
Approximation by functions of compact
support in Besov-Triebel-Lizorkin spaces on

irregular domains ∗

António M. Caetano †

January 2000

Abstract

General Besov and Triebel-Lizorkin spaces on domains with irregular boundary
are compared with the completion, in those spaces, of the subset of infinitely
continuously differentiable functions with compact support in the same domains.
It turns out that the set of parameters for which those spaces coincide is strongly
related with the fractal dimension of the boundary of the domains.

1 Introduction

Let As
pq(Ω) stand either for the Besov space Bs

pq(Ω) (case A = B) or the
Triebel-Lizorkin space F s

pq(Ω) (case A = F ) on the bounded domain Ω. In
this paper we study the possibility of the set C∞

0 (Ω) being dense in As
pq(Ω)

against some measure of the fractality of the boundary ∂Ω of Ω. It turns
out, in section 2, that if d is the upper Minkowski dimension of ∂Ω and,
moreover, ∂Ω satisfies the ball condition, then we have density as long as
s < (n− d)/p, 0 < p, q < ∞ (cf. Proposition 2.5). We also point out that in
many situations the ball condition is not really necessary for the density to
hold (cf. Proposition 2.2).

∗1991 Mathematics Subject Classification: 46E35.
†Research partially supported by the Deutscher Akademisher Austauschdienst and the

Fundação para a Ciência e a Tecnologia.

1



After obtaining, as a consequence, the same result when ∂Ω is a d-set,
d < n (cf. Corollary 2.7), we investigate, in section 3, converse results to
the above mentioned. These turn out to be closely related to the problem
of the existence of a (continuous) trace to the boundary ∂Ω and we are able
to prove that the density does not hold if s > (n − d)/p, as long as ∂Ω is
a d-set, 1 ≤ p < ∞, 0 < q < ∞ and Ω is interior regular (cf. Proposition
3.7). Actually, we even prove that the density does not hold for some values
of p < 1, but here the results are less satisfactory.

In section 4 of the paper we give examples, for each possible 0 < p, q < ∞,
where the density fails for any s > (n−d)/p, where d is the upper Minkowski
dimension of the boundary of the domain in question (d < n). This, of course,
is not as strong as having a converse to the results of section 2, but clearly
shows that the upper bound (n − d)/p for s cannot in general be improved
in the results of that section.

The present work was prompted by corresponding results for F -spaces
on smooth domains proved by Triebel in [11] (in which case d = n − 1).
Actually, we benefited very much from discussions with Prof. Triebel about
this and related subjects during three stays in Jena along the academic year
1998/99. We take the opportunity to thank Prof. Triebel, as well as other
people in his group, for the stimulating atmosphere and DAAD and FCT for
the grants which supported us over that period.

2 Conventions and density results

As mentioned above, As
pq(Ω) will always stand either for Bs

pq(Ω) or F s
pq(Ω),

where these are the Besov and Triebel-Lizorkin spaces, the definition of which
can, for example, be seen in [9]. Here we just mention that they are defined
by restriction from the spaces Bs

pq(IR
n) and F s

pq(IR
n), respectively (in par-

ticular, in the cases where F s
pq(IR

n) coincides with a Sobolev space W s
p (IRn),

F s
pq(Ω) will not always be the same as the classical Sobolev space W s

p (Ω): the
irregularity of the boundary ∂Ω of Ω can make the difference). Moreover,
when writing As

pq(Ω) we will always assume the minimum requirements that
s ∈ IR, 0 < p, q < ∞ and Ω is a domain (that is, an open, non-empty subset
of IRn, for some fixed n ∈ IN). This will hold throughout all the paper and
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should be borne in mind when reading the assertions of the various results
stated, as in each assertion we will only mention the restrictions to this gen-
eral setting. We also should like to recall that those minimum requirements
for s, p and q in particular imply that the Schwartz space S is dense in
As

pq(IR
n).

By
◦

A s
pq(Ω) we denote the completion of C∞

0 (Ω) in As
pq(Ω), for A ∈ {B,F}.

We recall that the upper Minkowski dimension (u.M.d., for short) D of a
bounded non-empty Γ ⊂ IRn is

D ≡ inf {d ≥ 0 : lim sup
r→0+

|Γr|
rn−d < ∞},

where, in this context, |·| stands for Lebesgue measure in IRn and

Γr ≡ {x ∈ IRn : dist (x, Γ) < r}. (1)

Note also that D ∈ [n− 1, n] when Γ = ∂Ω, with Ω a bounded domain.

