else
9. if υ(G) = υ(G− v) then

10. G := G− v
11. else
12. G := G−NG(v)
13. endif
14. goto step 1.
15. endif
16. else
17. if ∃v ∈ V such that υ(G) 6= υ(G− (v)) then
18. G /∈ Q → STOP
19. else
20. G is adverse → STOP
21. endif
22. endif

5 Properties of Adverse Graphs

Proposition 1 If G is an adverse graph, then x∗ is an optimal solution of P (G) if and
only if x∗ ≥ 0 and it is a critical point of the objective function, i.e., x∗ is a nonnegative
solution of the system (3).

Proof. If x∗ is nonnegative and a solution of (3), then x∗ is a critical point for the
objective function of P (G), hence it is an optimal solution of P (G).

Conversely, let us assume that x∗ is an optimal solution of P (G). Since x∗ ≥ 0, it
remains to see that x∗ satisfies system (3). Let i be a vertex of G and x̄∗ be an optimal
solution of P (G − NG(i)). Thus x̄∗

i = 1 and, since G is adverse, υ(G) = υ(G − NG(i))
and λmin(AG) = λmin(AG−NG(i)); then vector x̃∗ defined as

x̃∗
j =

{

x̄∗
j if j is a vertex of G−NG(i)
0 if j ∈ NG(i)

,

is an optimal solution of P (G). Therefore, the coordinate of the complementary solution
associated to x̃∗

i is null and by Theorem 1, the same is true for the coordinate i of any
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optimal solution of P (G). Performing the same reasoning to any other vertex of G, we
conclude that the complementary solution associated to any optimal solution of P (G) is
null, hence x∗ satisfies system (3), as required.

The next results are stated for graphs G whose optimal solutions of P (G) are critical
points of the objective function. After Proposition 1 they can also be viewed as adverse
graph properties.

Theorem 9 Let G be a graph with n vertices and at least one edge whose optimal solu-
tions of P (G) are critical points of the objective function.

(a) If x∗ is an optimal solution of P (G), any nonnegative vector x̂ is an optimal solution
of P (G) if and only if it has the form

x̂ = x∗ +

k
∑

i=1

βiui, (5)

where the set {u1, . . . , uk} ⊂ R
n is a basis for E(λmin(G)) and βi ∈ R, i = 1, . . . , k.

(b) The following equality holds,

υ(G) = max{eTx : x ≥ 0 and satisfies (3)}, (6)

and the optimal solutions of this linear programming problem and of P (G) coincide.

Proof. Note first that the necessary condition of (a) follows from Theorem 1. To prove
the sufficient condition of (a), suppose that the nonnegative vector x̂ is obtained in (5).
Since x∗ is a critical point of the objective function of P (G), considering x∗ in (3) and
multiplying on the left this equation by ui (i = 1, . . . , k), we obtain

uT
i (AG + τI)x∗ = τuT

i e ⇔ uT
i e = 0, i = 1, . . . , k, (7)

taking into account that E(λmin(G)) = ker(AG + τI). Hence the eigenspace E(λmin(G))
is orthogonal to the all-ones vector e ∈ R

n, and then eT x̂∗ = eTx∗ = υ(G), i.e., x̂∗ is an
optimal solution of P (G).

To prove (b), suppose that x̂ is an optimal solution of (6). Then x̂ is a critical point
for the objective function of P (G), hence it is an optimal solution of P (G). Conversely,
if x̂ is an optimal solution of P (G), and x̂ has the form (5) by (a), hence it is a feasible
solution of (6). As the objective function of (6) is constant over all vectors defined in
(5), x̂ is also an optimal solution of (6). As in both cases υ(G) = eT x̂, the equality (6)
follows.

We recall now one more result concerning problem P (G).

Theorem 10 [7] Let G be a graph with at least one edge. Then P (G) has an optimal
solution x such that xi = 0, for some vertex i ∈ V (G).

Below, we generalize this result for graphs whose optimal solutions are critical points
of the objective function of P (G).
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Theorem 11 Let G be a graph with n vertices and at least one edge. If the optimal
solutions of P (G) are critical points of the objective function, then there exists an optimal
solution x∗ with at least k null coordinates, where k = dim E(λmin(G)).
Furthermore, there exists a basis of E(λmin(G)) formed by k vectors u1, . . . , uk ∈ R

n such
that the submatrix of U = [u1 · · · uk] indexed by the rows corresponding to the k null
components of x∗ coincides with the identity matrix of order k.

Proof. Let us assume that the optimal solutions of P (G) are critical points of the objec-
tive function and x∗ is one of these optimal solutions. Consider a basis B = {u1, . . . , uk}
for E(λmin(G)) and apply the following procedure, where uij will denote the i-th coordi-
nate of uj, j = 1, . . . , k.

