

# Visualization @ IEETA/DETI: some past and recent work

Beatriz Sousa Santos, colleagues & students DETI/IEETA University of Aveiro, Portugal

December, 2020

University of Aveiro Created in 1973 In a small well localized and connected city

Devoted mostly to science/technology ~15 000 students





# Modern award winning Campus

Overseeing the lagoon







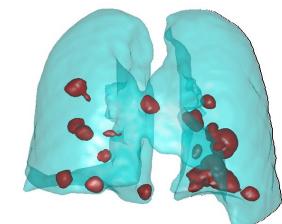
- DETI is a broad spectrum ECE Department offering programs at BSc, MSc, and PhD level in the fields of Electronics, Telecommunications, **Computer and Informatics Engineering**
- Two Research Institutes:
  - Electronics and Informatics
  - Telecommunications





- Our MSc students should be prepared to design, implement and evaluate new computing systems and methods (S/W and H/W) having an introduction to research in several areas
- Informatics Eng., Computer Eng., Electrical Eng.
- Cybersecurity, Robotics, Data Science, Digital games
- With other Departments ...

• PhD Programs: 2 local + 2 with Un. Porto + Un. Minho

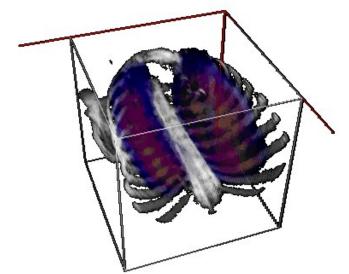

# Information Visualization course

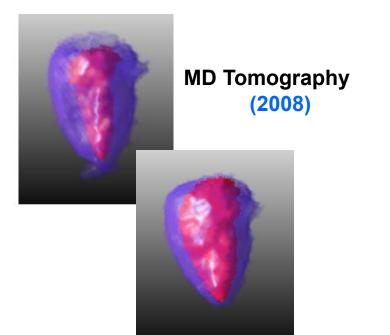
- Mandatory for the Informatics Engineering MSc
- Elective for other programs
- 3h/week x 15 weeks
- ~ 40 students

- My Research:
- Two sub-fields of Computer Engineering:
  - Mixed Reality
  - Visualization
- Interactive/visual systems and methods:
  - Useful
  - Usable Human-centered!
  - Affordable

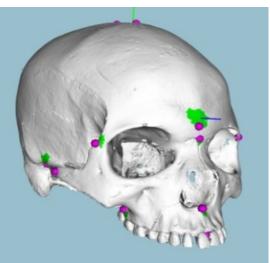
- My Research:
- Two sub-fields of Computer Engineering:
  - Mixed Reality
  - Visualization
- Interactive/visual systems and methods:
  - Useful
  - Usable Human-centered!
  - Affordable

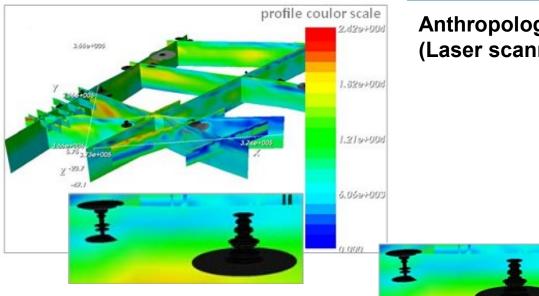
#### Medical Data Visualization





Tomography (2004)



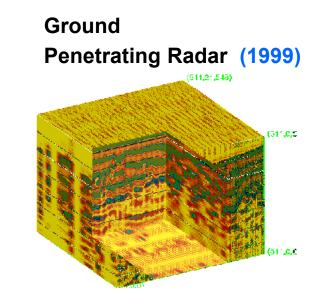

Tomography (2011)


Tomography and SPECT (1996)





#### Scientific Data Visualization





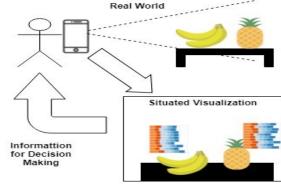

Geophysics **Electrical and mechanical** 

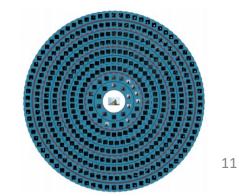
ground resistivity (2014)

