
Introduction to Computer Graphics
main concepts and methods

Universidade de Aveiro

Departamento de Electrónica,

Telecomunicações e Informática

 Beatriz Sousa Santos University of Aveiro, 2019

(Wikipedia)

Basic Graphics System

2

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

https://www.ntu.edu.sg/home/ehchua/programming/opengl/CG_BasicsTheory.html

• Computer Graphics main tasks

• 2D and 3D visualization

• Geometric transformations

• Projections

• Illumination and shading

Topics

4 4

CG Main Tasks

• Modeling

– Construct individual models / objects

– Assemble them into a 2D or 3D scene

• Animation

– Static vs. dynamic scenes

– Movement and / or deformation

• Rendering

– Generate final images

– Where is the observer?

– How is he / she looking at the scene?

7

Geometric Primitives

• Simple primitives Examples:

– Points

– Line segments

– Polygons

• Geometric primitives

– Parametric curves / surfaces

– Cubes, spheres, cylinders, etc.

https://threejsfundamentals.org/threejs/lessons/threejs-primitives.html

https://threejsfundamentals.org/threejs/lessons/threejs-primitives.html
https://threejsfundamentals.org/threejs/lessons/threejs-primitives.html
https://threejsfundamentals.org/threejs/lessons/threejs-primitives.html

• Types of light sources

– Point vs distributed light sources

– Spot lights

– Near and far sources

– Color properties

• Material properties

– Absorption: color properties

– Scattering: diffuse and specular

– Transparency

Lights and materials

8

• Position and orientation

• Lens

• Image size

• Orientation of image plane

Camera specification

9

(Angel, 2012)

• Define a 2D scene in the world coordinate system

• Select a clipping window in the XOY plane

– The window contents will be displayed

• Select a viewport in the display

– The viewport displays the contents of the clipping window

2D Visualization

17

World Coordinates xw

yw

World -> display

Display Coordinates x

y

Viewport

Clipping Window

Coordinate mapping

19

World Coordinates Screen coordinates

Clipping Window Viewport

Coordinate mapping

20

If the aspect ratio is not the same in both situations the result
is distortion

World Coordinates x

y

World -> screen

Screen Coordinates x

y

The aspect ratio is
not the same in
both situations:
distortion!

3D Viewing

22

• Where is the observer / the camera ?

– Position ?

– Close to the 3D scene ?

– Far away ?

• How is the observer looking at the scene ?

– Orientation ?

• How to represent as a 2D image ?

– Projection ?

3D Viewing

23

• Obtaining an image of the scene using perspective

image

View frustum

(Interactive 3D Graphics, Udacity)

• In the real world the light emits rays that are reflected by
objects and seen by the eye

• Computing this is

 too time consuming

Light and Rendering

(Interactive 3D Graphics, Udacity)

• In CG simplifying assumptions may be made

• Start from the camera

• No shadows

• Only the rays that matter

 are processed

Reversing the process in CG

3D scene

(Interactive 3D Graphics, Udacity)

Geometry

Material

Light

(animation)

+

Camera

• Instantiate models of the scene

– Position, orientation, size

• Establish viewing parameters

– Camera position and orientation

• Compute illumination and shade polygons

• Perform clipping

• Project into 2D

• Rasterize

3D visualization pipeline

28

• Each object is processed separately

• Typically 3D triangles

 (e.g. a cube or a sphere are made of triangles)

• Triangles are modified by the camera view of the world

• Compute the color of each pixel

• Is the object inside the view frustum?

– (No -> next object!)