The nullifying components procedure

1. set j := 1;
2. while j ≤ k do

3. compute
x∗

r

urj
:= mini=1,...,n

{

x∗

i

uij
: uij > 0

}

;

4. set x̃∗ := x∗ − x∗

r

urj
uj ;

5. while 1 ≤ q ≤ k and q 6= j do
6. uq := uq − urq

urj
uj ;

7. end while
8. set uj :=

1
urj

uj;

9. set x∗ := x̃∗ and j := j + 1;
10. end while

Note that the existence of a positive coordinate of uj in step 3 is guaranteed (other-
wise, the equalities (7) are not fulfilled). Then, it is immediate that, after the application
of this procedure, x∗ and the eigenvectors u1, . . . , uk are in the required conditions.

The next result shows that the above procedure (in the proof of Theorem 11) outputs
a star solution.

Theorem 12 Let G be a graph with n vertices and at least one edge. Assume also that
the optimal value of P (G) is attained at the critical points of the objective function. Then,
the optimal solution of P (G) obtained after the application of the nullifying components
procedure (used in the proof of Theorem 11) is a star solution of P (G).

Proof. Suppose that λmin(G) has multiplicity k and consider the k-null coordinates
optimal solution x∗ of P (G) and the corresponding (k − 1)-null coordinates basis B of
E(λmin(G)) determined by the nullifying components procedure of Theorem 11. Let
X ⊂ V (G) be the vertex subset of G, corresponding to the k coordinates of x∗ nullified
by this procedure. It suffices to prove that X is a star set for λmin(G) in G.

Without loss of generality, let us assume that the first k coordinates of x∗ correspond
to the vertices in X. Thus, the matrix U, whose columns are the eigenvectors in B, takes
the form

U =

[

Ik
M

]

,

where Ik is the identity matrix of order k and M is a (n− k)× k-matrix.
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According to Theorem 3-condition 2, X is a star set associated to λmin(G) if and only
if Rn = E(λ)⊕V , with V = 〈ej : j ∈ V (G)\X〉. Juxtaposing on the right of the matrix U =
[

Ik
M

]

the unitary vectors ej spanning V , the full rank square matrix

[

Ik O
M In−k

]

is

obtained. As its columns form a basis of Rn, we have Rn = E(λmin(G))+V . Furthermore,
since dim E(λmin(G)) = k and dimV = n− k, then E(λmin(G)) ∩ V = {0}.

From this theorem and comparing the eigenvectors in Theorem 4 with the ones stated
in Theorem 11 we have the following result.

Theorem 13 Let G be a graph with n vertices and at least one edge. Assume that the
optimal value of P (G) is attained at the critical points of the objective function and that
λmin(G) has multiplicity k. If X ⊂ V (G) is the star set for λmin(G) associated to the star
solution of P (G) stated by Theorem 11, then the (k − 1)-null coordinates eigenvectors uj

determined by the nullifying components procedure coincide with those obtained from (4)
replacing λ by λmin(G) and x by ẽj , i.e.,

uj =

[

ẽj
−(CX̄ + τIX̄)−1N ẽj

]

, j = 1, . . . , k,

where ẽj denotes the j-th vector of the canonical basis of Rk.

Proof. Note first that the vectors uj, j = 1, . . . , k, produced by the nullifying components

procedure can be written in the form

[

ẽj
ũj

]

, where ũj ∈ R
n−k. Let us suppose that, for

some j ∈ {1, . . . , k},
[

ẽj
ũj

]

6=
[

ẽj
−(CX̄ + τIn−k)

−1Nẽj

]

. (8)

Since the eigenvalue equation

[

AX NT

N CX̄

]

u = λmin(G) u implies

Nẽj + CX̄ ũj = λmin(G)ũj , (9)

Nẽj − CX̄(CX̄ + τIX̄)−1N ẽj = −λmin(G)(CX̄ + τIX̄)−1Nẽj, (10)

subtracting (9) to (10) it follows

CX̄

[

−(CX̄ + τIn−k)
−1N ẽj − ũj

]

= λmin(G)
[

−(CX̄ + τIn−k)
−1N ẽj − ũj

]

.

Therefore, taking into account the inequality (8), −(CX̄ + τIn−k)
−1N ẽj − ũj is an

eigenvector of CX̄ associated to the eigenvalue λmin(G), a contradiction.

