

Screen Layout Design and Color

The screen design is an important part of the UI development

A poor screen design may degrade user performance

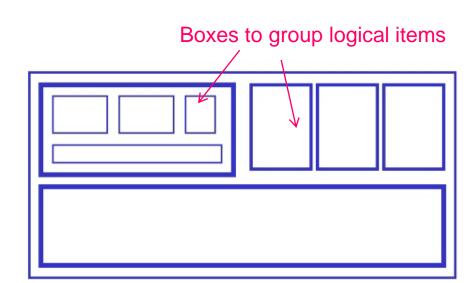
Screen layout must be carefully designed

There are numerous guidelines (we have seen already some of them)

Screen Layout Guidelines

Several types:

General layout of information

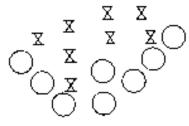

messages
Text instructions

Numbers

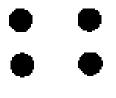
Coding techniques (color and others)

Information layout

- Include only the needed information
- Include all needed information
- Begin at the top left corner and align left (in Western culture)
- Group items according to type
- Leave plenty of white space
- Use leaders in multiple columns
- This is related to how humans analyse an image


Gestalt Laws

Help understand how visual stimuli in a scene are perceived


Proximity

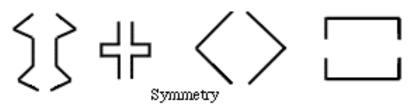
Near stimuli are perceived as a group

Similarity

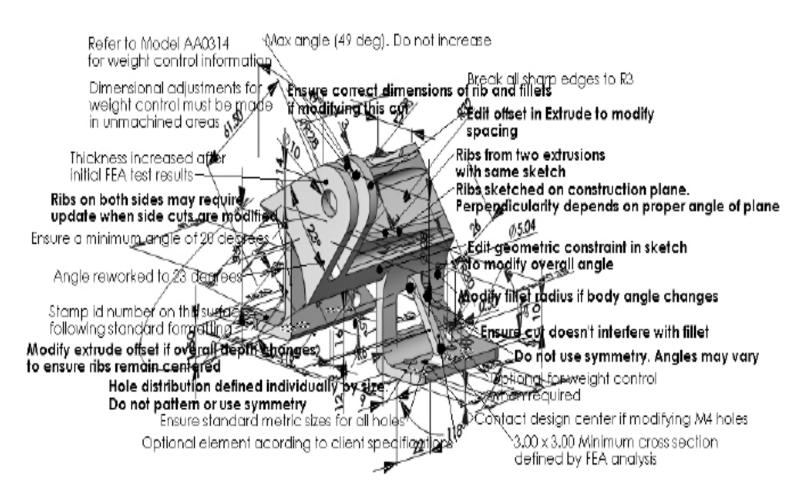
Similar stimuli tend to be grouped (may override proximity)

Closure


Stimuli tend to be grouped in complete figures



Ambiguous stimuli tend to be resolved Using the simplest explanation


Stimuli tend to be grouped as to minimize variations or discontinuities

Regions delimited by symmetric tend to be perceived as coherent figures

Include only the needed information

Avoid Visual Clutter

Text

- Avoid using only capital letters (are more difficult to read)
- Avoid text with many capital letters
- Do not use too many fonts for emphasis
- In multiple columns use leaders or greying

use fonts for emphasis (but not too many)

ABCDEF HIJKLM NOPORSTUVWXYZ

	Alcântara - Terra				12:36			13:06			13:36	
	Campolide		12:15		12:41	12:45		13:11	13:15		13:41	13:45
	Rossio	F.	12:19			12:49			13:19			13:49
/	Sete Rios	F		12:19	12:43		12:49	13:13		13:19	13:43	
	Entrecampos	je.		12:22	12:47		12:52	13:17		13:22	13:47	
	Roma - Areeiro	h-		12:24	12:49		12:54	13:19		13:24	13:49	