Anthropology (Laser scanner) (2015)



Some recent works


- Different "threads":
  - "Utilitarian" FICAVis




visualizing UA academic data for program and Department Directors

Merging with other interests (AR):
 Situated Visualization

- New interest: using Visualization in XAI







Fábio Ferreira et al. "FICAvis: Data Visualization to Prevent University Dropout", 24th Int. Conf. Information Visualisation, IV 2020,Vienna, 2020





# **~30% of the students dropped out of Portuguese Higher education** (DGEEC, 2018)

UA launched the FICA project to overcome

- Difficulty in monitoring and follow-up of students
- Poorly structured academic data

- **Objectives:** •
  - Foster academic success
  - Prevent dropout
  - Identify failure risk indicators

- Stakeholders:
  - **Program Directors**
  - **Department Directors**
  - Rectory staff



ano curricular com mais de 50% ECTS em atraso do 1.º ano (b3) realizaram <50% dos ECTS.

Accessed January 12, 2017

dos estudantes, na transição para o

nsino superior

#### Indicators associated with risk situations

- Achievement: academic success rate below 50%
- Fees: late tuition fees
- Scholarship: requested a scholarship and did not obtain
- Entry grade: Entry score below 120/200 points
- Attendance: at least one course with attendance <50%
- SWLS Scale: low life satisfaction level
- SPANE Scale: negative experience