Lemma 2.1 Assume that the equality As1
p1q1

(Ω) =
◦

A s1
p1q1(Ω) holds for some

s1 ∈ IR, 0 < p1, q1 < ∞ and A ∈ {B, F}. If for some G ∈ {B, F}, s2 ∈ IR,
0 < p2, q2 < ∞ the continuous embedding As1

p1q1
(Ω) ↪→ Gs2

p2q2
(Ω) is true, then

the equality Gs2
p2q2(Ω) =

◦
G s2

p2q2
(Ω) also holds.

Proof. Given any ϕ ∈ S, ϕ|Ω ∈ As1
p1q1

(Ω) =
◦

A s1
p1q1

(Ω), so that there exists
(ψk)k∈IN ⊂ C∞

0 (Ω) such that, as k →∞, ψk → ϕ|Ω in As1
p1q1(Ω) ↪→ Gs2

p2q2(Ω),

so that also ψk → ϕ|Ω in Gs2
p2q2

(Ω) and therefore ϕ|Ω ∈
◦

G s2
p2q2

(Ω). The result
follows by completion. �

Proposition 2.2 Let Ω be a bounded domain such that ∂Ω has u.M.d. D,
for some D < n. Then, for any A ∈ {B, F},

As
pq(Ω) =

◦
A s

pq(Ω) (2)

if either

(i) p > D
n and s < n−D

p or
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(ii) p ≤ D
n and s < n−D

D/n .

Proof. Step 1. We first deal with the case A = B and start by showing the
following:

“If any f ∈ S can be arbitrarily approximated in Bs
pq(IR

n) by functions
of

SΩ ≡ {g ∈ S : g(x) = 0 for all x ∈ Ω in some neighbourhood of ∂Ω }, (3)

then Bs
pq(Ω) =

◦
B s

pq(Ω)”.
Indeed, given any ϕ ∈ S, the assumption assures that there exists (ψk)k∈IN

⊂ SΩ such that, as k → ∞, ψk → ϕ in Bs
pq(IR

n), so that, by restric-
tion, ψk|Ω → ϕ|Ω in Bs

pq(Ω), where, clearly, (ψk|Ω)k∈IN ⊂ C∞
0 (Ω). Therefore

ϕ|Ω ∈
◦

B s
pq(Ω) and the conclusion follows by completion.

Step 2. Consider a family

{ϕjm : j ∈ IN0,m ∈ ZZn} (4)

of smooth functions in IRn for which there are constants c > 0 and cγ > 0,
γ ∈ INn

0 , such that

(a) supp ϕjm ⊂ Bjm ≡ {y ∈ IRn : |y − 2−jm| ≤ c 2−j}, j ∈ IN0, m ∈ ZZn;

(b) |Dγϕjm(x)| ≤ cγ2j|γ|, j ∈ IN0, m ∈ ZZn, γ ∈ INn
0 , x ∈ IRn;

(c)
∑

m∈ZZn ϕjm(x) = 1, x ∈ IRn, j ∈ IN0.

Note that, for each j ∈ IN0, {ϕjm : m ∈ ZZn} is a partition of unity in IRn.
Such families clearly exist and we just take (and fix) one of them.

It is now possible to prove the following:
“Given any f ∈ S,

s > σp ⇒

∥

∥

∥

∥

∥

∑

m

ϕjmf |Bs
pq(IR

n)

∥

∥

∥

∥

∥

≤ c 2j(s−(n−d)/p), large j ”, (5)

where
σp ≡ n(

1
p
− 1)+,
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c > 0 is a constant, d can be arbitrarily fixed such that d > D and the (finite)
sum

∑

m is taken, for each j, over all m ∈ ZZn such that Bjm intersects

(
◦

∂Ω)2−j ≡ (∂Ω)2−j ∩ Ω. (6)