– Yes -> project and compute location

of each triangle on the screen (rasterization)

3D visualization pipeline

29

(Interactive 3D Graphics,

Udacity)

Cube not shown
In the image

Parallel Projection Perspective Projection

 (allows measures) (more realistic images)

Projection (from 3D to 2D)

30

Projections

https://www.javatpoint.com/computer-

graphics-projection

https://www.javatpoint.com/computer-graphics-projection
https://www.javatpoint.com/computer-graphics-projection
https://www.javatpoint.com/computer-graphics-projection
https://www.javatpoint.com/computer-graphics-projection
https://www.javatpoint.com/computer-graphics-projection

Parallel Projection Perspective Projection

Projections

32

Examples of resulting
representation on the
viewing plane

(Hearn & Baker, 2004)

Parallel Projections

33

Orthographic /
Axonometric projection

Oblique projection

Orthographic/ Multiview projection

(Hearn & Baker, 2004)

Perspective Projections

34

One vanishing point perspective projection

Two vanishing points perspective projection

(Hearn & Baker, 2004)

Perspective Projections

35

Foreshortening indicates a
perspective projection

(Wijipedia)

Object's dimensions along the line
of sight appear shorter than its
dimensions across the line of sight

• Projection matrices

• Homogeneous coordinates

• Concatenation through matrix multiplication

• Don’t worry !

• Graphics APIs implement usual projections !

How to represent ?

36

• Clipping window on the projection plane

• View volume (frustum) in 3D

How to limit what is observed and represented ?

37

Clipping

window

Near Clipping plane

Far Clipping plane

(Hearn & Baker, 2004)

Parallel projection Perspective projection

3D visualization pipeline
(coordinate transformations)

38

(Hearn & Baker, 2004)

• Main operations represented as point transformations

– Homogeneous coordinates

– Transformation matrices

– Matrix multiplication

3D visualization pipeline

39

Basic 2D Transformations

40

p = (x, y) original point

p’ = (x’, y’) transformed point

• Basic transformations:

 - Translation

 - Scaling

 - Rotation Vector notation

 x

 P =

 y

 x’

 P’ =

 y’

Translation

41

• It is a rigid body transformation (it does not deform the object)

• To apply a translation to a

line segment we need only

to transform the end points

• To apply a translation to

a polygon we need only to

transform the vertices

Translation

• It is necessary to specify translations in x and y

 transformation matrix

 x

 P =

 y

 x’

 P’ =

 y’

 tx

 T =

 ty

P´ = P + T

x’ = x + tx y’ = y + ty

42

Rotation

43

• To apply a rotation we need to specify:

- a point (center of rotation)
(xr,yr)

- A rotation angle θ (positive - counter-clockwise)

Positive rotation

Rotation around the origin

44

• The simplest case:

r cos (Φ + θ)

r sin (Φ + θ)

Polar coordenates of the original point:
 x = r cos Φ
 y = r sin Φ

Replacing:

 x’ = x cos Θ – y sin Θ
 y´ = x sin Θ + y cos Θ

x’= r cos (Φ + Θ) = r cos Φ cos Θ – r sin Φ sin Θ

y’= r sin (Φ + Θ) = r cos Φ sin Θ + r sin Φ cos Θ

2D Rotation in matrix notation

45 r cos (Φ + θ)

r sin (Φ + θ)

x’= r cos (Φ + Θ) = r cos Φ cos Θ – r sin Φ sin Θ

y’= r sin (Φ + Θ) = r cos Φ sin Θ + r sin Φ cos Θ

Scaling

46

 x’ = x . sx
 y’ = y . sy

• Modifies the size of an object; we need to specify scaling
factors: sx and sy

Trasformation matrix

P’ = S . P

Transforming a square into a
larger square applying a

scaling sx=2, sy=2

(Hearn & Baker, 2004)

• Matrix representation

– Homogeneous coordinates !!

– Concatenation = Matrix products

• Complex transformations ?

