
Introduction to Computer Graphics 
main concepts and methods 

 
 
  

 

Universidade de Aveiro 

Departamento de Electrónica, 

Telecomunicações e Informática 

  Beatriz Sousa Santos     University of Aveiro, 2019 

(Wikipedia) 



Basic Graphics System 
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https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html 

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html


• Computer Graphics main tasks 

• 2D and 3D visualization 

• Geometric transformations 

• Projections 

• Illumination and shading 

Topics 
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CG Main Tasks 

• Modeling 

– Construct individual models / objects 

– Assemble them into a 2D or 3D scene 
 

• Animation 

– Static vs. dynamic scenes 

– Movement and / or deformation 
 

• Rendering 

– Generate final images 

– Where is the observer? 

– How is he / she looking at the scene? 
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Geometric Primitives 

• Simple primitives                            Examples: 

– Points 

– Line segments 

– Polygons 

 

• Geometric primitives 

– Parametric curves / surfaces 

– Cubes, spheres, cylinders, etc. 

https://threejsfundamentals.org/threejs/lessons/threejs-primitives.html 

https://threejsfundamentals.org/threejs/lessons/threejs-primitives.html
https://threejsfundamentals.org/threejs/lessons/threejs-primitives.html
https://threejsfundamentals.org/threejs/lessons/threejs-primitives.html


• Types of light sources 

– Point vs distributed light sources 

– Spot lights 

– Near and far sources 

– Color properties 

 

• Material properties 

– Absorption: color properties 

– Scattering: diffuse and specular 

– Transparency 

Lights and materials 
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• Position and orientation 

 

• Lens 

 

• Image size 

 

• Orientation of image plane 

Camera specification 
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(Angel, 2012) 



• Define a 2D scene in the world coordinate system 

 

• Select a clipping window in the XOY plane 

– The window contents will be displayed 

 

• Select a viewport in the display 

– The viewport displays the contents of the clipping window  

2D Visualization 
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World Coordinates         xw 

yw 

World -> display 

Display Coordinates x 

y 

Viewport 

Clipping Window 



Coordinate mapping 
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World Coordinates           Screen coordinates 
   

Clipping Window                       Viewport 



Coordinate mapping 
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If the aspect ratio is not the same in both situations the result 
is distortion 



World Coordinates         x 

y 

World -> screen   

Screen Coordinates x 

y 

The aspect ratio is 
not the same in 
both situations: 
distortion! 



3D Viewing 
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• Where is the observer / the camera ? 

– Position ? 

– Close to the 3D scene ? 

– Far away ? 

 

• How is the observer looking at the scene ? 

– Orientation ? 

 

• How to represent as a 2D image ? 

– Projection ? 

3D Viewing 
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• Obtaining an image of the scene using perspective 

image 

View frustum 

(Interactive 3D Graphics, Udacity) 



• In the real world the light emits rays that are reflected by 
objects and seen by the eye  

 

 

 

 

 
• Computing this is  

    too time consuming 

Light and Rendering 

(Interactive 3D Graphics, Udacity) 



• In CG simplifying assumptions may be made 

 

• Start from the camera 

 

• No shadows 

 

• Only the rays that matter  

    are processed 

 

Reversing the process in CG 



3D scene 

(Interactive 3D Graphics, Udacity) 

Geometry 
 
Material 
 
Light 
 
(animation) 
 
+  
 
Camera 



• Instantiate models of the scene 

– Position, orientation, size 

• Establish viewing parameters 

– Camera position and orientation 

• Compute illumination and shade polygons 

• Perform clipping 

• Project into 2D 

• Rasterize 

3D visualization pipeline 
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• Each object is processed separately 

• Typically 3D triangles 

  (e.g. a cube or a sphere are made of triangles) 

• Triangles are modified by the camera view of the world 

• Compute the color of each pixel  

• Is the object inside the view frustum?  

– (No -> next object!) 