The idea of proof is that
∑

m ϕjmf is almost in atomic form
∑∞

ν=0

∑

m∈ZZn λνmaνm, with all λνm and aνm being zero except for ν = j
and m in the range considered above. If we put it in atomic form, we can use
the quasi-norm in the sequence space bpq to estimate the above quasi-norm
in Bs

pq(IR
n) — for the theory involved here, including the definition of bpq,

please refer to [10, pp. 70-71]. And, in fact, it is not difficult to see that
∑

m

ϕjmf =
∑

m

(c(K, f)2j(s−n/p))(c(K, f)−12−j(s−n/p)ϕjmf), (7)

where K is fixed not less than (1 + [s])+, c(K, f) is a positive constant and
c(K, f)−12−j(s−n/p)ϕjmf are (s, p)K,−1-atoms. Since we are assuming s > σp,
no moments conditions are required, so that we have obtained in this way
an atomic representation for

∑

m ϕjmf , and we can write, on the basis of
Theorem 13.8 of [10, p. 75], that

∥

∥

∥

∥

∥

∑

m

ϕjmf |Bs
pq(IR

n)

∥

∥

∥

∥

∥

≤ c1(
∑

m

|c(K, f)2j(s−n/p)|p)1/p

≤ c1c(K, f)2j(s−n/p)(
∑

m

1)1/p (8)

≤ c 2j(s−(n−d)/p),

large j, where the last inequality comes from the fact that
∑

m 1 is bounded
above by positive constant times 2jd, which in turn is a direct consequence of
the hypothesis that ∂Ω has upper Minkowski dimension D (recall also that
we are assuming d > D).

Step 3. Note now that, if σp < s < (n − D)/p, it is possible to choose
d > D such that s < (n−d)/p. Using this d in (5) we see we have proved that
any f ∈ S is the limit, in Bs

pq(IR
n), of the sequence (f−

∑

m ϕjmf)j∈IN0 ⊂ SΩ.
By Step 1, we can thus conclude that

Bs
pq(Ω) =

◦
B s

pq(Ω) (9)
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for σp < s < (n−D)/p.
Step 4. Assume that (i) holds.
If p ≥ 1, then σp = 0 and, by what we have already seen, (9) is true

with s1 instead of s as long as 0 < s1 < (n −D)/p. Since we are assuming
D < n, there really exists such a s1. On the other hand, for s ≤ 0 we have
Bs1

pq(Ω) ↪→ Bs
pq(Ω) (see, for example, [9, p. 47] for the case Ω = IRn and take

advantage of the definition by restriction for the case of general bounded Ω).
Lemma 2.1 then applies to give us (9) also for such values of s.

If D/n < p < 1, then σp = n(1/p−1) and D/n < p ⇔ σp < (n−D)/p, so
that it is possible to choose s1 such that σp < s1 < (n−D)/p, and (9) holds
with s1 instead of s. For s ≤ σp we have again the continuous embedding
Bs1

pq(Ω) ↪→ Bs
pq(Ω) and, consequently, also (9), due to Lemma 2.1

Step 5. Assume that (ii) holds.
Since now p ≤ D/n < 1, we have σp = n(1/p−1). Apply (i) with D/n+ε

instead of p, for some ε > 0 such that s < (n−D)/(D/n+ε) (which is clearly
possible because of the assumption s < (n − D)/(D/n)) in order to obtain
(9) with D/n + ε instead of p. Since Bs

D/n+ε,q(Ω) ↪→ Bs
pq(Ω) (cf. [9, p. 197]

for the case of bounded C∞-domains; for general bounded domains the result
can be reduced to that one by playing a little bit with the definition of the
spaces by restriction), Lemma 2.1 again gives what we want, namely (9) for
the parameters as in (ii).

Step 6. It only remains to deal with the case A = F . Since Bs
p,min{p,q}(Ω) ↪→

F s
pq(Ω) (see again [9, p. 47] for the case Ω = IRn) and (9) holds with min{p, q}

instead of q either under the hypothesis (i) or under the hypothesis (ii), the
conclusion follows by yet another application of Lemma 2.1. �

We remark here that the possibility that (2) holds for Bessel potential
spaces under the assumption s < (n − D)/p was independently noticed in
[4] under some more restrictive hypotheses on Ω, ∂Ω and the parameters. In
any case, such a result is contained in the proposition above.

We shall see in a moment that, with a convenient extra assumption on
∂Ω, it is possible to guarantee that the density result (2) holds for all s <
(n−D)/p even if p < D/n.