#### The Data: collected by the Academic Services

| Fich | nino Dorr  | Incovir      |                              |       | órmulas Dado   | s Davan Van   | Aiuda             | 7-3             |              | Partilhar 모 (      | Comentário |
|------|------------|--------------|------------------------------|-------|----------------|---------------|-------------------|-----------------|--------------|--------------------|------------|
| ICN  | eiro Base  | Inserir      | Esquema da Pági              | ina r | órmulas Dado   | s Rever Ver   | Ajuda             |                 |              | 🖻 Partinar 🖓 🗘     | .omentario |
| 1    | •          | : X 🗸        | <i>f</i> <sub>x</sub> DataAm | ostra |                |               |                   |                 |              |                    |            |
|      |            |              |                              |       |                |               |                   |                 |              |                    |            |
|      |            |              |                              |       |                |               |                   |                 |              |                    |            |
| 1    | A          | В            | C D                          | E     | F              | G             | Н                 | 1               | J            | к                  |            |
| D    | ataAmostra | AnoLetivo Nu | mero Nome                    | Sexo  | DataNascimento | Email         | PaisNacionalidade | ProgramaTutoria | TempoParcial | SituacaoPrescricao | Ha         |
|      | 29/02/2020 | 2019         | 1 Aluno 1                    | М     | 01/01/1960     | aluno1@ua.pt  | PORTUGAL          | Não             | Sim          |                    | М          |
|      | 29/02/2020 | 2019         | 2 Aluno 2                    | М     | 01/01/1961     | aluno2@ua.pt  | PORTUGAL          | Não             | Sim          | Não Prescrito      | м          |
|      | 29/02/2020 | 2019         | 3 Aluno 3                    | М     | 01/01/1964     | aluno3@ua.pt  | PORTUGAL          | Não             | Sim          |                    | м          |
|      | 29/02/2020 | 2019         | 4 Aluno 4                    | F     | 01/01/1968     | aluno4@ua.pt  | PORTUGAL          | Não             | Não          |                    | M          |
|      | 29/02/2020 | 2019         | 5 Aluno 5                    | М     | 01/01/1968     | aluno5@ua.pt  | PORTUGAL          | Não             | Sim          |                    | N          |
|      | 29/02/2020 | 2019         | 6 Aluno 6                    | F     | 01/01/1970     | aluno6@ua.pt  | PORTUGAL          | Não             | Não          | Não Prescrito      | N          |
|      | 29/02/2020 | 2019         | 7 Aluno 7                    | F     | 01/01/1969     | aluno7@ua.pt  | PORTUGAL          | Não             | Sim          |                    | N          |
| T    | 29/02/2020 | 2019         | 8 Aluno 8                    | М     | 01/01/1970     | aluno8@ua.pt  | PORTUGAL          | Não             | Sim          | Não Prescrito      | L          |
| T    | 29/02/2020 | 2019         | 9 Aluno 9                    | М     | 01/01/1971     | aluno9@ua.pt  | PORTUGAL          | Não             | Sim          | Não Prescrito      | N          |
|      | 29/02/2020 | 2019         | 10 Aluno 10                  | М     | 01/01/1970     | aluno10@ua.pt | PORTUGAL          | Não             | Sim          | Não Prescrito      | L          |
|      | 29/02/2020 | 2019         | 11 Aluno 11                  | М     | 01/01/1971     | aluno11@ua.pt | PORTUGAL          | Não             | Sim          | Não Prescrito      | Ν          |
|      | 29/02/2020 | 2019         | 12 Aluno 12                  | М     |                | aluno12@ua.pt | PORTUGAL          | Não             | Sim          | Não Prescrito      | L          |
|      | 29/02/2020 | 2019         | 13 Aluno 13                  | М     | 01/01/1970     | aluno13@ua.pt | PORTUGAL          | Não             | Não          |                    | N          |
|      | 29/02/2020 | 2019         | 14 Aluno 14                  | F     | 01/01/1972     | aluno14@ua.pt | PORTUGAL          | Não             | Não          | Não Prescrito      | L          |
| t    | 29/02/2020 | 2019         | 15 Aluno 15                  | F     |                | aluno15@ua.pt | PORTUGAL          | Não             | Não          |                    | N          |
|      | 29/02/2020 | 2019         | 16 Aluno 16                  | М     | 01/01/1967     | aluno16@ua.pt | PORTUGAL          | Não             | Não          |                    | N          |
| 1    | 29/02/2020 | 2019         | 17 Aluno 17                  | F     |                | aluno17@ua.pt | PORTUGAL          | Não             | Sim          |                    | N          |
| T    | 29/02/2020 | 2019         | 18 Aluno 18                  | F     | 01/01/1969     | aluno18@ua.pt | PORTUGAL          | Não             | Sim          |                    | N          |
|      | 29/02/2020 | 2019         | 19 Aluno 19                  | F     | 01/01/1969     | aluno19@ua.pt | PORTUGAL          | Não             | Sim          |                    | N          |
|      | 29/02/2020 | 2019         | 20 Aluno 20                  | М     | 01/01/1972     | aluno20@ua.pt | PORTUGAL          | Não             | Não          | Não Prescrito      | Li         |
|      | 29/02/2020 | 2019         | 21 Aluno 21                  | F     | 01/01/1972     | aluno21@ua.pt | PORTUGAL          | Não             | Não          |                    | N          |
|      | 29/02/2020 | 2019         | 22 Aluno 22                  | F     |                | aluno22@ua.pt | PORTUGAL          | Não             | Sim          |                    | N          |
|      | 29/02/2020 | 2019         | 23 Aluno 23                  | М     | 01/01/1969     | aluno23@ua.pt | PORTUGAL          | Não             | Não          |                    | N          |
| 4    |            | Sheet1 (     | ÷                            |       |                |               |                   | ÷ •             |              |                    |            |

#### Provided to the users in a not usable format!

#### **FICAvis:**

Visual data exploration application integrated with the University systems

## **User-centered design:**

- Starting from the users' needs and motivations
- Involving several iterations
- Including UX evaluation in each iteration

#### Participatory design:

involving target users along the design process



Understanding the problem:

• two focus group sessions:



- Two program directors
- vice-director of different engineering programs
- professor of a large first year course with a significant failure rate
- videoconference interviews
  - with an advisor to the rectory concerning the FICA project

#### The questions:

- What was the average grade of the students in the program?
- What was the distribution of student achievement in the program?
- Is there any difference between success at the end of both semesters?
- How was a particular students' path throughout the academic year?
- Which students do not satisfy a specific indicator?
- How does a specific attribute influence the performance of students?
- How many students have suspended enrolment in a given month?

