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Abstract

General Besov and Triebel-Lizorkin spaces on domains with irregular boundary are
compared with the completion, in those spaces, of the subset of infinitely continuously
differentiable functions with compact support in the same domains. It turns out that
the set of parameters for which those spaces coincide is strongly related with the fractal
dimension of the boundary of the domains.
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The results described here were motivated by the following one proved in [8]:
“Let Ω be a bounded C∞-domain in IRn. Then

F s
pq(Ω) =

◦
F

s
pq(Ω) (1)

if, and only if, one of the following two conditions holds:

(i) −∞ < s < 1/p, 0 < p, q < ∞;

(ii) s = 1/p, 1 < p < ∞, 0 < q < ∞.”

The “if” part of the proof was made via the technique of atomic decomposition
and a close inspection made it clear that something could be done for domains
with irregular boundary (actually, such a possibility was independently noticed in
[3], though in a narrower context than the one we are going to consider here). The
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critical value for s should then, instead of 1/p, be (n − D)/p, with D the upper
Minkowski dimension of ∂Ω. Note that in the case above, where ∂Ω is C∞, D is
n− 1, so that (n−D)/p equals 1/p, as it should be.

Here we deal not only with F s
pq(Ω) but also with Bs

pq(Ω), where we consider the
definition by restriction from the corresponding spaces defined on IRn (for details

about this, refer to [6]).
◦

F s
pq(Ω) and

◦
B s

pq(Ω) stand for the completion of C∞
0 (Ω) in

F s
pq(Ω) and Bs

pq(Ω), respectively. Ω has always the minimum requirement of being
an open, non-empty set in some fixed IRn and we call it a domain. The minimum
requirements for the parameters s, p, q which are assumed here are s ∈ IR and
0 < p, q < ∞ (so the case p = ∞∨ q = ∞ is ruled out from the very beginning).
When there are some restrictions to be made to this general setting (both for Ω
and the parameters), we shall only mention such restrictions.

As pointed out above, we shall also need to deal with upper Minkowski dimen-
sions (u.M.d., for short) D of bounded non-empty sets Γ ∈ IRn, but only to the
extent of the well-known consequence that, for such a Γ, c1r

−d balls of radius c2r
are enough to cover Γ, for r small and c1, c2 positive constants, where d can be
any number > D. In any case, we are not, in general, going to present proofs here
(for proofs, please check [2]).

Proposition 1 Let Ω be a bounded domain such that ∂Ω has u.M.d. D, for some
D < n. Then, for any A ∈ {B, F},

As
pq(Ω) =

◦
A

s
pq(Ω) (2)

if either

(i) p > D
n

and s < n−D
p

or

(ii) p ≤ D
n

and s < n−D
D/n

.

The proof is made first for spaces indexed in zone A of the (1/p, s)-diagram
shown in the picture and it is enough to deal with Bs

pq-spaces. Basically what
is proved is that, under the assumptions made, any f ∈ S can be arbitrarily
approximated in Bs

pq(IR
n) by C∞

0 (Ω)-functions with support in (∂Ω)c (and it is
here that the atomic technique is used), as this easily implies our conclusion. The
reason for restricting, in a first phase, the proof to spaces indexed in zone A of
the picture is that below the line s = n(1/p − 1)+ the proof would require what
are called moment conditions, and it is not clear how to guarantee that in the
general case, or if that is at all possible. The result is extended to zones B (which
completes the proof of case (i)) and C (which corresponds to case (ii)) by means of
well-known embedding operators and the following simple but quite useful result:
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s=n(1/p−1)

B

+

n−D

1

s

1/p0

??

D/n

A

B

C

s=(n−D)/p

n/D

Lemma 2 Assume that the equality As1
p1q1

(Ω) =
◦

A s1
p1q1

(Ω) holds for some s1 ∈ IR,
0 < p1, q1 < ∞ and A ∈ {B, F}. If for some G ∈ {B,F}, s2 ∈ IR, 0 <
p2, q2 < ∞ the continuous embedding As1

p1q1
(Ω) ↪→ Gs2

p2q2
(Ω) is true, then the equal-

ity Gs2
p2q2

(Ω) =
◦

G s2
p2q2

(Ω) also holds.