The following definition is taken from [10, p.142] with modifications:
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Definition 2.3 A non-empty set Γ ⊂ IRn is said to satisfy the ball condition
if

∃η∈]0,1[ ∀x∈Γ ∀r∈]0,1[ ∃y∈IRn B(y, ηr) ⊂ B(x, r) ∧ B(x, ηr) ∩ Γ = ∅,

where the notation B(z, s) means the closed ball centred at z with radius s.

Lemma 2.4 Given L ∈ IN0, there are, for each γ ∈ INn
0 such that |γ| ≤ L,

C∞-functions ψγ with support in the open ball
◦

B(0, 1) and satisfying the
following property:

∀β, γ ∈ INn
0 with |β|, |γ| ≤ L,

∫

IRn
xβψγ(x)dx = δβγ ,

where δβγ stands for the Kronecker symbol.

For a proof, see [13, p. 665].

Proposition 2.5 Let Ω be a bounded domain such that ∂Ω has u.M.d. D
and satisfies the ball condition. Then

s <
n−D

p
⇒ As

pq(Ω) =
◦

A s
pq(Ω) for any A ∈ {B,F}.

Proof. Step 1. We deal first with the case A = B. Moreover, in view of
Proposition 2.2, we can now assume that s ≤ σp ≡ n(1/p− 1)+.

Of course, Step 1 of the proof of Proposition 2.2 also applies here.
Step 2. We take a family

{ϕjm : j ∈ IN0,m ∈ ZZn}

of smooth functions in IRn as in (4) and prove the following:
“Given any f ∈ S, there exists (gj)j ∈ SΩ such that

∥

∥f − gj|Bs
pq(IR

n)
∥

∥ ≤ c 2j(s−(n−d)/p), large j ”, (10)

where c > 0 is a constant and d can be arbitrarily fixed such that d > D.
We start as in the corresponding part of Step 2 of the proof of Proposition

2.2, arriving at formula (7), where

ajm ≡ c(K, f)−12−j(s−n/p)ϕjmf
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are (s, p)K,−1-atoms. However, as now we are assuming s ≤ σp, in order to
have atomic representations one must be sure to dispose of (s, p)K,L-atoms
for a fixed L ≥ [σp− s] (at least for j > 0 — and we can always assume that
j is positive) — cf. [10, Th. 13.8 on p. 75]. The construction that follows
is similar to what was done in [13, pp. 665-666] (for notations, please check
with Step 2 of the proof of Proposition 2.2).

For each Bjm intersecting
◦

(∂Ω)2−j , fix an element of ∂Ω, xjm say, at a
distance less than 2−j of Bjm. Clearly, there is a constant c1 > 0 such
that Bjm ⊂ B(xjm, c12−j). Since we are concerned with large j only, we
can assume that 0 < c12−j < 1, so that, from the fact ∂Ω satisfies the ball
condition, there exists yjm ∈ IRn such that B(yjm, ηc12−j) ⊂ B(xjm, c12−j)
and B(yjm, ηc12−j) ∩ ∂Ω = ∅, where 0 < η < 1 is as in Definition 2.3.
Obviously, we can also say that dist(B(yjm, ηc12−j−1), ∂Ω) ≥ ηc12−j−1.

Fix L ≥ [σp − s] (with L ∈ IN0) and let ψγ , with γ ∈ INn
0 and |γ| ≤ L,

be the functions whose existence was guaranteed in Lemma 2.4. Define, for
each j,m as above,

djm
γ ≡

∫

IRn
xγajm(ηc12−j−1x + yjm)dx, γ ∈ INn

0 with |γ| ≤ L,

and

ãjm(z) = ajm(z)−
∑

|γ|≤L

djm
γ ψγ((ηc1)−12j+1(z − yjm)), z ∈ IRn.

It is easy to see that
∫

IRn
((ηc1)−12j+1(z − yjm))βãjm(z)dz = 0, β ∈ INn

0 with |β| ≤ L,

and, consequently (by Newton’s binomial formula),
∫

IRn
zβãjm(z)dz = 0, β ∈ INn

0 with |β| ≤ L.

