
S/W Patterns for Interactive Systems 
 
 

Universidade de Aveiro 
Departamento de Electrónica, 
Telecomunicações e Informática 

  

[Wikipedia] 

 Human-Computer Interaction                                                  Beatriz Sousa Santos, 2020 



• A complete application consists of:  

– User interface (UI) 

– Core functions of the application 

  

 

• How can we effectively develop interactive applications with 
these two parts? 

 

• Follow an established development methodology suited for 
interactive systems: 

              

               Architectural patterns 

2 



• 1987  
 First small pattern language for designing user interfaces 
 by K. Beck and W. Cunningham  
 (inspired by building and urban architect C. Alexander)  
 
• 1993  
 Pattern Languages of Programming (PLoP) conference series 
 by The Hillside Group 
 https://www.hillside.net/conferences 

 
• 1994  
 "Design Patterns: Elements of Reusable Object-Oriented Software"  
 by Erich Gamma et al. (aka the Gang of Four (GoF))  

3 

S/W Patterns – historical perspective 

https://hillside.net/patterns/about-patterns 

https://www.hillside.net/conferences
https://www.hillside.net/conferences
https://hillside.net/patterns/about-patterns
https://hillside.net/patterns/about-patterns
https://hillside.net/patterns/about-patterns


• Proven solution to a problem in a context  (Gamma et al., 1994) 

 

• Each pattern documents a reusable solution, encapsulates knowledge 
about successful practices, and provides information about its 
usefulness and tradeoffs 

 

• Many companies have written pattern collections: 

 Amazon, 

 Google,  

 IBM,  

 Microsoft,  

 Oracle,  

 Siemens, etc.  
4 

S/W Patterns  

https://hillside.net/patterns/about-patterns 

https://hillside.net/patterns/about-patterns
https://hillside.net/patterns/about-patterns
https://hillside.net/patterns/about-patterns


• Different formats are used for describing patterns, generally 
including: 
– Name 

– Problem 

– Context  

– Solution 

– Forces   

– Resulting Context 

– Examples  

– Rationale  

– Related Patterns 

– Known Uses  

• May include an Abstract providing an overview of the pattern and indicating 
the types of problems it addresses and the target audience 

 

 

5 

Content of a Pattern 

https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap22.html 

https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap22.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap22.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap22.html


• Security, robustness, reliability, fault-tolerance 

• Efficiency, performance, throughput, bandwidth requirements, space 
utilization 

• Ease-of-use 

• Ease-of-construction 

• Completeness and correctness 

• Scalability (incremental growth on-demand) 

• Extensibility, evolvability, maintainability 

• Modularity, independence, re-usability, openness, composability (plug-
and-play), portability 

• etc. 

6 

Forces of a Pattern 

https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap22.html 

https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap22.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap22.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap22.html


Architectural patterns often used in interactive s/w 

 

 

– Model View Control (MVC) 

 

 

 

– Layered architecture 

7 (Sommerville, 2010) 



 
• MVC is an architectural pattern/paradigm commonly used for 

interactive systems 

 

• Was proposed in the 70’s as a computational architecture for 
interactive programs by the designers of  SmallTalk (one of the 
first object-oriented and modular languages) 

 

• It expresses the "core of the solution" to a problem while 
allowing it to be adapted for each system 

 

 
 

Model–view–controller (MVC)  

8 



 

 
• The application is divided in three parts: 

 

– Model  

– View 

– Controller 

 
 
 
• Separating internal representations of information from the 

ways it is presented to and accepted from the user 
 

• It decouples these major components allowing for efficient code 
reuse and parallel development. 
 
 

Model–view–controller (MVC)  

9 

(Sommerville, 2010) 



• Originally developed for desktop computing, MVC has been 
widely adopted as an architecture for Web applications (and 
others…) 

 

• Frameworks vary in their interpretations in the way that the 
MVC responsibilities are divided between the client and 
server 

 

• Some web MVC frameworks take a thin client approach that 
places almost the entire model, view and controller logic on 
the server: the model exists entirely on the server 
 

• Other frameworks  allow the MVC components to execute 
partly on the client 

10 



MVC Components 

 
• The model is the central component of the pattern:  
It expresses the application's behavior in terms of the problem domain, 
independent of the UI. It manages the data, logic and rules of the application 

 

• A view can be any output representation of information: 
Multiple views of the same information are possible, such as a bar chart for 
management and a tabular view for accountants 

 

• The controller accepts input and converts it to commands for 
the model or view 

 
11 



MVC Interactions 
 
 

• This design defines the interactions among the three components 
 

• The model is responsible for managing the data of the 
application. It receives user input from the controller 
 

• The view means presentation of the model in a particular format 
 

• The controller is responsible for responding to the user input and 
perform interactions on the data model objects. The controller 
receives the input, optionally validates the input and then passes 
it to the model 
 

12 



13 (Sommerville, 2010) 



Example:  
Web application architecture using MVC 

14 

(Sommerville, 2010) 



• Separation and independence are fundamental to S/W architectural 
design because they allow changes to be localized 

 

• The Layered Architecture pattern is another way of achieving 
separation and independence 

 

• The system functionality is organized into separate layers 

 

• Each layer only relies on the facilities and services offered by the 
layer immediately beneath it 

• It supports the incremental development of systems.  

 

• The architecture is also changeable and portable. 

16 

Layered Architecture 



17 

(Sommerville, 2010) 



18 
(Sommerville, 2010) 

Example:  
A generic layered architecture 



21 

• Gamma, R., Helm, R. Johnson, and J. Vlissides, Design 
Patterns: Elements of Reusable Object-Oriented Software. 
Addison Wesley, 1994 

• https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-
Oriented/dp/0201633612 

• Kim,  G., Human–Computer Interaction- Fundamentals and 
Practice. CRC Press, 2015 

• Sommerville, I., Software Engineering, 10th ed., Pearson 
Education, 2016 
https://www.amazon.com/Software-Engineering-10th-Ian-
Sommerville/dp/0133943038 
 

 

Main bibliography  
 

https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038
https://www.amazon.com/Software-Engineering-10th-Ian-Sommerville/dp/0133943038