In order to deal with zone ?? of the picture, we need the so-called ball condition
([6], with modifications):

Definition 3 A non-empty set Γ ⊂ IRn is said to satisfy the ball condition if

∃η∈]0,1[ ∀x∈Γ ∀r∈]0,1[ ∃y∈IRn B(y, ηr) ⊂ B(x, r) ∧ B(x, ηr) ∩ Γ = ∅,
where the notation B(z, s) means the closed ball centred at z with radius s.

Proposition 4 Let Ω be a bounded domain such that ∂Ω has u.M.d. D and sat-
isfies the ball condition. Then

s <
n−D

p
⇒ As

pq(Ω) =
◦

A
s
pq(Ω) for any A ∈ {B, F}.

The proof is a modification of the preceding one: moment conditions have to
be created and this is done by means of a tricky construction (which can be seen in
a similar situation in [9]) possible in the case the ball condition is at our disposal.

There is a nice corollary for which we need the notion of d-set:

Definition 5 Let Γ be a non-empty closed subset of IRn and d ∈]0, n]. Γ is said
to be a d-set if

∃c1, c2 > 0 : ∀γ ∈ Γ, ∀r ∈]0, 1], c1r
d ≤ Hd(B(γ, r) ∩ Γ) ≤ c2r

d,
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where Hd denotes the d-dimensional Hausdorff measure on IRn and B(γ, r) stands
for the closed ball centred at γ and with radius r.

It is known that for d-sets the Minkowski dimension equals the Hausdorff di-
mension, which is d. Moreover, any d-set with d < n satisfies the ball condition
(cf. [1]). Therefore

Corollary 6 Let Ω be a bounded domain such that ∂Ω is a d-set, for some d < n.
Then

s <
n− d

p
⇒ As

pq(Ω) =
◦

A
s
pq(Ω) for any A ∈ {B, F}.

Our results in the converse direction depend on trace results (not always avail-
able in the literature) on d-sets.

We take the notion of trace trΓf for functions f of As
pq(IR

n) (A ∈ {B,F}) on d-
sets Γ as in [7, pp. 138-139]: trΓϕ = ϕ|Γ, that is, is defined pointwise, when ϕ ∈ S;
trΓ is defined by completion for all remaining functions of As

pq(IR
n) whenever it is

possible to find c > 0 such that

‖trΓϕ|Lp(Γ)‖ ≤ c ‖ϕ|As
pq(IR

n)‖, ϕ ∈ S

(Lp(Γ) considered with respect to the measure Hd|Γ). In particular, we are not
claiming that the trace always exists! When it does — that is, when the above ap-
proach succeeds — we shall say that “trΓAs

pq(IR
n) exists”. Note that, by definition,

with this phrase we are also saying that the trace operator

trΓ : As
pq(IR

n) −→ Lp(Γ)

is linear and bounded.
We take the following as an easy consequence of results in [7]:

Lemma 7 If Γ is a d-set, d < n, then

s >
n− d

p
⇒ trΓAs

pq(IR
n) exists, A ∈ {B, F}.

We also need to deal with the question of existence of a trace Tr∂Ωf on ∂Ω for
functions f of As

pq(Ω), at least for some spaces As
pq(Ω).

Recall that Hs
p(IR

n) ≡ F s
p2(IR

n), s > 0, p > 1, are spaces of Bessel potentials
and define Hs

p(Ω), s > 0, p > 1, as being equal to F s
p2(Ω) — so, it is defined by

restriction.
The following notion is taken from [9], with modifications:

4



Definition 8 A domain Ω is said to be interior regular if

∃c>0 ∀x∈∂Ω ∀cube Q centred at x with side length ≤1 |Ω ∩Q| ≥ c |Q|.