This means that each ãjm has the required moment conditions for the atoms
in the atomic representations of functions of Bs

pq(IR
n). Actually, it is not

difficult to see that there exists a positive constant c2 such that c2ãjm is a
(s, p)K,L-atom.
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Define, for each j as above,

hj ≡
∑

m

(c(K, f)2j(s−n/p)c−1
2 )(c2ãjm), (11)

where, as in the proof of Proposition 2.2, the sum
∑

m is taken over all

m ∈ ZZn such that Bjm intersects (
◦

∂Ω)2−j . From the hypotheses and choices
that have been made, each such hj belongs to S and equals

∑

m ϕjmf on

(∂Ω)ηc12−j−1 . Since the latter sum equals f on (
◦

∂Ω)2−j , then there is a positive
constant c3 such that

hj = f on (
◦

∂Ω)c32−j .

Define now gj ≡ f − hj. We have gj ∈ SΩ and, since the right-hand side
of (11) is an atomic representation for hj in Bs

pq(IR
n), we can write, on the

basis of Theorem 13.8 of [10, p.75], that

‖f − gj|Bs
pq(IR

n)‖ ≤ c4(
∑

m

|c(K, f)2j(s−n/p)c−1
2 |p)1/p

≤ c4c−1
2 c(K, f)2j(s−n/p)(

∑

m

1)1/p

≤ c 2j(s−(n−d)/p), large j,

arguing as in the last part of Step 2 in the proof of Proposition 2.2.
Step 3. Note now that, if s < (n −D)/p, it is possible to choose d > D

such that s < (n − d)/p. Using this d in (10) we see we have proved that
any f ∈ S is the limit, in Bs

pq(IR
n), of the sequence (gj)j ⊂ SΩ. By Step 1

we can thus conclude that

Bs
pq(Ω) =

◦
B s

pq(Ω) (12)

for s < (n−D)/p.
Step 4. It remains to deal with the case A = F . Since Bs

p,min{p,q}(Ω) ↪→
F s

pq(Ω) (see [9, p. 47] for the case Ω = IRn and take advantage of the defi-
nition by restriction for the case of general bounded Ω) and (12) holds with
min{p, q} instead of q, the conclusion follows by applying Lemma 2.1. �
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There is an interesting consequence of Proposition 2.5 expressed in terms
of the fashionable notion of d-set. We recall the definition (taken from [6,
pp. 28-33]) of the latter first.

Definition 2.6 Let Γ be a non-empty closed subset of IRn and d ∈]0, n]. Γ
is said to be a d-set if

∃c1, c2 > 0 : ∀γ ∈ Γ, ∀r ∈]0, 1], c1rd ≤ Hd(B(γ, r) ∩ Γ) ≤ c2rd,

where Hd denotes the d-dimensional Hausdorff measure on IRn and B(γ, r)
stands for the closed ball centred at γ and with radius r.

For the definition and properties of Hausdorff measures and dimensions,
see, for example, [3] or [7].

Corollary 2.7 Let Ω be a bounded domain such that ∂Ω is a d-set, for some
d < n. Then

s <
n− d

p
⇒ As

pq(Ω) =
◦

A s
pq(Ω) for any A ∈ {B, F}.

Proof. As remarked in [10, p. 6], ∂Ω being a d-set implies its Minkowski
dimension (in particular, its upper Minkowski dimension) coincides with its
Hausdorff dimension, that is, is d. Therefore, in order to finish the proof by
applying Proposition 2.5 it is enough to guarantee that any d-set, d < n,
satisfies the ball condition. This is indeed the case: a direct proof can be
seen in [2], though, as we noticed a posteriori, this can also be realized in an
indirect way using, for example, Proposition 2 in [5, p. 288]. �

3 Converse results

We would like to have a converse result to Corollary 2.7, and this goal is
partially attained at the end of this section. The technique used depends on
trace results, not always available in the literature, so we start with some
considerations and results about traces.
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We take the notion of trace trΓf for functions f of As
pq(IR

n) (A ∈ {B, F})
on d-sets Γ as in [10, pp. 138-139]: trΓϕ = ϕ|Γ, that is, is defined pointwise,
when ϕ ∈ S; trΓ is defined by completion for all remaining functions of
As

pq(IR
n) whenever it is possible to find c > 0 such that

‖trΓϕ|Lp(Γ)‖ ≤ c ‖ϕ|As
pq(IR

n)‖, ϕ ∈ S

(Lp(Γ) considered with respect to the measure Hd|Γ). In particular, we are
not claiming that the trace always exists! When it does — that is, when
the above approach succeeds — we shall say that “trΓAs

pq(IR
n) exists”. Note

that, by definition, with this phrase we are also saying that the trace operator

trΓ : As
pq(IR

n) −→ Lp(Γ)

is linear and bounded.

