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Abstract. We give a short survey of a general discretization method
based on the theory of reproducing kernels. We believe our method will
become the next generation method for solving analytical problems by
computers. For example, for solving linear PDEs with general boundary
or initial value conditions, independently of the domains. Furthermore,
we give an ultimate sampling formula and a realization of reproducing
kernel Hilbert spaces.
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1. The inverse by using a finite number of data

Let H be a Hilbert (possibly finite-dimensional) space, and consider E to be
an abstract set and h a Hilbert H-valued function on E. Then, we consider
the linear transform

f(p) = (f ,h(p))H, f ∈ H , (1.1)

from H into the linear space F(E) comprising all the complex valued func-
tions on E. We form a positive definite quadratic form function K(p, q) on
E × E defined by

K(p, q) = (h(q),h(p))H on E×E. (1.2)

Proposition 1.1.
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(I) The range of the linear mapping (1.1) on H is characterized as the
reproducing kernel Hilbert space HK admitting the reproducing kernel
K(p, q).

(II) In general, we have the inequality ‖f‖HK
≤ ‖f‖H. Here, for any member

f of HK there exists a uniquely determined f
∗ ∈ H satisfying f(p) =

(f∗,h(p))H on E and

‖f‖HK
= ‖f∗‖H. (1.3)

(III) In general, we have the inversion formula in (1.1) in the form

f 7→ f
∗ (1.4)

in (II) by using the reproducing kernel Hilbert space HK .

The typical ill-posed problem (1.1) in H will become a well-posed prob-
lem in HK , see the details [7, 8, 9].

Our idea is based on the approximate realization of the abstract Hilbert
space HK by taking a finite number of points of E. This is done because, in
general, the reproducing kernel Hilbert spaceHK has a complicated structure.

By taking a finite number of points {pj}
n
j=1, we set

K(pj , pj′) := ajj′ . (1.5)

Then, if the matrix An :=‖ ajj′ ‖ is positive definite, then, the corresponding
norm in HAn

comprising the vectors x = (x1, x2, ..., xn)
T is determined by

‖x‖2HAn
= x

∗Ãnx, where Ãn = A−1
n = ‖ãjj′‖ (see [8], p. 250).

Proposition 1.2. In the linear mapping

f(p) = (f ,h(p))H, f ∈ H (1.6)

for An, the minimum norm inverse f
∗
An

satisfying

f(pj) = (f ,h(pj))H, f ∈ H (1.7)

is given by

f
∗
An

=
∑

j

∑

j′

f(pj)ãjj′h(pj′ ), (1.8)

where ãjj′ are assumed the elements of the complex conjugate inverse of the
positive definite Hermitian matrix An constituted by the elements ajj′ =
(h(pj′ ),h(pj))H. Here, the positive definiteness of An is a basic assumption.

2. Convergence of the approximate inverses

The following proposition deals with the convergence of our approximate
inverses in Proposition 1.2. See [1, 2] for the details.
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Proposition 2.1. Let {pj}
∞
j=1 be a sequence of distinct points on E, that is

the positive definiteness of An for any n and a uniqueness set for the space
HK . Then, in the space H

lim
n→∞

f
∗
An

= f
∗. (2.1)

Proposition 2.2. (Ultimate realization of reproducing kernel Hilbert spaces).
In our general situation and for a uniqueness set {pj} of the set E satisfying
the linearly independence in Proposition 1.2, we obtain

‖f‖2HK
= ‖f∗‖2H = lim

n→∞

∑

j

∑

j′

f(pj)ãjj′f(pj′). (2.2)

Proposition 2.3. (Ultimate sampling theory). In our general situation and
for a uniqueness set {pj} of the set E satisfying the linearly independence,
we obtain

f(p) = lim
n→∞

(f∗An
,h(p))H = lim

n→∞


∑

j

∑

j′

f(pj)ãjj′h(pj′),h(p)




H

= lim
n→∞

∑

j

∑

j′

f(pj)ãjj′K(p, pj′). (2.3)

3. Ordinary linear differential equations

In view to have a concrete exemplification of the method, let us consider a
prototype differential operator

Ly := αy′′ + βy′ + γy. (3.1)

Here, we shall consider a very general situation that the coefficients are arbi-
trary functions (no continuity requirement) and on a general interval I. We
wish to construct some natural solution of

Ly = g (3.2)

for a very general function g on a general interval I.

