Representation

The process of information visualization: graphically encoded data is viewed in order to form a mental model of that data (Spence, 2007)

Interaction with data governed by high-order cognitive processes:

- Representation (how to code visually the data)
- Presentation (what/when/where to show on the screen)
- Interaction (how to let users explore the data)

Remember:

- The Human Visual system is the product of millions of years of evolution

- Although very flexible, it is tuned to data represented in specific ways
- If we understand how its mechanisms work we will be able to produce better results

Pre-attentive attributes can help observers to see before though

Example: Count the number of 7s
6970425934749 3587282949546 4244396854634 2356658789376 https://www.youtube.com/watch?time continue $=121 \& v=$ AiD6etOB6ql

6970425934749 3587282949546 4244396854634 2356658789376

- Other visual attributes as size, proximity are also quickly processed by visual perception, before the cognitive processes come into play

Procedure to follow to create visual representations of abstract data

1. Define the problem and the users' questions
2. Examine the nature of the data to represent and pre-process the data
3. Determine the number of attributes
4. Choose the visual structures
5. Establish the type of interaction
test several ideas ...

nature of the problem $<$| communicate |
| :--- |
| explore |
| confirm |

nature of the data to represent | quantitative |
| :--- |
| ordinal |
| categorical |

number of attributes \begin{tabular}{l}
univariate

bivariate

trivariate

multivariate

\checkmark

Next: representation methods

organized according the n. of

attributes
\end{tabular}

data structures | linear |
| :--- |
| temporal |
| spatial or geographical |
| hierarchical |
| network |

[^0]
Common Visualization Techniques for univariate, bivariate and trivariate data

Univariate data dot plot box plot bar chart histogram pie chart

- Cherries
- Apples
- Kiwis
- Grapes
- Oranges

Bivariate data scatter plot line plot time series

Trivariate data surface plot contour plot 3D representation bubble plot

Representing univariate data

- A single number can be difficult to represent ensuring a user is made aware of it

Example: the altimeter (Spence, 2007)

The original type of aircraft altimeter, with usability issues

Two altimeter representations easily assumed to be the same due to change blindness

A more usable solution for altimeter display

Some more examples on how humans see...

Example of change blindness (Spence, 2007)

Example of change blindness (Spence, 2007)

What is missing now?

Inattentional blindness

https://www.youtube.com/watch?v=IGQmdoK ZfY

Change blindness

http://www.youtube.com/watch?v=vBPG OBgTWg\&feature=related

Representing univariate data (cont.)

- A more common situation consists in representing a set of values
- Well established techniques exist
- But new ones can be invented!

Example:

Price for a number of cars:

- dots on a linear scale
- box plot
(that will answer many questions: median value, outliers,...)
(Spence, 2007)

- much of the data is aggregated
- precise detail is often not needed
- We can represent derived values
- The histogram is a well known technique representing derived values

- Tipping over the bars of the histogram a bargram is obtained
(Spence, 2007)

Missing characteristic:Empty bin

- Categorical or ordinal data can also be represented in bargrams
Nissan
Ford
Ferrari
MG
Cadillac

Simple (and common) representations of data

- Two common techniques not to be confused !

Histogram Bar chart
 represents a distribution of numerical data represents the number of occurrences of a categorical/ordinal data
Both represent data by rectangular bars(vertical or horizontal) with length proportional to the values they represent

(mark)

Histogram Quiz

Given the following plots with different bin widths, Match the description to the plot.

A: good bin width - shows important signal in data (two modes) but not too much noise.