Use greying

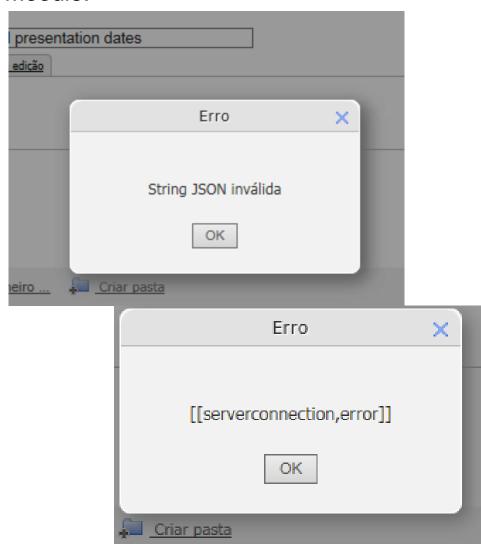
In multiple columns it is difficult to read across gaps:

sherbert toffee chocolate fruit gums coconut dreams	75 120 35 27 85	
	use leaders sherbert toffee chocolate fruit gums coconut dreams	120 35 27
or greying sherbert toffee chocolate	75 120 35	
fruit gums coconut dreams	27 85	10

Messages shall:

- Have a detail level adequate to user knowledge and experience
- Be specific and understandable
- Be brief and concise
- Be positive
- Be helpful

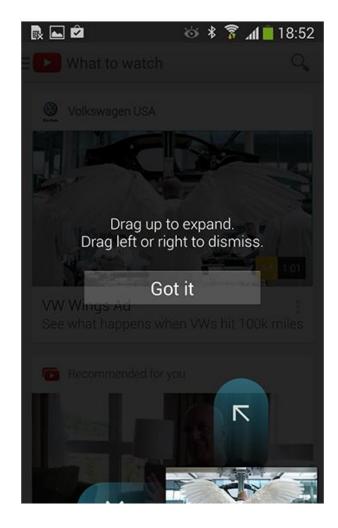
Error messages


Too v	erbose	better			
A	The processing of the text editor yielded 23 pages of output	Output 23 pages			
T	Error in SIZE field	Error: SIZE range is 4 to 16			
Too vague	Cannot exit before saving file	Save file before exiting			
Negative	Bad/illegal file name	Maximum file name length is 8 chars			
	Syntax error 1542	Unmatched left parenthesis in line 210			
Not helpfu	ıl				

Examples of useless messages for users

Except (maybe) for Chinese people!

Moodle:



Instructional Overlays and Coach Marks for Mobile Apps

 Instructions in mobile applications must be designed for optimal scannability, as users tend to dismiss them quickly and do not read thoroughly

Main guidelines:

- Short, Focused Tips
- Avoid Chains of Tips
- Use Visuals When Possible
- Keep Tips Sparse

Numbers

- Integers shall be right justified
- Real numbers shall be aligned by the decimal point
- Avoid unnecessary zeros (at left)
- Long numbers shall be divided in groups of 3 or 4

Which is the largest?

532.56	627.865		
179.3	1.005763	75	
256.317	382.583	120	
15	2502.56	35	
73.948	432.935	27	
1035	2.0175	85	
3.142	652.87	Right align integers	
497.6256	56.34	rtigrit aligir iritegers	

Align decimal points

Numbers Better

10	10
100	100
1000	1000
10000	10000
100.00	100.00
25.365	25.365
5432.01	5432.01
1.45591	1.45591
10:1 p.m. 002	10:02 p.m. 2
6173954686	617-395-4686

Coding techniques

Blinking

Bold

Size

Font

Underlining

Shape

Special characters and icons

Proximity

Borders

Sound

Colour

Main guideline: use parsimoniously any coding technique!

Specific problems for different platforms: mobile

- Many guidelines are similar for mobile and desktop design, but their mobile interpretation is much more unforgiving
 - Context of use
 - Size of screen
 - Platform limitations

http://www.nngroup.com/articles/mobile-sharpens-usability-guidelines/

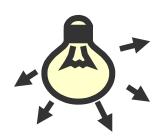
https://developer.android.com/design/index.html

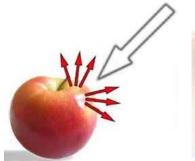
Links on tablet and mobile usability

Raluca Budiu, The State of Mobile User Experience, NNGroup, March, 2015 http://www.nngroup.com/articles/mobile-usability-update/

https://developer.apple.com/library/ios/documentation/UserExperience/Concept ual/MobileHIG/

https://developer.android.com/design/index.html

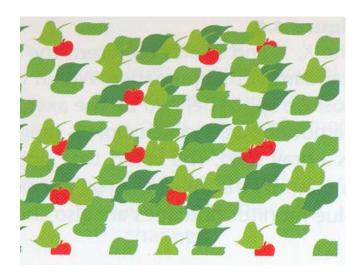

Color usage



Color

- Color is a complex and multidisciplinary subject:
 - Physics
 - Physiology and psychology
 - Art and graphic design
 - Interactive systems design

- The perceived color of an object depends on the:
 - Material characteristics
 - Illumination
 - Ambient color
 - Human visual system



How many cherries?