## FICAvis: the solution

- PowerBI report for each user profile:
  - Program Director
  - Department Director
  - Rectory staff

- Multi-coordinated views into the dataset through several visualizations
- To answer the questions





#### Data preprocessing







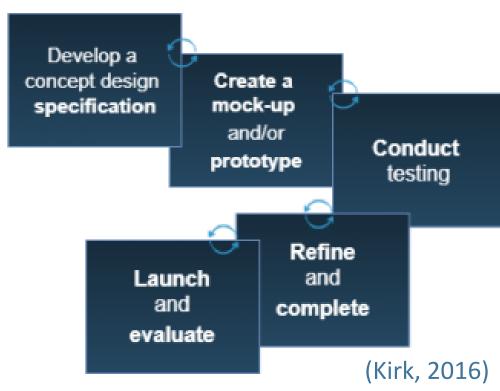
**Query editor** 

**Relation Model** 

Visualizations

- Combine all FICA files in a logic table
- Filtering not relevant data
- Change some attribute data type C
- Create the final Data table

```
Data =
VAR BaseCalendar = CALENDARAUTO()
RETURN
    GENERATE (
        BaseCalendar,
        VAR BaseDate = [Date]
        VAR YearDate = YEAR ( BaseDate )
        VAR MonthNumber = MONTH ( BaseDate )
        VAR MonthName = FORMAT ( BaseDate, "mmmm" )
        VAR MonthShort = FORMAT ( BaseDate, "MMM" )
        VAR YearMonthName = FORMAT ( BaseDate, "MMM yyyy" )
        RETURN ROW (
            "Dia", BaseDate,
            "Ano", YearDate,
            "Mês Número", MonthNumber,
            "Mês", MonthName,
            "Mês Short", MonthShort,
            "Ano Mês", YearMonthName
```


- Data transformation
- Visual encoding



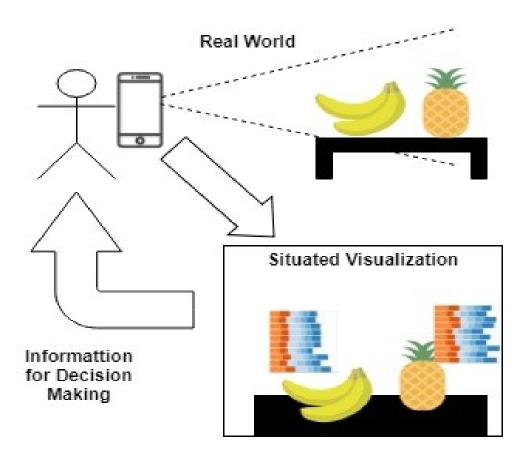
• Presentation in coordinated dashboards



- Two evaluation methods:
  - Heuristic evaluation
  - Expert review/testing



Take away:


- It was essential to:
  - Devote much time to understand the problem
  - Have the participation of domain experts along the process

#### Current status and future work:

- Integrate with the University systems (security layer)
- Consider different Director profiles (e.g humanities, arts...)
- Deploy a beta version



Bernardo Marques, Beatriz Sousa Santos, Tiago Araújo, Nuno C. Martins, João B. Alves, Paulo Dias, "Situated Visualization in the decision process through Augmented Reality", 23rd Int. Conf on Information Visualization, IV2019, Paris, 2019



#### The problem

• Decision-making has always been immanent to human nature

• Visualizing data in context may foster better decisions

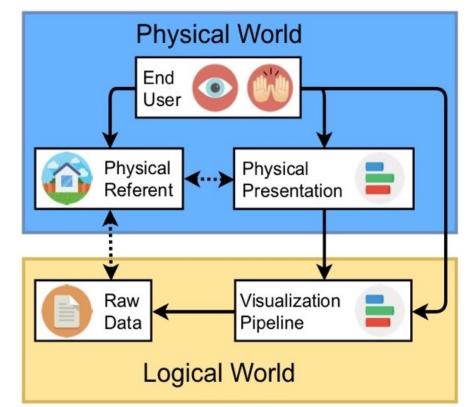
 Helping in numerous scenarios (e.g. in smart shop-floors)



