Introduction to Computer Graphics main concepts and methods

(Wikipedia)

Basic Graphics System

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG BasicsTheory.html

Topics

- Computer Graphics main tasks
- 2D and 3D visualization
- Geometric transformations
- Projections
- Illumination and shading

CG Main Tasks

- Modeling
- Construct individual models / objects
- Assemble them into a 2D or 3D scene
- Animation
- Static vs. dynamic scenes
- Movement and / or deformation
- Rendering
- Generate final images
- Where is the observer?
- How is he / she looking at the scene?

Geometric Primitives

- Simple primitives
- Points
- Line segments
- Polygons
- Geometric primitives
- Parametric curves / surfaces
- Cubes, spheres, cylinders, etc.

Examples:

OpenGL. Geometric Primitives

Lights and materials

- Types of light sources
- Point vs distributed light sources
- Spot lights
- Near and far sources
- Color properties
- Material properties
- Absorption: color properties
- Scattering: diffuse and specular
- Transparency

Camera specification

- Position and orientation
- Lens
- Image size
- Orientation of image plane

(Angel, 2012)

2D Visualization

- Define a 2D scene in the world coordinate system
- Select a clipping window in the XOY plane
- The window contents will be displayed
- Select a viewport in the display
- The viewport displays the contents of the clipping window

World -> display

Clipping Window

World Coordinates
XW

Coordinate mapping

World Coordinates

Viewport

Screen coordinates

Coordinate mapping

If the aspect ratio is not the same in both situations the result is distortion

World -> screen

The aspect ratio is not the same in both situations: distortion!

3D Viewing

3D Viewing

- Where is the observer / the camera ?
- Position?
- Close to the 3D scene ?
- Far away?
- How is the observer looking at the scene ?
- Orientation?
- How to represent as a 2D image ?
- Projection?

- Obtaining an image of the scene using perspective

(Interactive 3D Graphics, Udacity)

Light and Rendering

- In the real world the light emits rays that are reflected by objects and seen by the eye
- Computing this is too time consuming

Reversing the process in CG

- In CG simplifying assumptions may be made
- Start from the camera
- No shadows
- Only the rays that matter are processed

3D scene

Geometry
Material
Light
(animation)
$+$
Camera

(Interactive 3D Graphics, Udacity)

3D visualization pipeline

- Instantiate models of the scene
- Position, orientation, size
- Establish viewing parameters
- Camera position and orientation
- Compute illumination and shade polygons
- Perform clipping
- Project into 2D
- Rasterize

3D visualization pipeline

- Each object is processed separately
- Typically 3D triangles
(e.g. a cube or a sphere are made of triangles)
- Triangles are modified by the camera view of the world
- Compute the color of each pixel
- Is the object inside the view frustum?
(Interactive 3D Graphics, Udacity)
- (No -> next object!)
- Yes -> project and compute location
of each triangle on the screen (rasterization)

Projection (from 3D to 2D)

Parallel Projection
(allows measures)

Perspective Projection
(more realistic images)

Projections

Projections

Parallel Projection
Examples of resulting representation on the viewing plane

Perspective Projection

Parallel Projections

Orthographic/ Multiview projection (Hearn \& Baker, 2004)

Perspective Projections

One vanishing point perspective projection

Two vanishing points perspective projection

(Hearn \& Baker, 2004)

Perspective Projections

Foreshortening indicates a perspective projection

Object's dimensions along the line of sight appear shorter than its dimensions across the line of sight

How to represent ?

- Projection matrices
- Homogeneous coordinates
- Concatenation through matrix multiplication
- Don’t worry!
- Graphics APIs implement usual projections !

How to limit what is observed and represented ?

- Clipping window on the projection plane
- View volume (frustum) in 3D

3D visualization pipeline (coordinate transformations)

(Hearn \& Baker, 2004)

3D visualization pipeline

- Main operations represented as point transformations
- Homogeneous coordinates
- Transformation matrices
- Matrix multiplication

Basic 2D Transformations

$$
\begin{aligned}
& p=(x, y) \rightarrow \text { original point } \\
& p^{\prime}=\left(x^{\prime}, y^{\prime}\right) \rightarrow \text { transformed point }
\end{aligned}
$$

$$
\boldsymbol{P}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Basic transformations:

\author{

- Translation
}

$$
\boldsymbol{P}^{\prime}=\left[\begin{array}{l}
x \\
y^{\prime}
\end{array}\right]
$$

- Scaling
- Rotation

Translation

- It is a rigid body transformation (it does not deform the object)
- To apply a translation to a line segment we need only to transform the end points

- To apply a translation to a polygon we need only to transform the vertices

Translation

- It is necessary to specify translations in x and y

$$
x^{\prime}=x+t x \quad y^{\prime}=y+t y
$$

$$
\boldsymbol{P}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad \boldsymbol{P}^{\prime}=\left[\begin{array}{c}
x \\
y^{\prime}
\end{array}\right] \quad \boldsymbol{T}=\left[\begin{array}{c}
t x \\
t y
\end{array}\right]
$$