– Yes -> project and compute location  

of each triangle  on the screen (rasterization) 

       

 

3D visualization pipeline 
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(Interactive 3D Graphics, 

Udacity) 

Cube not shown 
In the image  



Parallel Projection   Perspective Projection 

 (allows measures)           (more realistic images) 

Projection (from 3D to 2D) 
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Projections 

https://www.javatpoint.com/computer-

graphics-projection 

https://www.javatpoint.com/computer-graphics-projection
https://www.javatpoint.com/computer-graphics-projection
https://www.javatpoint.com/computer-graphics-projection
https://www.javatpoint.com/computer-graphics-projection
https://www.javatpoint.com/computer-graphics-projection


Parallel Projection   Perspective Projection 

Projections 
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Examples of resulting  
representation on the 
viewing plane 

(Hearn & Baker, 2004) 



Parallel Projections 
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Orthographic / 
Axonometric projection 

Oblique projection 

Orthographic/ Multiview projection 

(Hearn & Baker, 2004) 



Perspective Projections 
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One vanishing point perspective projection 
 
 
Two vanishing points perspective projection  

(Hearn & Baker, 2004) 



Perspective Projections 
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Foreshortening indicates a 
perspective projection 

(Wijipedia) 

Object's dimensions along the line 
of sight appear shorter than its 
dimensions across the line of sight 



• Projection matrices 
 

• Homogeneous coordinates  
 

• Concatenation through matrix multiplication 
 

• Don’t worry !  
 

• Graphics APIs implement usual projections ! 

How to represent ? 

36 



• Clipping window on the projection plane 

 

• View volume (frustum) in 3D 

How to limit what is observed and represented ? 
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Clipping 

window 

Near Clipping plane 

Far Clipping plane 

(Hearn & Baker, 2004) 

Parallel projection                                          Perspective projection 



3D visualization pipeline 
(coordinate transformations) 
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(Hearn & Baker, 2004) 



• Main operations represented as point transformations 

– Homogeneous coordinates 

– Transformation matrices 

– Matrix multiplication  

3D visualization pipeline 
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Basic 2D Transformations 
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p = (x, y)       original point 

 

p’ = (x’, y’)   transformed point 

•   Basic transformations: 

 

 - Translation 

 

 - Scaling  

 

 - Rotation Vector notation 

               x  

  P =         

           y   
 

 

               x’  

 P’ =         

           y’   
 

 



Translation 
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•  It is a rigid body transformation (it does not deform the object) 

•  To apply a translation to a 

line segment we need only 

to transform the end points 

 

 

•  To apply a translation to 

a polygon we need only to 

transform the vertices 



Translation 

• It is necessary to specify translations in x and y  

 transformation matrix 

               x  

  P =         

           y   
 

 

               x’  

 P’ =         

           y’   
 

 

               tx  

  T =         

           ty   
 

 

P´ =  P + T  

x’ = x + tx y’ = y + ty 
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Rotation 
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•  To apply a rotation we need to specify: 
 

- a point (center of rotation)  
(xr,yr) 
 
-  A rotation angle θ (positive - counter-clockwise) 

Positive rotation 



Rotation around the origin 
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•  The simplest case: 
 

r cos (Φ + θ) 

r sin (Φ + θ) 

Polar coordenates of the original point: 
  x = r cos Φ 
  y = r sin Φ  
 

Replacing: 
  
               x’ = x cos Θ – y sin Θ 
               y´ = x sin Θ + y cos Θ  
 
 

 

 

x’= r cos (Φ + Θ) = r cos Φ cos Θ – r sin Φ sin Θ  

y’= r sin (Φ + Θ) = r cos Φ sin Θ + r sin Φ cos Θ  



2D Rotation in matrix notation 

45 r cos (Φ + θ) 

r sin (Φ + θ) 

x’= r cos (Φ + Θ) = r cos Φ cos Θ – r sin Φ sin Θ 

y’= r sin (Φ + Θ) = r cos Φ sin Θ + r sin Φ cos Θ  



Scaling 
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  x’ =  x . sx 
  y’ =  y . sy 
 

•   Modifies the size of an object; we need to specify scaling 
factors: sx  and sy  

Trasformation matrix 

P’ = S . P 

Transforming a square into a 
larger square applying a 

scaling sx=2, sy=2 

(Hearn & Baker, 2004) 



 

 

• Matrix representation 

– Homogeneous coordinates !! 

– Concatenation = Matrix products 

 

 

• Complex transformations ? 