#### Motivation

• Situated Visualization (SV) allows present data in context

• Using Augmented Reality (AR) as a tool for SV in decision has become feasible, since AR is now more mature, and affordable


Understand current contributions provided by SV using AR in the decision-making process

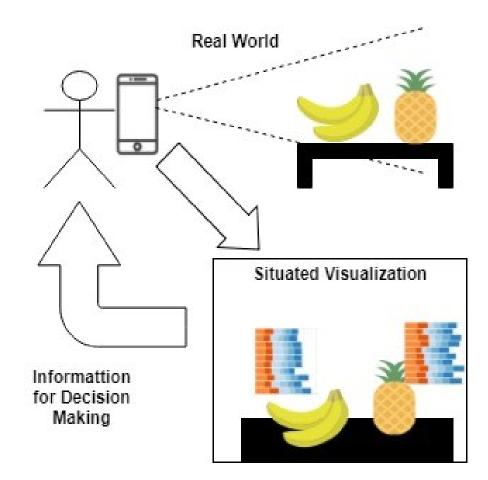
#### Situated Visualization

"A visualization **related to its environment**, gaining meaning through the relationship between the visualization and the environment":

Note that:

- using AR technology to display visualizations does not imply that that visualizations are situated
- SV is agnostic to the type of data (abstract or physically-based)



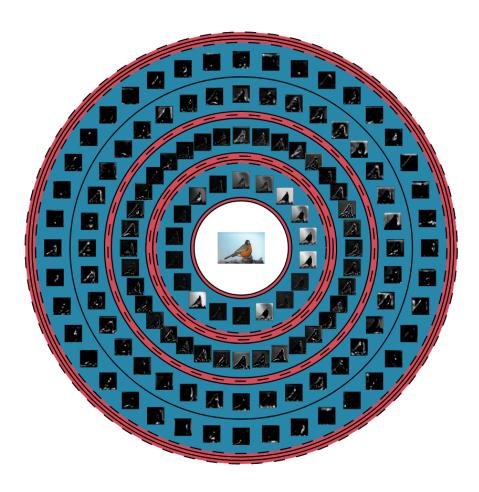

- Spatial "situatedness" may be on a continuum
- It is possible to define Time and Perceptual situatedness
- SV has several potential benefits and new challenges when compared to traditional AR-based visualizations



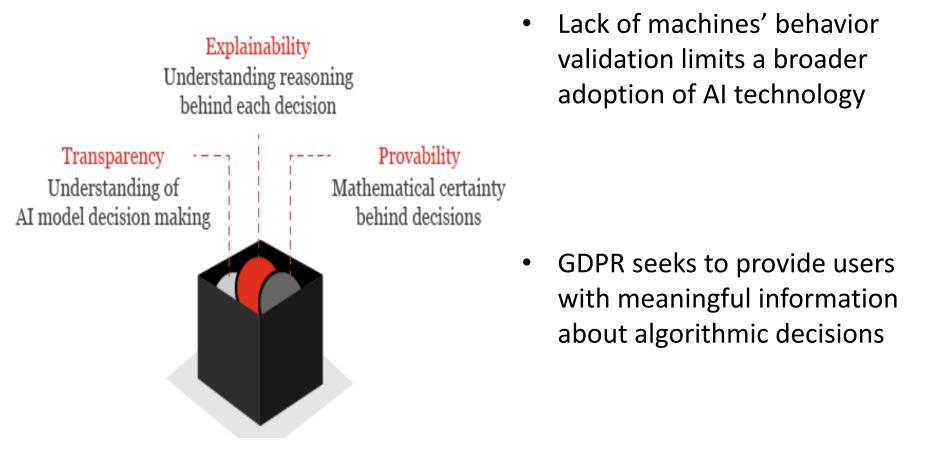
## SV and Decision-making

SV may extend DSS applicability beyond the desktop through AR

providing support to decisionmakers "anytime, anywhere"




#### SV in Decision Making – Current usages


- A reduced number of applications using AR with DSS
- Exploratory examples:
  - Interior design;
  - Architectural design;
  - Construction;
  - Industrial maintenance;
  - Training;
  - Safety management,
  - ...
- It has potential to improve tools to assist in many application areas Research should continue!