Rotation

- To apply a rotation we need to specify:
- a point (center of rotation)
($x_{p} y_{r}$)
- A rotation angle ϑ (positive - counter-clockwise)

Rotation around the origin

- The simplest case:

$$
\begin{aligned}
& x^{\prime}=r \cos (\Phi+\Theta)=r \cos \Phi \cos \Theta-r \sin \Phi \sin \Theta \\
& y^{\prime}=r \sin (\Phi+\Theta)=r \cos \Phi \sin \Theta+r \sin \Phi \cos \Theta
\end{aligned}
$$

Polar coordenates of the original point:

$$
\begin{aligned}
& x=r \cos \Phi \\
& y=r \sin \Phi
\end{aligned}
$$

Replacing:

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \Theta \\
& y^{\prime}=x \sin \Theta+y \cos \Theta
\end{aligned}
$$

2D Rotation in matrix notation

$$
\begin{gathered}
x^{\prime}=r \cos (\Phi+\theta)=r \cos \Phi \cos \theta-r \sin \Phi \sin \theta \\
y^{\prime}=r \sin (\Phi+\theta)=r \cos \Phi \sin \theta+r \sin \Phi \cos \theta \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
\mathbf{P}^{\prime}=\mathbf{R}(\theta) \cdot \mathbf{P}
\end{gathered}
$$

Scaling

- Modifies the size of an object; we need to specify scaling factors: s_{x} and s_{y}

$$
\begin{gathered}
x^{\prime}=x \cdot s_{x} \\
y^{\prime}=y \cdot s_{y} \\
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{s}_{x} & \mathrm{o} \\
\mathrm{o} & \mathrm{~s}_{y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{gathered}
$$

Trasformation matrix

$$
\mathrm{P}^{\prime}=\mathrm{S} . \mathrm{P}
$$

Transforming a square into a larger square applying a scaling $s_{x}=2, s_{y}=2$
(Hearn \& Baker, 2004)

2D Transformations

- Matrix representation
- Homogeneous coordinates !!
- Concatenation = Matrix products
- Complex transformations ?
- Decompose into a sequence of basic transformations

Homogeneous coordinates

- Most applications involve sequences of transformations
- For instance:
- visualization transformations involve a sequence of translations and rotations to render an image of a scene
- animations may imply that an object is rotated and translated between two consecutive frames
- Homogeneous coordinates provide an efficient way to represent and apply sequences of transformations
- It is possible to combine in a matrix the multiplying and additive terms if we use 3×3 matrices
- All transformations may be represented by multiplying matrices
- Each point is now represented by 3 coordinates

$$
\begin{aligned}
& (x, y) \rightarrow\left(x_{h}, y_{h}, h\right), h \neq 0 \\
& x=x_{h} / h \quad y=y_{h} / h \\
& (x . h, y . h, h)
\end{aligned}
$$

2D Translation

2D Rotation

$$
x^{\prime}=r \cos (\Phi+\Theta)=r \cos \Phi \cos \Theta-r \sin \Phi \sin \Theta
$$

$$
y^{\prime}=r \sin (\Phi+\Theta)=r \cos \Phi \sin \Theta+r \sin \Phi \cos \Theta
$$

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
\mathbf{P}^{\prime}=\mathbf{R}(\theta) \cdot \mathbf{P}
\end{gathered}
$$

2D Scaling

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]} \\
\mathbf{P}^{\prime}=\mathbf{S}\left(s_{x}, s_{y}\right) \cdot \mathbf{P}
\end{gathered}
$$

(Hearn \& Baker, 2004)

Concatenation of two translations

$$
\begin{gathered}
\mathbf{P}^{\prime}=\mathbf{T}\left(t_{2 x}, t_{2 y}\right) \cdot\left\{\mathbf{T}\left(t_{1 x}, t_{1 y}\right) \cdot \mathbf{P}\right\} \\
=\left\{\mathbf{T}\left(t_{2 x}, t_{2 y}\right) \cdot \mathbf{T}\left(t_{1 x}, t_{1 y}\right)\right\} \cdot \mathbf{P} \\
{\left[\begin{array}{ccc}
1 & 0 & t_{2 x} \\
0 & 1 & t_{2 y} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & t_{1 x} \\
0 & 1 & t_{1 y} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & t_{1 x}+t_{2 x} \\
0 & 1 & t_{1 y}+t_{2 y} \\
0 & 0 & 1
\end{array}\right]}
\end{gathered}
$$

$\mathbf{T}\left(t_{2 x}, t_{2 y}\right) \cdot \mathbf{T}\left(t_{1 x}, t_{1 y}\right)=\mathbf{T}\left(t_{1 x}+t_{2 x}, t_{1 y}+t_{2 y}\right)$