Proposition 9 Let Ω be an interior regular domain such that ∂Ω is a d-set. If
p > 1 and s > (n− d)/p then

f ∈ Hs
p(Ω) ⇒ all u ∈ Hs

p(IR
n) such that u|Ω = f have the same trace on ∂Ω.

The proof of this result takes advantage of the fact Hs
p(IR

n) is a space of Bessel
potentials, of continuity properties of potentials as described in [5] and of the
equivalent definition of trace given, for any u ∈ Hs

p(IR
n) (and under the hypothesis

of the proposition), by the restriction to ∂Ω of

x 7→ lim
r→0

1

|B(x, r)|
∫

B(x,r)

u(y)dy. (3)

The method of proof also gives for the common trace to ∂Ω of any u ∈ Hs
p(IR

n)
such that u|Ω = f the representative

x 7→ lim
r→0

1

|B(x, r) ∩ Ω|
∫

B(x,r)∩Ω

f(x)dx, x ∈ ∂Ω, (4)

and is modelled on proofs of related results in [4] or [10].
This proposition makes it clear that (under the assumptions made) the trace

of any f ∈ Hs
p(Ω) to ∂Ω can be defined (and how it can be defined). It is also

immediate that such a notion of trace gives rise to an operator

Tr∂Ω : Hs
p(Ω) → Lp(∂Ω)

which is linear and bounded.
Now we are ready for the following converse to Corollary 6.

Proposition 10 Let Ω be an interior regular domain such that ∂Ω is a d-set. If
p > 1, then

s >
n− d

p
⇒ As

pq(Ω) 6= ◦
A

s
pq(Ω), for any A ∈ {B, F}.

We note that once we have the result for Hs
p(Ω) the rest is a matter of using

well-known embeddings. For Hs
p(Ω) we argue in the following way:

On one hand, there are elements of Hs
p(Ω) with a non-zero trace on ∂Ω: for

example, any ϕ|Ω such that ϕ ∈ C∞
0 (IRn) and ϕ ≡ 1 on B(γ, 1), for some γ ∈ ∂Ω.

On the other hand, if Hs
p(Ω) =

◦
H s

p(Ω) were true, any f ∈ Hs
p(Ω) could be arbitrarily
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approximated in Hs
p(Ω) by functions in C∞

0 (Ω), the trace of which is zero. Hence,
the continuity of the trace operator would lead to Tr∂Ωf = 0 in Lp(∂Ω), which
contradicts what we said before.

By using embedding operators and Lemma 2, the above result can also be
extended to some values of p ≤ 1, namely those for which s > n/p − d (note this
implies s > (n− d)/p automatically).

We have no general result with unrestricted p. However, the following classes
of examples show that the problem should be further investigated.

Proposition 11 Let ω be a bounded domain in IRn and Γ a d-set, d < n, such
that Γ ⊂ ω. Let Ω ≡ ω \ Γ. If s > n(1/p− 1)+, then

s >
n− d

p
⇒ As

pq(Ω) 6= ◦
A

s
pq(Ω) for any A ∈ {B, F}.

Proposition 12 For each D ∈ [n − 1, n[ (with n ≥ 2) there is a bounded simply
connected domain Ω such that ∂Ω has u.M.d. equal to D and for which we have

s >
n−D

p
⇒ As

pq(Ω) 6= ◦
A

s
pq(Ω) for any A ∈ {B, F}.

The proofs of both propositions take advantage of trace results for spaces in
IRn, as given by Lemma 7.

References

[1] A. M. Caetano, On fractals wich are not so terrible, in preparation.

[2] , Approximation by functions of compact support in Besov-Triebel-
Lizorkin spaces on irregular domains, preprint, 1999.

[3] W. Farkas and N. Jacob, Sobolev spaces on non-smooth domains and Dirichlet
forms related to subordinate reflecting diffusions, preprint, 1999.

[4] A. Jonsson and H. Wallin, Function spaces on subsets of IRn, Math. Reports,
vol. 2, Harwood Acad. Publ., London, 1984.

[5] N. G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975),
157–166.

[6] H. Triebel, Theory of function spaces, Birkhäuser, Basel Boston Stuttgart,
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