National Accounts and Model Consistency

Concepts and identities

Concepts

- Geographic vs residence criteria
- Resident units (national) vs Rest of the World
- Flows versus stocks
- Transactions with and without counterpart
- Gross versus net
- Assets: produced, financial, nonproduced non-financial

Identities

- · Production and income:
 - Total value of production must equal the value of income (excluding transfers) generated domestically.
- Income, expenditure, and savings:
 - For any economic agent, income earned plus transfers must be equal to expenditure plus savings.
- · Savings and asset accumulation:
 - Savings plus borrowing must equal asset acquisition for any economic agent.

Three approaches to measure economic activity

- The product (V.A.) approach
 - Looks at the supply of goods in the territory (Domestic)
 - The key measure is Gross Domestic Product (GDP) at basic prices: the value of all (*intermediate* and *final*) goods and services produced as output by firms, *minus* the value of all goods and services purchased as inputs by firms.

• The expenditure approaches

- Looks at the *final* demand for durable and non-durable goods and services.
- The key measure is GDP at market prices.
- The income approach
 - Focuses on payments to owners of factors (residency)Wages and salaries, firm' operating surpluses, property income, and imputed compensation
 - The key measures are Gross National Income (GNI) and Gross National Disposable Income (GNDI).

Value added approach

GDP at factor costs

- GDP at factor costs (basic prices), Q_{fc}
 - Sum of
 - Employee compensation (wages, salaries and incomes of own-account producers)
 - Operating surpluses of all enterprises.
 - By convention, accrues to households or government.

 $GVA = WN + GOS = GDP_{fc}$

GDP at market prices

• GDP at Market Prices:

$$GDP_{mp} = GVA + T_i = P_Y Q$$

 Ti=indirect taxes- subsidies (Nominal).

Gross National Expenditure

$GNE = P_C C + P_K I + P_G G$

GNE, also labeled as "Absorption" or "Domestic Demand" is the total expenditure on final goods and services by home entities:

C: Private consumption

- Expenditures by private sector on final goods and services
- Includes nondurable goods, durable goods, and services.

I: Gross private investment

- Additions to the stock of capital by domestic units
- Construction, equipment, vehicles of a new house or a new factory, the purchase of new equipment, and net increases in inventories.

G: Government consumption

- Includes spending on goods and services, national defense, the police, and the civil service.
- It does *not* include any transfer payments or income redistributions, such as Social Security or unemployment insurance payments—these are *not* purchases of goods or services.

From expenditure to production

 Gross Domestic Product (GDP) measures the volume of production within a country's borders.

$$GDP = \underbrace{P_Y Q}_{\substack{\text{Gross} \\ \text{domestic} \\ \text{product} \\ \text{at market prices}}} = \underbrace{P_C C + P_K I + P_G G}_{\substack{\text{Gross} \\ \text{national} \\ \text{expenditure} \\ (GNE)}} + \underbrace{\left(\underbrace{P_X X}_{\substack{\text{All exports, } \\ \text{final \& intermediate} \\ \text{NetExports (TB)}}}_{\substack{\text{NetExports (TB)}}}\right)$$

- The Trade Balance is an item in the Balance of Payments
 - Difference between exports and imports of goods and services

Income, savings, current account

Income

• Gross national income

 $GNI = P_Y Q + e_t i^* B_{t-1}^*$

• Gross national disposable income

 $GNDI = P_Y Q + e_t i^* B_{t-1}^* + NUT$

National Savings

$$P_Y S_t = GNDI - P_C C - P_G G$$

Main identity

$$P_Y S_t =$$

$$= P_K I + \left(P_X X - P_M M + e_t i^* B_{t-1}^* + NUT \right) =$$

$$= P_K I + CA$$

$$P_Y S - P_K I = CA$$

Private Sector (incl. Banks)

Transactions

GDP	PyQ
- Taxes + Subsidies + Gov Transfers	-T
+ Transfers from abroad	NUTP
+ Interest on government debt	+ iD_G^P
+ Income from external assets	$+i^*eB_P^*$
- Consumption	-PcC
= Current Savings	PyS₽
- Investment	ΡκΙρ
+ Other Capital	KAp
=Net Lending	

$$P_{C}Y_{dt}^{P} = P_{Y}Q + e_{t}i^{*}B_{P,t-1}^{*} - T + NUT^{P} + iD_{G,t-1}^{P}$$

$$P_{Y}S_{t}^{P} = P_{Y}Y_{dt}^{P} - P_{C}C$$

$$P_{Y}S_{t}^{P} - P_{K}I^{P} + KA_{P} = \dots$$

Government Sector (incl. C. Bank)

$$P_Y S_t^G = T - i D_{G,t-1}^P + i^* e \left(B_{C,t-1}^* - D_{G,t-1}^* \right) + NUT^G - P_G G$$