Concatenation of two scaling transformations

$$
\left[\begin{array}{ccc}
s_{2 x} & 0 & 0 \\
0 & s_{2 y} & 0 \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
s_{1 x} & 0 & 0 \\
0 & s_{1 y} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
s_{1 x} \cdot s_{2 x} & 0 & 0 \\
0 & s_{1 y} \cdot s_{2 y} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$\mathbf{S}\left(s_{2 x}, s_{2 y}\right) \cdot \mathbf{S}\left(s_{1 x}, s_{1 y}\right)=\mathbf{S}\left(s_{1 x} \cdot s_{2 x}, s_{1 y} \cdot s_{2 y}\right)$

Arbitrary Rotation

Translation + Rotation + Inverse Translation

Order is important !

(Hearn \& Baker, 2004)

3D Transformations

- Translation

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lllc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left\lfloor\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right\rfloor
$$

- Scaling

$$
\mathbf{S}=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D Rotation

- Rotation around each one of the coordinate axis
- Positive rotations are CCW (counter clock wise)!!

(b)

Rotation around ZZ' $^{\prime}$

$$
\begin{gathered}
{\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]} \\
\uparrow
\end{gathered}
$$

Rotation around $X X^{\prime}$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

(Hearn \& Baker, 2004)

How to apply Projections?

- Also by matrix multiplication

Example: Matrix of the orthographic projection on the $x y$ plane in homogeneous coordinates:

Lighting

- Compute surface color based on
- Type and number of light sources
- Illumination model
- Phong: ambient + diffuse + specular components
- Reflective surface properties
- Atmospheric effects
- Fog, smoke
- Polygons making up a model surface are shaded
- Realistic representation

Phong reflection model

Empirical model of the local illumination of points on a surface

It describes the way a surface reflects light as a combination of the diffuse reflection of rough surfaces with the specular reflection of shiny surfaces and a component of ambient light

Phong Model - Ambient illumination

- Constant illumination component for each model
- Independent from viewer position or object orientation!
- Take only material properties into account!

Phong Model - Ambient illumination

Phong Model - Diffuse reflection

$$
I_{l, \text { diff }}= \begin{cases}k_{d} I_{l}(\mathbf{N} \cdot \mathbf{L}), & \mathbf{N} \cdot \mathbf{L}>0 \\ 0.0, & \mathbf{N} \cdot \mathbf{L} \leq 0\end{cases}
$$

- Model surface is an ideal diffuse reflector
- What does that mean ?
- Independence from viewer position!
- Unit vectors !!

Phong Model

ka - ambient
$K d$ - diffuse

Phong Model - Specular reflection

Shiny Surface (Large n_{s})

- Important for shiny model surfaces
- How to model shininess?
- Take into account viewer position!
- Unit vectors !

Phong Model - Specular reflection

Phong Model - Specular reflection

$$
I_{l, \text { spec }}= \begin{cases}k_{s} I_{l}(\mathbf{V} \cdot \mathbf{R})^{n_{s}}, & \text { if } \mathbf{V} \cdot \mathbf{R}>0 \\ 0.0, & \text { and } \quad \mathbf{N} \cdot \mathbf{L}>0 \\ \text { if } \mathbf{V} \cdot \mathbf{R}<0 & \text { or } \quad \mathbf{N} \cdot \mathbf{L} \leq 0\end{cases}
$$

More than one light source

Illumination and shading

- How to optimize?
- Fewer light sources
- Simple shading method
- BUT, less computations mean less realism
- Wireframe representation
- Flat-shading
- Gouraud shading
- Phong shading

Flat shading

- For each polygon:
- Applies the illumination model just once
- All pixels have the same color
- smooth objects seem "blocky"
- It is fast

Gouraud shading

- For each triangle:
- Applies the illumination model at each vertex
- Interpolates color to shade each pixel

Apply the
illumination
model at vertices

- It provides better results than flat shading
- But highlights are not rendered correctly

Flat

Gouraud

Phong shading

- Interpolates normals across rasterized polygons
- computes pixel colors based on the interpolated normals
- It provides better results than Gouraud shading
- But is more time consuming

Wire frame

Flat shading

Gouraud shading Phong shading

https://threejs.org/examples/\#webgl geometry teapot

Some reference books

- D. Hearn and M. P. Baker, Computer Graphics with OpenGL, $3^{\text {rd }}$ Ed., Addison-Wesley, 2004
- E. Angel and D. Shreiner, Introduction to Computer Graphics, $6^{\text {th }}$ Ed., Pearson Education, 2012
- J. Foley et al., Introduction to Computer Graphics, AddisonWesley, 1993
- Hughes, J., A. Van Dam, et al., Computer Graphics, Principles and Practice, 3rd Ed., Addison Wesley, 2013