B: bin width is too small C: bin width is too big

Another simple (and too common) representation

- Pie Chart

Represents numerical proportion, parts of an whole

The arc length of each slice (its central angle and area), is proportional to the quantity it represents

Variations of pie charts:

Are much controversial: many experts recommend avoiding them
http://www.perceptualedge.com/articles/08-21-07.pdf

It is difficult to compare different sections of a pie chart, or to compare data across different pie charts

- Simple criteria to determine whether a pie chart is acceptable
- Consider it only if:
- The parts make up a meaningful whole
- The parts are mutually exclusive
- There are <6 parts and slices have not very different sizes

If the main purpose is to compare between the parts, use a different chart!
https://eagereyes.org/techniques/pie-charts

Representing bivariate data

- The scatterplot is the conventional representation

Each observation is represented by a point on a two dimensional space
The axes are associated with these two attributes

This representation affords awareness of:

- general trends
- local trade-offs
- outliers

Correlation is not causation

Representing bivariate data

The line chart
One of the oldest known and ubiquitous Visualizations

Inclination of orbits along the time - Xth century (Tufte, 1983)

- A line chart or line plot or line graph or curve chart displays information as a series of data points called 'markers' connected by straight line segments
- Basic type of chart common in many fields
- Often used to visualize a trend in data over intervals of time

- If one attribute is more important than the other or must be examined first,
- it may be appropriate to employ logical or semantic zoom

Example:

Analyzing a list of cars:

- price is the first attribute to examine
- semantic zoom reveals data about a second attribute

- This technique is quite general: it can encompass many attributes and many levels of progressive zoom

Representing Trivariate data

- Since we live in a 3D world, representing trivariate data as points in a 3D space and displaying a 2D view is natural
- However, these representations can be ambiguous
- This can be solved by interaction, allowing the user to reorient the representation
"for 3D to be useful, you' ve got to be able to move it" (Spence, 2007)

- Interaction (brushing) can help - objects identified in one view are highlighted in the other two planes
- change blindness must be taken into account and ensure that the user notices the highlight in the other two planes
(Spence, 2007)

Bedrooms

The highlighting of houses in one plane is brushed into the remaining planes.

- An alternative representation for trivariate (and hypervariate) data is a structure formed from the three possible 2D views of the data

Example: houses (price, number of bedrooms, time of journey to work)

Scatterplot matrix

Other Simple (and common) representation of 3D data

- In a bubble chart data are represented as a disk that expresses two of the values through the disk's xy location and the third through its size (radius or area?)
- Mapping the variable to size must be done carefully. The interpretation of size may be ambiguous

- Representing one more dimension through color
https://visage.co/data-visualization-
101-bubble-charts/

Simple representations of a function (field) of two variables

- Contour plots
- contour line (also isoline, isopleth, or equipotential curve) of a function of two variables is a curve along which the function has a constant value, so that the curve joins points of equal value.
- Typical in meteorological charts (isobars and isothermal curves)
- and maps (to represent altitude or depth)

- Surface plots
- May be combined with color
(preferably in a redundant way and carefully selecting the scale)

A special category of trivariate data:

Maps (latitude and longitude + a value)

1915 - Orographic Chart of the World
https://etc.usf.edu/maps/pages/100/167/167.htm

Choropleth maps - A standard approach to communicating aggregated data by geographical areas using color encoding of the geographic area

They require some care: what are the possible issues?

https://www.nytimes.com/interactive/2020/world/coronavirus-maps.html

How can these issues be mitigated?
Covid vaccination worldwide (choropleth + details on demand)

Share of population receiving at least one dose

Double-click to zoom into the map.

https://www.nytimes.com/interactive/2021/world/covid-vaccinations-tracker.html

Visualizations of the US 2020 Election (choropleth + bar)

Some more examples on how humans see...

Population of major cities in England, Wales and Scotland. Circle area is proportional to population. (Spence, 2007)

Things that "pop-out"

Pre-attentive processing: Things that "pop out"

"We can do certain things to symbols to make it much more likely that they will be visually identified even after a very brief exposure" (Ware, 2004)

Orientation

Shape

Colour

Enclosure

Where is the blue square?
(Spence, 2007)
But we should be careful...

Color is a strong visual cue

- How many cherries?

(Ware, 2004)

Color is a strong visual cue: it may help users perform their tasks If correctly used

How many cherries?