If G is an adverse graph, from Proposition 1, the optimal solutions of P (G) are critical
points for the objective function, that is, they are the nonnegative solutions of the system
(3). If X is a star set for λmin(G), using the notation introduced in Theorem 4, we can
write that system in the form

[

AX + τIX NT

N CX̄ + τIX̄

]

x = τ

[

eX
eX̄

]

, (11)
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where eX̄ and eX are the all-ones vectors of lengths
∣

∣X̄
∣

∣ and |X | , respectively.
The kernel of the coefficient matrix of system (11) is the subspace E(λmin(G)). There-

fore, since λmin(G) is not an eigenvalue of CX̄ , the submatrix CX̄ + τIX̄ is nonsingular
and the row space of the coefficient matrix of system (11) is spanned by the last

∣

∣X̄
∣

∣

rows. Thus if system (11) is consistent, it is equivalent to the following:

[

N CX̄ + τIX̄
]

x = τeX̄ . (12)

Theorem 14 Let G be a graph with n vertices and at least one edge. Assume that
the optimal value of P (G) is attained at the critical points of the objective function. If
X ⊂ V (G) is a star set for λmin(G) and the critical points of the objective function of
P (G) are the nonnegative solutions of system (11), then x is a star solution of P (G) if
and only if x is a basic feasible solution of system (12).

Proof. If x is a star solution of P (G) associated to the star set X ⊂ V (G), then

x =

[

xN

xB

]

, with xN = 0, where xN denotes the subvector of x with indices in X and

thus the columns of the submatrix N are indexed by the vertices in X , and xB is the
subvector of x with indices in V (G) \X which is also the index set of the columns of the
matrix B = CX̄ + τIX̄ . Now, multiplying both sides of (12) by (CX̄ + τIX̄)−1 we obtain

[

(CX̄ + τIX̄)−1 N IX̄
]

[

xN

xB

]

= τ (CX̄ + τIX̄ )−1 eX̄ .

Since xN = 0, then it is immediate that

[

xN

xB

]

=

[

0

τ (CX̄ + τIm)−1 eX̄

]

is a basic

feasible solution of the system (12) corresponding to the reduced simplex tableau:

xN

xB (CX̄ + τIm)−1 N τ (CX̄ + τIm)−1 eX̄

If x′ is a star solution of P (G), associated to a star set X ′ of λmin(G) = −τ such that

X ′ 6= X , then using the same arguments as above x′ =

[

xN ′

xB′

]

is a basic feasible solution

of the system
[

N ′ CX̄′ + τIX̄′

]

x = τeX̄′ ,

such that xN ′ = 0 and xB′ = τ (CX̄′ + τIX̄′ )
−1 eX̄′ .

It is immediate that x′ is also a solution of the system (12). Furthermore, since the rows
of the coefficient matrix of the system (12) span the row space of the coefficient matrix
of the system (11), there is a |X̄ ′| × |X̄ ′| square matrix L and a permutation matrix P
of order n such that

[

N ′ CX̄′ + τIX̄′

]

= L
[

N CX̄ + τIX̄
]

P. (13)

The right hand side of the equation (13) is a linear combination of the rows of the matrix
[

N CX̄ + τIX̄
]

and a permutation of its columns. Furthermore, the restriction of this
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linear combination to the columns of the submatrix defined by indices in X̄ ′ is equal to
the invertible matrix CX̄′+τIX̄′ . Thus, this submatrix is also invertible and consequently
x′ is a basic feasible solution for the system (12).

Conversely, let x =

[

xN

xB

]

be a basic feasible solution of the system (12) and let us

assume that the corresponding reduced simplex tableau has the form

xN

xB B−1N τB−1eX̄

From this simplex tableau, we obtain the following linear independent vectors which
spans the kernel of the coefficient matrix of the system (12),

[

ej
−B−1Nej

]

, for j ∈ JN ,

where B = CX̄ +τIX̄ and JN denotes the set of nonbasic indices. It is clear that all these
vectors belong also to the kernel ofAG+τIn and then they span the eigenspace E(λmin(G))
(see (4) in Theorem 4). Therefore, supposing that the cardinality of the set of nonbasic

indices JN is equal to k, juxtaposing on the right of the matrix U =

[

Ik
−B−1N

]

, the

unitary vectors ej, with j ∈ V (G) \ JN , a full rank square matrix

[

Ik O
−B−1N In−k

]

of order n is obtained. Therefore, Rn = EG(λ) ⊕ V , with V = 〈ej : j ∈ V (G) \ JN 〉.
Finally, applying Theorem 3-condition 2, it follows that JN is a star set associated to
λmin(G) and then x is a star solution for P (G).

6 A Simplex Algorithm for Recognizing Adverse Graphs

From the proof of Theorem 7, we may conclude that when G ∈ Q every characteristic
vector of a maximum stable set of G is a star solution of P (G). If the graph G is adverse,
we conclude by (6) in Theorem 9-(b) that

υ(G) = max{eTx : x ≥ 0 and satisfies (12)}.