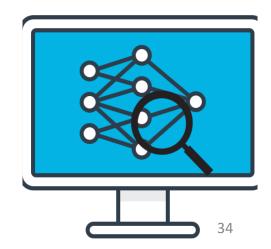


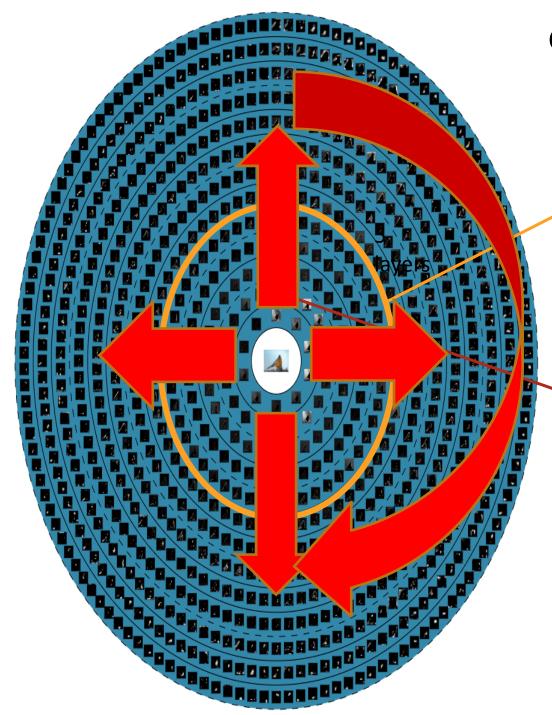
João B. Alves, Tiago Araújo, et al., "DeepRings: A Concentric-Ring Based Visualization to Understand Deep Learning Models", 24<sup>th</sup> Int. Conference Information Visualisation, IV2020, Vienna, 2020



## The problem




#### Motivation

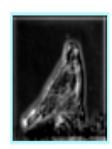

- Currently, largescale model predictions are often computed from a consecutive number of layers
- Not presenting a global perspective first can lead the user to miss the bigger picture
- Common visualization solutions do not comprise the features of a DNN representation

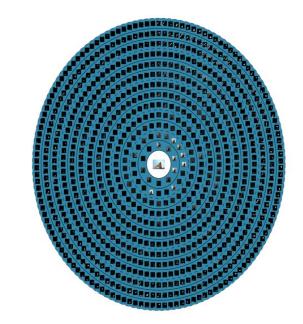
#### Objectives

• Provide a representation that considers the DNN structure

- Develop a visualization to:
  - Present feature maps from several convolutional layers at once
  - Convey their hierarchical structure





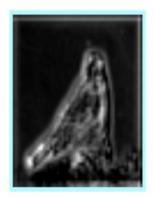


Concentric Ring Design:

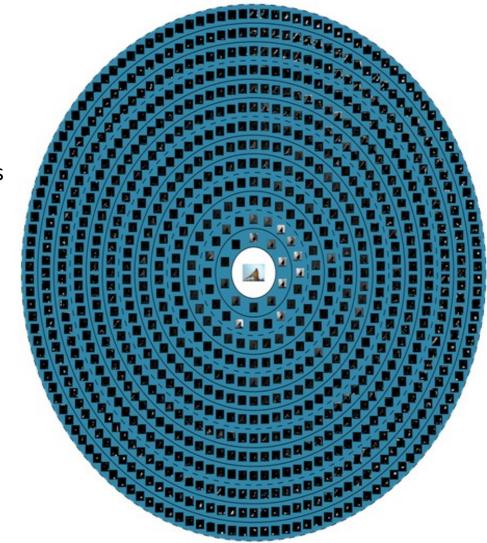
- Number of rings = number of convolutional layers of the model
- Each ring has several image placeholders
- Number of feature maps increases towards deeper layers
- The most relevant feature maps are directly above the visualization center decreasing importance clockwise

#### Interactive visualization

- Possibility to define number of layers to visualize
- Activation metric to define how and which feature maps are displayed
- Detailed version of each feature map (hovering)