(Ware, 2004)

How many cherries?

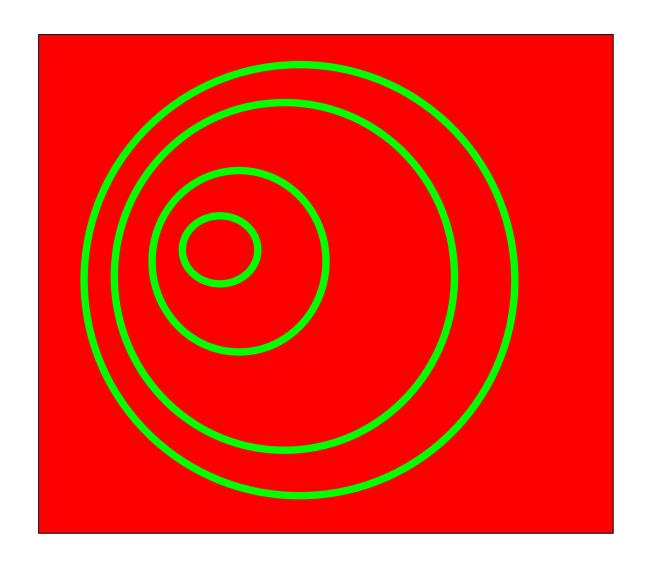
Color may support users in many tasks! (yet, if not properly used may make them more difficult!)

Using color

Besides increasing realism, it may have the following advantages:

It may:

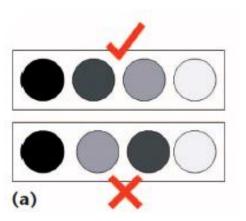
- Show the logical organization of the information displayed
- Represent approximate values
- Catch the attention
- Increase satisfaction
- Ease the search in complex displays
- Trigger emotions

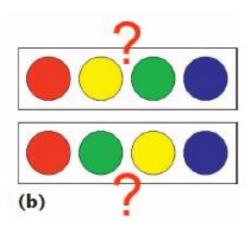

..

However, it may degrade user's performance if not used properly

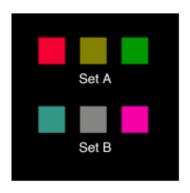
Guidelines for using color

- Use color parsimoniously
- Use a limited number of colors
- Firstly make it work without color
- Use color coherently
- Avoid using simultaneously several saturated colors
- Do not convey information solely through color
- Make color coding support the user task
- Make the color coding as obvious as possible
- Allow the user to control the color code
- Take into account the cultural meaning of colors

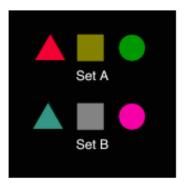

Saturated complementary colors should not be used simultaneously

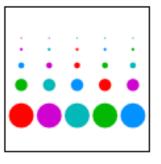


Small spots of color on a neutral background enhance relevant information

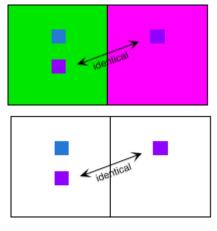

 Do not expect to easily perceive order from color

(Borland, Taylor II, 2007)





The elements within these sets look identical to deuteranopes, the most common kind of dichromat:



These can be discriminated on the basis of non-color differences:

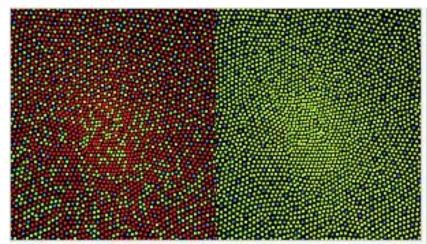
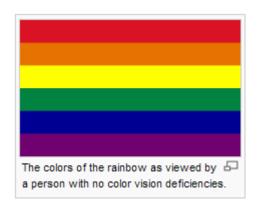
Don't use colour coding on small elements

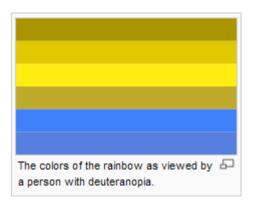
Use neutral gray surrounds where color judgments are critical.