Color may support users in many tasks! Or not ...

Color may not help or even make it more difficult!

A- no preattentive association that allows efficiently determine the values (Kirk, 2012)

B

B- a single hue and a sequential color scheme representing values in an immediately understandable way

The misuse of colour in science communication

The superiority of scientifically derived colour maps.

https://www.nature.com/articles/s41467-020-19160-7

Remember:

- Not everyone sees color:
- The most common form of color blindness is deuteranopia ("daltonism")

- There are color blindness simulators
-

http://www.color-blindness.com/coblis-color-blindness-simulator

Deuteranopia

Tritanopia

Representing Hypervariate (or multivariate) data

- Many real problems are of high dimensionality
(even after reducing dimensionality...)
- The challenge of representing hypervariate data is substantial and continues to stimulate invention
- Some of the mentioned representation techniques can be scaled to represent hypervariate data (to a limited extent)

Techniques for Hypervariate (or multivariate) data Visualization

- Coordinate plots
parallel coordinate plots
star (or radar) plots

- Maps

- Mosaic Plots
- Icons

- Parallel coordinates plots are one of the most popular techniques for hypervariate data
- They have a very simple basis

Make	Price (£)	MPG	Rating	Age (yrs)
Ford	15,450	31	$* * * * *$	3
Chevy	12,450	27	$* * *$	4

Number

Consider a simple case of bivariate data:

- B

1- A scatterplot represents the price and number of bedrooms associated with two houses

2- the axes are detached and made parallel; each house is represented by a point on each axis

3- To avoid ambiguity the pair of points representing a house are joined and labeled

- For objects characterized by many attributes the parallel coordinate plots offer many advantages

A example for six objects, each characterized by seven attributes:

attributes
The trade-off between A and B , and the correlation between B and C , are immediately apparent. The trade-off between B and E , and the correlation between C and G , are not.

A parallel coordinate plot representation of a collection of cars, in which a range of the attribute Year has been selected to cause all those cars manufactured during that period to be highlighted.

Properties of parallel coordinate plots:

- Suitable to identify relations between attributes
- Objects are not easily discriminable; each object is represented by a polyline which intersects many others
- They offer attribute visibility (the characteristics of the separate attributes are particularly visible)
- The complexity of parallel coordinate plots (number of axes) is directly proportional to the number of attributes
- All attributes receive uniform treatment
- Star plots have many features in common with parallel coordinate plots
- An attribute value is represented by a point on a coordinate axis

(Spence, 2007)
- Attribute axes radiate from a common origin
- For a given object, points are joined by straight lines
- Other useful information such as average values or thresholds can be encoded

Properties of star plots:

- Their shape can provide a reasonably rapid appreciation of the attributes of the objects

Generalization

- They offer object visibility and are suitable to compare objects
(by visibility it is meant the ability to gain insight pre-attentively; without a great cognitive effort)

Bob's performance Tony's performanc ϵ

- The scatterplot matrix (SPLOM) is applicable to higher dimensions
- However, as the number of attributes increase, the number of different pairs of attributes increases rapidly:
- 2 attributes -> 1 scatterplot
- 3 attributes -> 3 scatterplots
- 4 attributes -> 6 scatterplots

We may try to reduce the number of dimensions keeping the more relevant

Scatterplot matrix for 6 attributes of a car dataset

- Another example of Scatterplot matrix for a car dataset

- A single scatterplot can be used together with other encoding techniques to represent data of higher dimension

A scatterplot representing 5 variables

Hans Rosling's 200 Countries, 200 Years, 4 Minutes: 120000 values
Income (x), Age expectancy (y), Time (t), Continent (colour), Population (size of circle)

https://www.youtube.com/watch?v=jbkSRLYSojo

- Graduated Symbol Maps are an alternative to the choropleth map;
- Symbols are placed over an underlying map; may show more dimensions
- Avoid confounding geographic area with data values