– Decompose into a sequence of basic transformations 

2D Transformations 
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Homogeneous coordinates 
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•   Most applications involve sequences of transformations  
 
•   For instance: 

 
 -   visualization transformations involve a sequence of 
translations and rotations to render an image of a scene 
 
 -   animations may imply that an object is rotated and 
translated between two consecutive frames 
 
 
•   Homogeneous coordinates provide an efficient way to 
represent and apply sequences of transformations 
 

 



• It is possible to combine in a matrix the multiplying and 
additive terms if we use 3x3 matrices 

 

• All transformations may be represented by multiplying 
matrices 

 

• Each point is now represented by 3 coordinates 
 

( x, y )         (xh, yh, h), h = 0   

 

        x = xh / h        y = yh / h 
 

   ( x.h, y.h, h) 
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2D Translation 
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(Hearn & Baker, 2004) 



2D Rotation 
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r cos (Φ + θ) 

r sin (Φ + θ) 

x’= r cos (Φ + Θ) = r cos Φ cos Θ – r sin Φ sin Θ 

y’= r sin (Φ + Θ) = r cos Φ sin Θ + r sin Φ cos Θ  



2D Scaling 
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(Hearn & Baker, 2004) 



Concatenation of two translations 
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Concatenation of two scaling transformations 
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Arbitrary Rotation 

55 

Translation + Rotation + Inverse Translation 

(Hearn & Baker, 2004) 



Order is important ! 
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(Hearn & Baker, 2004) 



• Translation 

 

 

 
• Scaling 

3D Transformations 

58 



3D Rotation 
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 Rotation around each one of the 
coordinate axis 

 

 

 Positive rotations are CCW (counter 
clock wise)!! 

 

 

 

 
(Hearn & Baker, 2004) 



Rotation around ZZ’ 
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Rotation around XX’ 
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(Hearn & Baker, 2004) 



Rotation around YY’ 
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(Hearn & Baker, 2004) 



How to apply Projections? 
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•    

• Also by matrix multiplication 

 
 

 

Example: Matrix of the orthographic projection on the xy plane 
in homogeneous coordinates: 

 

 

y 

x z 

zz coordinates  are discarded  



• Compute surface color based on 

– Type and number of light sources 

– Illumination model 

• Phong: ambient + diffuse + specular components 

– Reflective surface properties 

– Atmospheric effects 

• Fog, smoke 

• Polygons making up a model surface are shaded 

– Realistic representation 

Lighting 
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Phong reflection model 
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(Wikipedia) 

Empirical model of the local illumination of points on a surface 
 
It describes the way a surface reflects light as a combination of 
the diffuse reflection of rough surfaces with the specular reflection of 
shiny surfaces and a component of ambient light 



• Constant illumination component for 
each model 

 

• Independent from viewer position or 
object orientation ! 

 

• Take only material properties into 
account ! 

Phong Model – Ambient illumination 
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Phong Model – Ambient illumination 
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• Model surface is an ideal diffuse reflector 

– What does that mean ? 

 

• Independence from viewer position ! 

 

• Unit vectors !! 

Phong Model – Diffuse reflection  
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Phong Model 
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ka – ambient 

 

Kd - diffuse 



• Important for shiny model surfaces 

– How to model shininess ? 

 

• Take into account viewer position ! 

 

• Unit vectors ! 

Phong Model – Specular reflection  
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To viewer 

Reflection Normal To light 



Phong Model – Specular reflection 
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Phong Model – Specular reflection 
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and 

or 



More than one light source 
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• How to optimize? 

– Fewer light sources 

– Simple shading method 

 

• BUT, less computations mean less realism 

– Wireframe representation 

– Flat-shading 

– Gouraud shading 

– Phong shading 

Illumination and shading  
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• For each polygon: 

• Applies the illumination model just once 

• All pixels have the same color 

 

• smooth objects seem “blocky” 

• It is fast 

Flat shading 



• For each triangle: 

• Applies the illumination model at each vertex 

• Interpolates color to shade each pixel 

 

• It provides better results than flat shading 

• But highlights are not rendered correctly 

Gouraud shading 

highlight 

Apply the 

illumination 

model at vertices 



 
• Interpolates normals across rasterized polygons 

• computes pixel colors based on the interpolated normals 

 

• It provides better results than Gouraud shading 

• But is more time consuming 

Phong shading 

highlight 



https://threejs.org/examples/#webgl_geometry_teapot 

 

Wire frame          Flat shading 

Gouraud shading                       Phong shading 

https://threejs.org/examples/#webgl_geometry_teapot
https://threejs.org/examples/#webgl_geometry_teapot
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Some reference books 
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