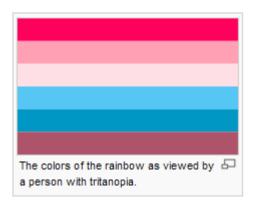
Color Vision deficiencies

- ≈ 8% of men and 1% of women have some type of color vision deficiency
- Generally it is genetic (associated to the X chromosome)
- Common deficiencies are explained by the lack of cones (color sensor cells in the retina) sensitive to the long and medium λ (dicromacies)):
 - Protanopia (LW "Red" cone)
 - Deuteranopia (MW "Green" cone) (Daltonism)

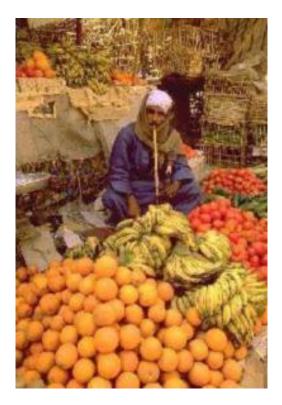
- There are three types of inherited deficiencies:
 - Monocromacy (disorder or lack of all color sensitivity)
 - Dicromacy (disorder or lack of one type of cone)
 - Anomalous Tricromacy (disorder in cones)

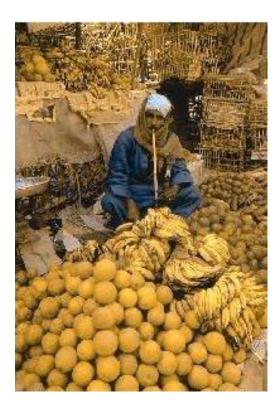




Illustration of the distribution of cone cells in the fovea of an individual with normal color vision (left), and a color blind (protanopic) retina. Note that the center of the fovea holds very few blue-sensitive cones.


http://en.wikipedia.org/wiki/Photoreceptor_cell

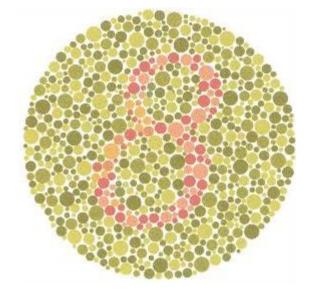
Rainbow colors as viewed by people suffering from color vision deficeiencies

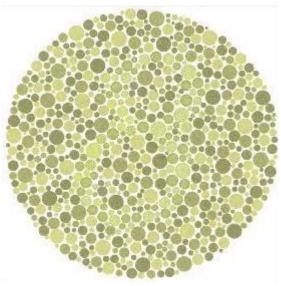




http://en.wikipedia.org/wiki/Color_blindness

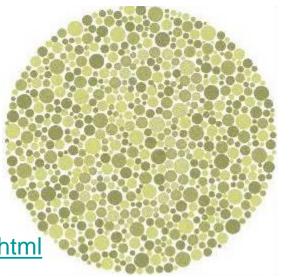
Simulating color vision deficiencies


Original image as seen by a normal observer


As seen by a deuteranope (daltonic)

Simulating color vision deficiencies Ishihara-2

Green-Blind/Deuteranopia

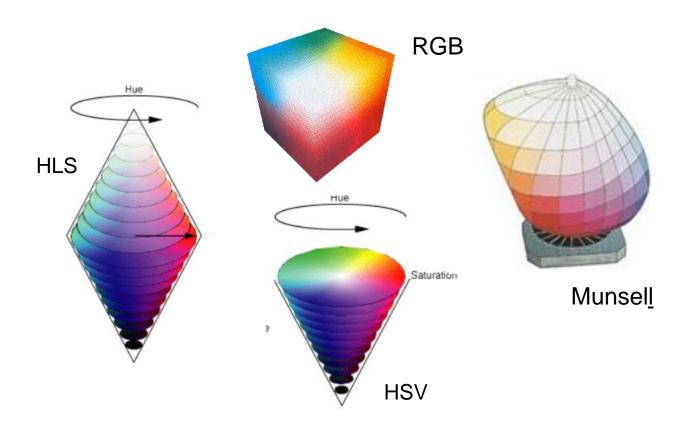

As seen by an observer with a color vision deficiency:

Red-Blind/Protanopia

Blue-Blind/Tritanopia

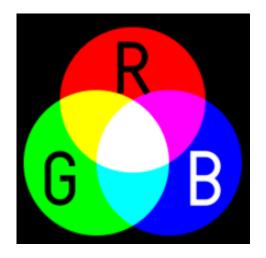
Original image as seen by a normal observer

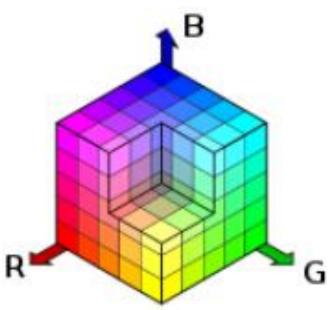
http://www.color-blindness.com/coblis/coblis.html


How can we describe color experience?