Transactions

Taxes - subsidies - Transfers	Т
- Government Expenditures	G
+ Net Transfers from abroad	NUTG
- Interest on domestic debt	- iD_P^G
- Interest on foreign debt	$-i^*e(D_G^*-B_C^*)$
= Current Savings	PySg
- Investment	Pĸlg
+ Other Capital	KAg
=Net Lending	

$$P_Y S_t^G - P_K I_G + K A_G = \dots$$

Foreign Sector (Balance of payments)

$$CA + KA = P_X X - P_M M + ei^* B_{t-1}^* + NUT + KA = e\Delta B^*$$

Transactions

Exports of goods and services	$P_X X$
- Imports of goods and servixes	$P_{_M}M$
= Trade balance	ТВ
+ Primary income balance (NFIA)	$e_t i^* B_{t-1}^*$
+ Secondary income (NUT)	NUT
= Current Account	CA
+ Capital Account	KA
= Net Lending	$e\Delta B^{*}$

$$B_{t}^{*} = B_{Pt}^{*} + B_{Ct}^{*} - D_{Gt}^{*}$$

Production, redistribution and uses of income:

1. Current account: flows of goods and services, factor incomes, and gifts.

Accumulation accounts:

2. Capital account: flows of special categories of assets.

- Capital transfers (i.e., gifts of assets), such as Debt forgiveness and Investment Grants.
- Acquisitions and disposals of non-produced nonfinancial assets (e.g., trade-marks, franchises, permits to explore a natural resource).

3. Financial account: flows of financial assets.

- Debt (bonds; loans) or equity, issued by any entity.
- Categories: Portfolio investment, FDI, Derivatives, Other, Central Bank' Reserve Assets
- Surplus in the financial account (FA>0) means that the country is a net exporter of assets (net borrower)

Main identity

$GDP = P_Y Q = P_C C + P_K I + P_G G + P_X X - P_M M$	Nominal GDP
$CA = P_X X - P_M M + ei^* B_{t-1}^* + NUT = e\Delta B^*$	Current account
$P_{Y}S_{t}^{P} = P_{Y}Q + e_{t}i^{*}B_{P,t-1}^{*} - T + NUT^{P} + iD_{G,t-1}^{P} - P_{C}C$	Private savings
$P_{Y}S_{t}^{G} = T - iD_{G,t-1}^{P} + i^{*}e\left(B_{C,t-1}^{*} - D_{G,t-1}^{*}\right) + NUT^{G} - P_{G}G$	Government savings
$P_{Y}\left(S_{t}^{P}+S_{t}^{G}\right)=\left[P_{Y}Q+i^{*}eB_{t-1}^{*}+NUT\right]-P_{G}G-P_{C}C$	National savings
$P_{Y}S_{t} = P_{K}I + (P_{X}X - P_{M}M + e_{t}i^{*}B_{t-1}^{*} + NUT) = P_{K}I + CA$	Main identity

Consistency framework

- An integrated and consistent set of economic accounts is a pre-requisite for any modelling exercise in macroeconomic analysis
- Here, we present a model than can be explored in the construction of a fully-fledged macro-fiscal model (monetary or new-Keynesian)
- The model specifies
 - Nonfinancial private sector.
 - The government sector
 - The central bank.
 - Commercial banks
 - The balance of payments.

- For simplicity, in the following it is assumed that banks receive no income
 - Commercial banks are integrated in the private sector
 - The central bank is integrated in the government sector
 - The respective financial positions already reflect consolidation
- The financial sector only brings changes in assets and liabilities

Balance sheets

 $NW = NW_{P} + NW_{G} + NW_{C} + NW_{B} = e\left[B_{C}^{*} - D_{G}^{*} + B_{P}^{*}\right] + P_{K}K = eB^{*} + P_{K}K$

Flow of funds

	Non-Fin. Private Sector	Government	Central Bank	Commercial Banks	Total
Gross Savings	$P_Y S_P$	$P_Y S_G$			$P_{Y}S$
(-) Investment	$P_{K}I_{P}$	$P_{K}I_{G}$			$P_{K}I$
(+) Other Capital (net)	KA_p	. KA_G			KA
(=) Net Lending (+) or Borrowing (-)	$P_Y S_P - K A_P - P_K I_P$	$P_Y S_G - P_K I_G - K A_G$			CA+ KA
(=) Money	ΔM_2		$-\Delta M_B$	$\Delta R - \Delta D$	0
(+) Domestic Credit	$-\Delta L_B^P$		ΔL_C^B	$\Delta L_B^P - \Delta L_C^B$	0
(+) Securities placed at home	ΔD_G^{NF}	$-\Delta D_G^P - \Delta D_G^C$	ΔD_G^C	ΔD_G^B	0
(+) Cross-border asset transactions (net)	$e\Delta B_P^*$	$-e\Delta D_G^*$	$e\Delta B_{C}^{*}$		$\overline{e\Delta B}^*$