- Cartograms distort the shape of geographic regions so that the area directly encodes a data variable.
- There are several types
- Dorling cartograms represent each geographic region with a sized circle placed so as to resemble the true geographic configuration

In these example:

- area encodes the total number of obese people per state
- color encodes percentage of obese population

Obesity in the US (2008) (Heer et al., 2010)

https://geographical.co.uk/places/mapping/item/1981-us-election-cartogram-special

Icons (aka glyphs) represent a number of attributes qualitatively or quantitatively

Chernoff Faces allow attribute values to be encoded in the features of cartoon faces

They were originally used to study geological samples, each characterized by 18 attributes
(https://en.wikipedia.org/wiki/Chernoff face)

Multidimensional icons representing eight attributes of a dwelling

house	flat	house boat
$£ 400,000$	$£ 300,000$	$£ 200,000$
garage	nogarage	nogarage
central heating	central heating	no central heating
four bedrooms	two bedrooms	three bedrooms
goodrepair	poor repair	goodrepair
large garde	smallgarde n	nogarden
Victorla 15 mins	Victorla 20 mins	Victoria 15 mins

Textual descriptions of the dwellings represented by the multidimensional icons (Spence, 2007)

Glyph chart example:
Based on a shape being the main artifact of representation
The physical properties of the shape represent different categorical variables sized according to the associated quantitative value and distinguished through color

Create Your
 Better Life Index

Rate the topics according to their importance to you:
(4) Housing

http://oecdbetterlifeindex.org

(Kirk, 2012)

Small multiples:
arrangement approach that facilitates efficient and effective comparisons
(Kirk, 2012)

Example:

Use visualization techniques to help answer the following questions:

Is there a relation between wanted salary and experience?
How many candidates ask for a salary in [30000, 50000] and in [55000, 75000]? How many candidates have an advanced level of English?

| | Education | Age | Prof.
 Experience | English | Wanted
 salary |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# | | | | | |
| (MSc/PhD) | (years) | (years) | (Bas/Adv) | (\$\$/year) | |
| 1 | MSc | 22 | 0 | Advanced | 36000 |
| 2 | MSc | 23 | 0 | Basic | 36000 |
| 3 | MSc | 24 | 1 | Advanced | 36000 |
| 4 | PhD | 30 | 7 | Advanced | 72000 |
| 5 | MSc | 25 | 1 | Basic | 40000 |
| 6 | PhD | 29 | 5 | Advanced | 60000 |
| 7 | MSc | 31 | 7 | Advanced | 55000 |
| 8 | MSc | 23 | 0 | Advanced | 36000 |
| 9 | MSc | 26 | 2 | Intermediate | 40000 |
| 10 | PhD | 32 | 9 | Intermediate | 65000 |
| 11 | BSc | 30 | 7 | Intermediate | 30000 |
| 12 | PhD | 40 | 17 | Advanced | 80000 |
| 13 | MSc | 28 | 4 | Advanced | 40000 |

Bibliography

- Spence, R., Information Visualization, Design for Interaction, 2nd ed., Prentice Hall, 2007
- Munzner, T., Visualization Analysis and Design, A K Peters/CRC Press, 2014
- Kirk, A., Data Visualization: a successful design process, Packt Publishing, 2012
- Mazza, R., Introduction to Information Visualization, Springer, 2009
- Ware, C., Information Visualization, Perception to Design, 2nd ed.,Morgan Kaufmann,2004
- Tufte, E., The Visual Display of Quantitative Information, $2^{\text {nd }}$ ed., Graphics Press, 2001
- Heer, J., Bostock, M., \& Ogievetsky, V. A tour through the visualization zoo. Communications of the ACM, vol. 8, n.1, 2010 https://doi.org/10.1145/1743546.1743567

Acknowledgement

The author of these slides is grateful to Professor Robert Spence as he provided the electronic version of his book figures

[^0]: static
 type of interaction transformable manipulable