– Decompose into a sequence of basic transformations

2D Transformations

47

Homogeneous coordinates

48

• Most applications involve sequences of transformations

• For instance:

 - visualization transformations involve a sequence of
translations and rotations to render an image of a scene

 - animations may imply that an object is rotated and
translated between two consecutive frames

• Homogeneous coordinates provide an efficient way to
represent and apply sequences of transformations

• It is possible to combine in a matrix the multiplying and
additive terms if we use 3x3 matrices

• All transformations may be represented by multiplying
matrices

• Each point is now represented by 3 coordinates

(x, y) (xh, yh, h), h = 0

 x = xh / h y = yh / h

 (x.h, y.h, h)

49

2D Translation

50

(Hearn & Baker, 2004)

2D Rotation

51

r cos (Φ + θ)

r sin (Φ + θ)

x’= r cos (Φ + Θ) = r cos Φ cos Θ – r sin Φ sin Θ

y’= r sin (Φ + Θ) = r cos Φ sin Θ + r sin Φ cos Θ

2D Scaling

52

(Hearn & Baker, 2004)

Concatenation of two translations

53

Concatenation of two scaling transformations

54

Arbitrary Rotation

55

Translation + Rotation + Inverse Translation

(Hearn & Baker, 2004)

Order is important !

57

(Hearn & Baker, 2004)

• Translation

• Scaling

3D Transformations

58

3D Rotation

59

 Rotation around each one of the
coordinate axis

 Positive rotations are CCW (counter
clock wise)!!

(Hearn & Baker, 2004)

Rotation around ZZ’

60

Rotation around XX’

61

(Hearn & Baker, 2004)

Rotation around YY’

62

(Hearn & Baker, 2004)

How to apply Projections?

64

•

• Also by matrix multiplication

Example: Matrix of the orthographic projection on the xy plane
in homogeneous coordinates:

y

x z

zz coordinates are discarded

• Compute surface color based on

– Type and number of light sources

– Illumination model

• Phong: ambient + diffuse + specular components

– Reflective surface properties

– Atmospheric effects

• Fog, smoke

• Polygons making up a model surface are shaded

– Realistic representation

Lighting

66

Phong reflection model

67

(Wikipedia)

Empirical model of the local illumination of points on a surface

It describes the way a surface reflects light as a combination of
the diffuse reflection of rough surfaces with the specular reflection of
shiny surfaces and a component of ambient light

• Constant illumination component for
each model

• Independent from viewer position or
object orientation !

• Take only material properties into
account !

Phong Model – Ambient illumination

68

Phong Model – Ambient illumination

69

• Model surface is an ideal diffuse reflector

– What does that mean ?

• Independence from viewer position !

• Unit vectors !!

Phong Model – Diffuse reflection

70

Phong Model

71

ka – ambient

Kd - diffuse

• Important for shiny model surfaces

– How to model shininess ?

• Take into account viewer position !

• Unit vectors !

Phong Model – Specular reflection

72

To viewer

Reflection Normal To light

Phong Model – Specular reflection

73

Phong Model – Specular reflection

74

and

or

More than one light source

75

• How to optimize?

– Fewer light sources

– Simple shading method

• BUT, less computations mean less realism

– Wireframe representation

– Flat-shading

– Gouraud shading

– Phong shading

Illumination and shading

77

• For each polygon:

• Applies the illumination model just once

• All pixels have the same color

• smooth objects seem “blocky”

• It is fast

Flat shading

• For each triangle:

• Applies the illumination model at each vertex

• Interpolates color to shade each pixel

• It provides better results than flat shading

• But highlights are not rendered correctly

Gouraud shading

highlight

Apply the

illumination

model at vertices

• Interpolates normals across rasterized polygons

• computes pixel colors based on the interpolated normals

• It provides better results than Gouraud shading

• But is more time consuming

Phong shading

highlight

https://threejs.org/examples/#webgl_geometry_teapot

Wire frame Flat shading

Gouraud shading Phong shading

https://threejs.org/examples/#webgl_geometry_teapot
https://threejs.org/examples/#webgl_geometry_teapot

• D. Hearn and M. P. Baker, Computer Graphics with OpenGL, 3rd
Ed., Addison-Wesley, 2004

• E. Angel and D. Shreiner, Introduction to Computer Graphics,
6th Ed., Pearson Education, 2012

• J. Foley et al., Introduction to Computer Graphics, Addison-
Wesley, 1993

• Hughes, J., A. Van Dam, et al., Computer Graphics, Principles
and Practice, 3rd Ed., Addison Wesley, 2013

Some reference books

104