The Net International Financial Position

 $CA + KA = e\Delta B^*$

Net lending or borrowing

- The CA measures external imbalances in trade of goods, services, factor services, and unilateral transfers.
- By the BOP identity, deficits on the current account side must be matched by surpluses on the asset side.
 - IF CA+KA<0, the country is a net borrower to foreigners.
 - IF CA+KA>0, the country is a net lender to foreigners

 $NIIP = eB^*$

The NIIP (stock variable)

(where e stands for the exchange rate)

A country external wealth is given by net holdings of foreign assets:

- Foreign assets owned by the home country
- Minus external liabilities (home assets owned by foreigners).

This is the Net International Financial Position (stock measure)

- If NIIP > 0, net creditor: external assets exceed liabilities
- *If NIIP* < 0, net debtor: *external liabilities exceed assets*.
- The NIIP increases with CA surpluses
- Since it is calculated at market prices, also changes value with asset price movements 15

Changes in Net worth

$\Delta NW = \Delta eB^* + e\Delta B^* + P_K \Delta K + \Delta P_K K$ $\Delta NW = (P_Y S - \delta P_K K) + KA + (\Delta eB^* + \Delta P_K K)$

	Non-Fin. Private Sector	Government	Central Bank	Commerci al Banks	Total
Gross Savings	$P_Y S_P$	$P_Y S_G$			$P_Y S$
(-) Capital depreciation	$\delta P_{K}K_{P,t-1}$	$\delta P_{K}K_{G,t-1}$			$\delta P_{K}K$
(=) Net Savings	$P_Y S_{NF} - \delta P_K K_F$	$P_Y S_G - \delta P_K K_{G,t-1}$			
(+) Capital Transfers	KA _P	KA_G			KA
(+) Valuation changes	$\Delta eB_P^* + \Delta P_K K_P$	$\Delta P_{K}K_{G} - \Delta eD_{G}^{*}$	$\Delta e B_C^*$		$\Delta eB^* + \Delta P_K K$
(=) Change in NW	$\Delta NW_{_{NF}}$	ΔNW_G	ΔNW_C	-	ΔNW

Changes in net worth: private NF sector

$$NW_{NF} = P_K K_P + M_2 + eB_P^* + D_G^{NF} - L_B^{NF}$$
$$P_Y S_t^P - P_K I_{P,t} = \Delta M_2 - \Delta L_B^{NF} + e\Delta B_P^* + \Delta D_G^P$$

$$\Delta NW_{NF} = \left(P_{K}\Delta K_{P} + \Delta P_{K}K_{P}\right) + \left(\Delta M_{2} + \Delta D_{G}^{P} - \Delta L_{B}^{NF} + e\Delta B_{P}^{*}\right) + \Delta eB_{P}^{*}$$

$$\Delta NW_{NF} = \left(P_{K}\Delta K_{P} + \Delta P_{K}K_{P}\right) + P_{Y}S_{t}^{P} - P_{K}I_{t}^{P} + \Delta eB_{P}^{*}$$

$$\Delta K_{t}^{P} = I_{t}^{P} - \delta K_{t-1}^{P}$$

$$\Delta NW_{NF} = \left(P_{Y}S_{t}^{P} - P_{K}\delta K_{t-1}\right) + \left(\Delta P_{K}K_{P} + \Delta eB_{P}^{*}\right)$$

Change in net worth: Government

$$NW_{G} = P_{K}K_{G} - D_{G}^{P} - D_{C}^{P} - eD_{G}^{*}$$

$$P_{Y}S_{G} - P_{K}I_{G} = \Delta D_{G}^{P} + \Delta D_{G}^{C} + e\Delta D_{G}^{*}$$

$$\Delta NW_{G} = (P_{K}\Delta K_{G} + \Delta P_{K}K_{G}) - (\Delta D_{G}^{P} + \Delta D_{G}^{C} + e\Delta D_{G}^{*}) - \Delta eD_{G}^{*} \qquad \Delta K_{t}^{G} = I_{t}^{G} - \delta K_{t-1}^{G}$$

$$\Delta NW_{G} = (P_{K}\Delta K_{G} + \Delta P_{K}K_{G}) + P_{Y}S_{G} - P_{K}I_{G} - \Delta eD_{G}^{*}$$

$$\Delta NW_G = \left(P_Y S_G - \delta P_K K_{t-1}^G\right) + \left(\Delta P_K K_G - \Delta e D_G^*\right)$$