Therefore, by Theorem 14, we may apply the fractional dual algorithm for ILP with
Gomory cuts (see for example [11]) for deciding if there exists (or not) a 0-1 star solution
of P (G). This algorithm can be started with the basic feasible solution obtained by the
nullifying components procedure of Theorem 11. Thus the following can be asserted:

Theorem 15 If G is an adverse Q-graph, the fractional dual algorithm for ILP with
Gomory cuts yields a 0-1 star solution of P (G) in a finite number of iterations.

13



We applied the fractional dual algorithm initialized with the basic feasible solution
determined by the nullifying components procedure to adverse graphs whose names are
shown in the first column of Table 1. The subsequent columns present the order n, the
least eigenvalue λmin(G) and its multiplicity k. In the next columns, for each graph
G, the values of υ(G) are recorded as well as the conclusion obtained by the algorithm
relatively to the question “G ∈ Q?” , the number of cutting planes used (ncp) and the
times (in seconds) spent by the overall algorithm.

It should also be noted that the first eight graphs presented in Table 1 are DIMACS
clique benchmark graphs or complements of these graphs (preceded by “c-”). LD13 is
the graph of Figure 3, LD16=L(LD13-{4,5,13}), LD38=L(LD16), LD152=L(LD38) and
LD1112=L(LD152) (here, L stands for linegraph).

The tests were carried out on a computer using an Intel(R) Core(TM) i7-2630QM /
2.0GHz processor with 6.0 Gb RAM andWindows 7 Home Premium as the operating sys-
tem. The interactive matrix language MATLAB (version 7.6) was used for implementing
the fractional dual algorithm.

Adverse Graph G n λmin(G) k υ(G) G ∈ Q? ncp time (sec.)
johnson8-2-4 28 −5 7 7 Yes 1 0.02
johnson16-2-4 120 −13 15 15 Yes 0 0.02
c-johnson8-2-4 28 −2 20 4 Yes 0 0.02
c-johnson8-4-4 70 −4 14 14 Yes 0 0.00
c-johnson16-2-4 120 −2 104 8 Yes 0 0.03
c-johnson32-2-4 496 −2 464 16 Yes 0 0.53
c-hamming6-2 64 −6 1 32 Yes 0 0.05
c-hamming8-2 256 −8 1 128 Yes 0 0.05
Petersen 10 −2 4 4 Yes 0 0.02
LD13 13 −2 4 5 Yes 0 0.00
LD16 16 −2 6 5 Yes 1 0.03
LD38 38 −2 22 8 Yes 0 0.00
LD152 152 −2 114 19 Yes 1 0.11
LD1112 1112 −2 960 76 Yes 6 35.6

Table 1: Computational results

From the results presented in Table 1 some conclusions are in order. For almost all
tested adverse graphs, the basic feasible solution obtained by the nullifying components
procedure of Theorem 11 to initialize the fractional dual algorithm is integer. Only
in four cases it was necessary to proceed with the Gomory cuts in order to obtain an
integer solution. On the other hand, it should be noted that the times spent by our
implementation of fractional dual algorithm are very reduced.

7 Conclusions

In section 4 it was recalled an efficient procedure that recognizes convex-QP graphs (i.e.,
Q-graphs), except when the graph is adverse or contains an adverse subgraph. We show

14



in this paper how a simplex algorithm can be used for recognizing adverse Q-graphs.
The designing of the algorithm follows from a new characterization of Q-graphs based on
star sets given in section 3 as well as from a set of properties of adverse graphs proved
in section 5.

With the simplex like algorithm presented in this paper we now have a finite procedure
for recognizing Q-graphs, even though it is not a polynomial algorithm. As a matter of
fact, it remains as an open question to know how to recognize Q-graphs in polynomial-
time. As referred in section 4, this open question would be solved by a positive answer
to the following conjecture: “All adverse graphs belong to Q”. It should be noted that
this conjecture has been supported by several performed computational tests, including
those whose results are presented in Table 1. This conjecture remains as an unsolved
open question which requires additional work to be answered.

Another issue that can be discussed related with the graphs of DIMACS collection
used in our tests is the following: one can ask if there are many adverse graphs in that
collection or even if some particular family just includes adverse graphs. Relatively to
the first question we can say that most DIMACS graphs used in our experiments over
time are not Q-graphs. This is well illustrated by the computational results for graphs
of DIMACS collection presented in [9]. On the other hand, we found out that some (but
not all) hamming graphs are adverse and that all johnson graphs we have tested are also
adverse. However we don’t know if this is true for all johnson graphs and it may be
another good research question for the near future.
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