- Color perception happens in the mind due to light properties
- Different color descriptions are necessary for:

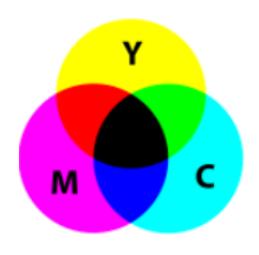
light stimuli		color sensations			
external (physical)		subjective (mental)			
photometry, colorimetry		color attributes			

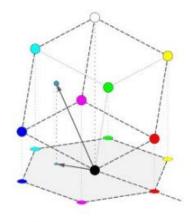


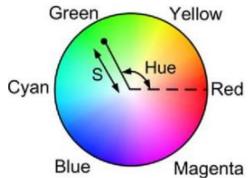

Color Models

- Objects are perceived as having a color depending on the spectrum of the reflected light (or emitted)
- But different spectra may induce similar color sensations
- It is important to be able to describe color objectively
- There are to types of color production systems:
 - Additive (eg.: monitors, TV sets, projectors) → RGB
 - Subtractive (e.g.: printers) → CMY
- RGB and CMY are H/W oriented color models not adequate for users
- There are more color models ...

The RGB color model:


The **RGB color model** is an additive color model in which red, green, and blue light (the primary colors) are added to reproduce a broad array of colors.

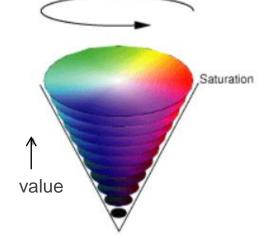

The color space is a cube in a Cartesian coordinate system


White -> 1, 1, 1

Black -> 0, 0, 0

https://en.wikipedia.org/wiki/RGB _color_model

The **CMY color model** is a subtractive color model in which cyan, magenta, and yellow (the primary colors) are subtracted from white to reproduce a broad array of colors.


The color space is also a cube in a Cartesian coordinate system

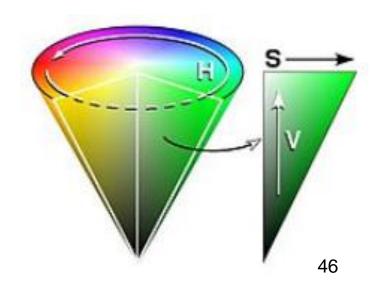
White -> 0, 0, 0 Black -> 1, 1, 1

There are other models more adequate to color specification by the users:

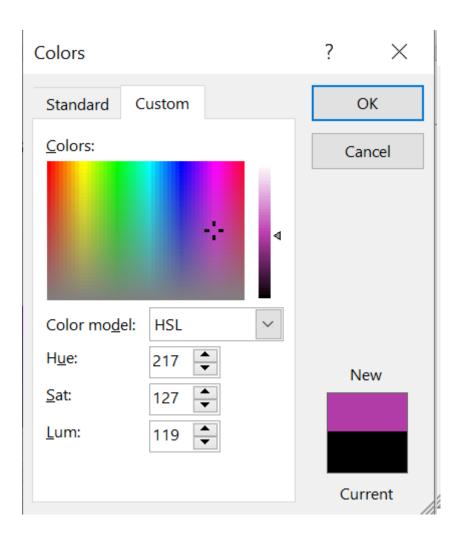
- HSV
- HLS

- Humans describe color based on 4 psychophysical variables related to physical variables:
 - Hue the degree to which is similar to or different from stimuli that are described as red, green, blue, and yellow
 - Saturation related to the amount of achromatic light
 - Lightness related to the objects reflectance (for reflecting objects)
 - Brightness for light emitting objects

HSV color model:



- Saturation related to the amount of achromatic light
- Value controls the brightness: 0% pure black 100% pure white


Uses cylindrical coordinates

https://www.khanacademy.org/partner-content/pixar/color/color-101/v/color-3

https://programmingdesignsystems.com/co lor/color-models-and-colorspaces/index.html

• Let the user select a color:

Interesting Links

Introduction to color guidelines and standards (NASA)

http://colorusage.arc.nasa.gov/guidelines_0.php