Proposition 3.1. ([3, 1]). Let us fix a positive number h and take a finite
number of points {tj}

n
j=1 of I such that |α(tj)|

2 + |β(tj)|
2 + |γ(tj)|

2 6= 0 for

each j. Then, the optimal solution yAn

h of the equation (3.2) is given by

yAn

h (t) =
1

2π

∫ π/h

−π/h

FAn

h (ξ)e−itξdξ

in terms of the function FAn

h ∈ L2(−π/h,+π/h) in the sense that FAn

h has
the minimum norm in L2(−π/h,+π/h) among the functions F ∈ L2(−π/h,+π/h)
satisfying, for the characteristic function χh(t) of the interval (−π/h,+π/h):

1

2π

∫

R

F (ξ)[α(t)(−ξ2) + β(t)(−iξ) + γ(t)]χh(ξ) exp(−itξ)dξ = g(t) (3.3)

for all t = tj and for the function space L2(−π/h,+π/h).
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The minimal norm function FAn

h is given by

FAn

h (ξ) =
n∑

j,j′=1

g(tj)ãjj′ (α(tj′ )(−ξ2) + β(tj′ )(−iξ) + γ(tj′)) exp(itj′ξ).

Here, the matrix An = {ajj′}
n
j,j′=1 formed by the elements ajj′ = Khh(tj , tj′)

with Khh(t, t
′) =

1

2π

∫

R

[α(t)(−ξ2) + β(t)(−iξ) + γ(t)][α(t′)(−ξ2) + β(t′)(−iξ) + γ(t′)]

·χh(ξ) exp(−i(t− t′)ξ)dξ

is positive definite and the ãjj′ are the elements of the inverse of An (the
complex conjugate of An).

The minimal norm solution yAn

h of the equation (3.2) is given by

yAn

h (t) =

n∑

j,j′=1

g(tj)ãjj′
1

2π
[−α(tj′ )

∫ π
h

−π
h

ξ2e−i(t−tj′ )ξdξ

+iβ(tj′)

∫ π
h

−π
h

ξe−i(t−tj′ )ξdξ + γ(tj′)

∫ π
h

−π
h

e−i(t−tj′ )ξdξ].

As about general linear operator equations, we consider the equations
in some reproducing kernel Hilbert spaces. These spaces can be considered
as the images of some Hilbert spaces as in Proposition 1.1 (see [8, 9]). Then,
the linear operator equation may be reduced to Proposition 1.2 by the back-
ward transformation as in Proposition 3.1. So, we will be able to consider our
method as a fundamental theory for linear operator equations in the frame-
work of Hilbert spaces.

4. Numerical examples

We set h = 1; we seek our solution in the Paley-Wiener space W (π) with
equi-spaced collocation points.

Example. We consider an initial value problem

t3y′′(t) + ty′(t) = −25t3 sin(5t) + 5t cos(5t), (−1 < t ≤ 1),

y(−1) = sin(5), y′(−1) = 5 cos(5),

and we set collocation points to tj = −1 + 2j/(n− 2), j = 1, 2, . . . , n− 2.

Numerical results shown in Fig. 1 have a good coincide with the exact
solution y(t) = sin(5t).

Example. We consider an initial value problem

y′′(t) = g(t), (−1 < t ≤ 1), y(−1) = y′(−1) = 0,

where

g(t) =

{
0, t < 0;

t, t ≥ 0.
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Figure 1. Numerical Results for the Initial Value Problem
for n = 25 with 100 Decimal Digits. Maximum Error Is Ap-
proximately 10−13.
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(c) n = 20
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Figure 2. Numerical Results by 500 Decimal Digits Preci-
sion, h = 1

We know that there exists a unique solution

y(t) =




0, t < 0;
t3

6
, t ≥ 0.
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Figure 3. Numerical Results by 500 Decimal Digits Preci-
sion, n = 20

The proposed method assumes that the solution belongs to the Paley-
Wiener space W (πh ), where h is an approximation parameter. Our numerical
results imply that the Paley-Wiener space seems to show the need of appli-
cation of suitable Sobolev spaces as basic approximate function spaces.

In our new discretization method we will need the precision in some
deep way and huge computer resources. However, these both requirements
were prepared by Fujiwara already (e.g., recall the case of the inverse Laplace
transform). See [4, 5, 6] for the details.

We are looking for some optimal solutions satisfying the differential
equations at the given discrete points and so, we are free from important
restrictions on the domains which occur on ordinary methods. For instance,
this is not the case of the Finite Element Method and the Difference Method
which are depending seriously on the domains. In our case, we can consider
the problems on any domains. See [1, 2] for the details.

Anyhow, error estimates for our approximate solutions are entirely new
open problems.
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