#### VGG16 Model

OptionsFilter TypeN. of activations

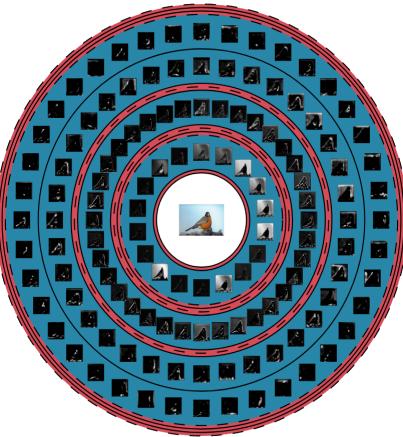
O Activation values

#### Feature Map detail





#### List of active layers


- Layer 1 🛛 🛛
- Layer 2 🛛 🛃
- Layer 3 🛛 🛃
- Layer 4 🛛 🛃
- Layer 5 🛛 🛃

1

- Layer 6
- Layer 7 💋 Layer 8 💋
- Layer 9 🔽
- Layer 10 🧧
- Layer 11 🧧
- Layer 12 🧧
- Layer 13 🧧

#### Visualization features exploration

- Bird body parts and contours activate in several layers of the network
- Feature maps get more specific deeper in the network
- Activation of several feature maps in the last layer are very similar
- Does not scale to very deep network:



Exploratory User Study

• Three Domain experts

Main Results

- Filtering by the best on a specific criteria helps the user find patterns
- Overview presentation is considered useful showing also the hierarchical structure.
- Spot errors during training as it allows the user to quickly perceive possible erroneous feature maps in the training process

#### Conclusions

- Interactive visualization to provide a global perspective over the feature maps of a CNN
- Supports the knowledge regarding hierarchical feature learning
- Reveals the existence of redundant filters and confirms sparsity representation in CNN models

#### Future Work

- Dynamically adjust the model architecture and number of feature maps per layer
- Custom user metrics for feature maps
- Include other representation types as saliency maps
- Larger user study



Summary and announcements

- We are interested in pursuing topics in:
- Mixed Reality
- Visualization
- National Visualization Center

(Advanced Computing initiative)

 Projects with Industrial partners (Bosch and other companies)

We will have grants for MSc and PhD holders !



Happy Holidays



Acknowledgments To all colleagues and students that have contributed in any way ...

#### Some Papers

- Fábio Ferreira, Bernardo Marques, Paulo Dias, Beatriz Sousa Santos, "FICAvis: Data Visualization to Prevent University Dropout", 24th Int. Conference Information Visualisation, IV 2020, Vienna, 2020
- João B. Alves, Tiago Araújo, Bernardo Marques, Paulo Dias, Beatriz Sousa Santos, "DeepRings: A Concentric-Ring Based Visualization to Understand Deep Learning Models", 24<sup>th</sup> Int. Conference Information Visualisation, IV2020, Vienna, 2020
- Bernardo Marques, Beatriz Sousa Santos, Tiago Araújo, Nuno C. Martins, João B. Alves, Paulo Dias, "Situated Visualization in the decision process through Augmented Reality", 23rd International Conference on Information Visualization, IV2019, Paris, 2019
- Paulo Dias, Bruno Andrade, Catarina Coelho, J. Coelho, D. Navega, M. Teresa Ferreira, Sofia Wasterlain, Beatriz Sousa Santos, "Towards automatic non-metric traits analysis on 3D models skulls", 22nd International Conference Information Visualization, IV2018, pp. 567-573, Salerno, 2018
- Paulo Dias, Luís Neves, Daniel Santos, Catarina Coelho, Maria Teresa Ferreira, Hélder Santos, Samuel Silva, Beatriz Sousa Santos, "CraMs, an application for craniometric analysis using 3D skull models", *IEEE Computer Graphics and Applications*, vol.35, no.6, pp. 11-17, 2015
- Vítor Gonçalves, Paulo Dias, Maria João Fontoura, Rui Moura, Beatriz Sousa Santos, "Investigating Landfill Contamination by Visualizing Geophysical Data", *IEEE Computer Graphics and Application*, vol. 24, no. 1, pp. 16-21, 2014