Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática

Input Devices

Human-Computer Interaction

Beatriz Sousa Santos, 2020/21

Main Input devices

- Keyboards
- Pointing devices
 - Mouse
 - Touch screen
 - Touch pad
 - Joy stick
 - Track ball, ...
- Voice recognizers
- Eye trackers
- Motion and position trackers
- 3D input devices
- ...

Keyboards

- Relevant issues in UI design:
 - Key layout
 - Operational characteristics:
 - Keyboard size
 - Keyboard angle
 - Hand resting area
 - Key spacing
 - Key activation force
 - Key surface and finishing
 - Key displacement
 - Activation feedback
 - Home row indicators

Keys layout

The Qwerty layout dates from the XIX century, and we still use it!

Dvorak

Combining both

Percentage of work performed by each hand (in English)

QWERTY

Dvorak

QWERTY was devised to prevent jams in early typewriters.

http://www.dvorak-keyboard.com https://en.wikipedia.org/wiki/Dvorak_keyboard_layout

Ergonomic keyboards

Help avoid RSI (Repetitive Strain Injury) WRULD (Work Related Upper Limb Disorder) and KRP (Keyboard Related Pain)

https://en.wikipedia.org/wiki/Ergonomic_keyboard

Keyboards for specific contexts of use

Chorded keyboard —> used in wearable computing

https://en.wikipedia.org/wi ki/Chorded_keyboard Virtual projection keyboards: it is possible to project a keyboard on any surface:

http://en.wikipedia.org/wiki/Projection_keyboard https://wiki.ezvid.com/best-virtual-keyboards

Pointing Devices

They are used to:

- Point a target
- Select a target
- Drawing
- Positioning objects
- Orient and rotate objects
- Define paths among objects
- Handle text
- etc.

Their efficiency varies according to the tasks Shneiderman (98) divided them into: Direct control touch screen light pen (deprecated) Indirect control mouse track ball digitizing tablet joystick (track point) touch pad 10

Replica of the Engelbart's mouse

Mice

Currently are optical

- Relative coordinates
- Different shapes, n. of buttons,...

Advantages:

- Direct relation between hand and cursor movement spee
- Allow speed control
- Allow continuous movement in all directions

Disadvantages:

- Require hand movement between mouse and keyboard
- Additional space (footprint)
- Hand-eye coordination

http://www.dougengelbart.org/firsts/mouse.html

http://www.computerhistory.org/revolution/input-output/14/350

/ distance speed \ direction

Trackballs

- Relative coordinates
- Many different shapes

Advantages:

- Direct relation between hand and cursor movement (speed and direction)
- Allow speed control
- Allow continuous movement in all directions
- May not need additional space (footprint)

Disadvantages:

- Require hand-eye coordination
- May require hand movement between trackball and keyboard

Touch screens

Resistive (older, less expensive)

RECEIVE DRIVEN LINE X Cx RECEIVE DRIVEN LINE Y

Capacitive

- Are combined with a display

https://en.wikipedia.org/wiki/Touchscreen http://computer.howstuffworks.com/touchscreens.htm

Digitizing tablets adequate for digital art

Sophisticated models:

- Extended sizes
- Multitouch sensitive surface
- Pressure sensitive pen

http://www.wacom.com/products/pen-tablets

Some guidelines to select these interaction devices

- Choose a device after a careful task analysis and test
- Minimize hand and eyes movements
- Use cursor keys for tasks involving:
 - A lot of text manipulation
 - Traversing a structured array of discrete objects
- Use touch screens when
 - There is no training
 - Targets are large, discrete and scattered
 - Space is important
 - No (or little) text entry
 - Are not used for a long time

Voice recognition systems

- The first system was developed in 1972 at Bell Lab
- It is becoming more used
- Has two types of challenges:
 - Technological (have improved a lot ...)
 - Human factors

Voice recognition as input

Independently of the technology state of the art,

- Has advantages when the user:
 - Has physical deficiency
 - Must move around
 - Has eyes busy
 - Is in a low visibility or cluttered environment
- Has inherent disadvantages:
 - Voice is transient
 - Does not have natural feedback
 - May disturb other people
 - May result in lack of privacy
 - May be slower and more tiresome (overloading STM)

- Consider voice input when:
 - The user has to move
 - Has eyes or hands busy

- Avoid voice input when:
 - Privacy is important
 - Error taxes, even low, are not acceptable
 - Usage frequency is high
 - Speed is important
- Voice input/output has became more used

Some guidelines for voice interfaces

- Provide output dialog with structure to guide input
- Use a distinct and familiar vocabulary to avoid errors
- Consider voice input if technology constraints are acceptable considering:
 - Ambient noise
 - Privacy
 - Vocabulary extent
 - Error cost

Input devices for 3D interfaces

- Trackers:
 - Magnetic
 - Optical
 - Ultrasonic
 - Inertial, ...
- Navigation and manipulation interfaces:
 - Tracker-based
 - Trackballs
 - 3D mice, ...
- Gesture interfaces:
 - Gloves
 - Spatial gestures sensors
 - ...

Other input devices for 3D

Tangible interfaces and pedals <u>http://www.youtube.com/</u> <u>watch?v=zJmrcEM-uvA</u>

Leap motion (allows for hand gestures interfaces) https://www.leapmotion.com/

Cyber Glove http://www.cyberglovesystems .com/cyberglove-iii/

Depth cameras (allows body gesture interfaces)

https://en.wikipedia.org/wiki/Kinect

https://www.vive.com/eu/ HTC Vive trackers

CyberTouch Glove: input + output

What future?

It seems likely that we will use more often:

gestures

two hand input

voice

3D pointers

wearable devices

whole-body environments

tactile/force feedback, ...

Conclusion

When choosing an input device, consider:

- Ergonomics / human factors
- Typical scenarios of use
- Cost
- Generality
- DOFs (Degrees Of Freedom)
- Output devices
- Interaction techniques

Technology shall not be used only because it is new and interesting!

• It is necessary to understand the usability of devices for the users and the tasks they have to perform in a specific context

Don't forget that:

"The interface between humans and computers is harder than ever to define, we can interact with computers just by walking through a public space."

Sellen, A., Rogers, Y., Harper, R., & Rodden, T., <u>"Human Values in the Digital Age"</u>, *Communications of the ACM*, *52*(3), March 2009, pp. 58–66