Lemma 3.1 If Γ is a d-set, d < n, then

s >
n− d

p
⇒ trΓAs

pq(IR
n) exists, A ∈ {B, F}.

Proof. From Step 1 of the proof of Theorem 18.6 in [10, p. 139],
trΓB(n−d)/p

pq (IRn) exists if q ≤ min{1, p}. Since we are assuming that s >
(n− d)/p, the result of the lemma follows then by using elementary embed-
dings between function spaces (cf., for example, [9, p. 47]). �

For density results of C∞
0 (IRn \ Γ) in the kernel of the trace operator, cf.

[1, p. 281] and [12, Th. 1]. However, this will not be of use to us. Here,
we need to deal with the question of existence of a trace Tr∂Ωf on ∂Ω for
functions f of As

pq(Ω), at least for some spaces As
pq(Ω).

Recall that Hs
p(IR

n) ≡ F s
p2(IR

n), s > 0, p > 1, are spaces of Bessel
potentials and define Hs

p(Ω), s > 0, p > 1, as being equal to F s
p2(Ω) — so, it

is defined by restriction.
The following notion is taken from [13], with modifications:

Definition 3.2 A domain Ω is said to be interior regular if

∃c>0 ∀x∈∂Ω ∀cube Q centred at x with side length ≤1 |Ω ∩Q| ≥ c |Q|.
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It’s easy to see that this is equivalent to saying that the domain Ω is a
n-set, in the sense of [6, p. 205] (which is the same as saying that Ω is a
n-set in the sense of Definition 2.6 above applied to Γ = Ω, except that here
we don’t require Γ to be closed)

Proposition 3.3 Let Ω be an interior regular domain such that ∂Ω is a
d-set. If p > 1 and s > (n− d)/p then

f ∈ Hs
p(Ω) ⇒ all u ∈ Hs

p(IR
n) such that u|Ω = f have the same trace on ∂Ω.

Proof. Step 1. We start by observing that, although not explicitly mentioned
in the assertion of the proposition, it must be d < n: this follows from the
fact |∂Ω| = 0, which in turn is implied by the interior regularity of Ω and
Proposition 1 in [6, p. 205].

Step 2. In this and the following steps of the present proof, when consid-
ering Hs

p(IR
n) we are always assuming that p > 1 and s > (n− d)/p.

Here we remark that, for any u ∈ Hs
p(IR

n), we can equivalently define
tr∂Ωu by ū given by

ū(x) ≡ lim
r→0

1
|B(x, r)|

∫

B(x,r)
u(y)dy (13)

at the points x ∈ ∂Ω where the limit exists. In order to see this, first we
note that, from Theorem 1 in [6, p. 182] and the definition of Besov spaces
on d-sets used there (cf. [6, p. 123]), the operator u 7→ ū maps Hs

p(IR
n)

linearly and boundedly into Lp(∂Ω) (in particular, ū makes sense Hd-a.e. in
∂Ω). Then the conclusion easily follows by using Lemma 3.1 and the facts
that ū = u|∂Ω = tr∂Ωu when u ∈ S and that S is dense in Hs

p(IR
n) (this type

of argument is borrowed from [6, VIII.1.3, p. 211]).
Step 3. As the previous one, this is also a preliminary step to the proof

of the proposition, though a longer one.
We take advantage of the fact Hs

p(IR
n) is a space of Bessel potentials,

so that any u ∈ Hs
p(IR

n) can be written as the convolution u = Gs ∗ g, for
some g ∈ Lp(IRn), where Gs stands for the Bessel kernel of order s (see,
for example, [1, pp. 9-11]). We can even say, due to Proposition 1 in [6,
p. 151] (and the preceding step), that, for the range of parameters we are
considering,

tr∂Ωu = ū = (Gs ∗ g)|∂Ω Hd-a.e. in ∂Ω, (14)
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where the integral defining the convolution is absolutely convergent Hd-a.e..
On the other hand, Theorem 3.2 of [8] assures us that if v ∈ Lp(IRn),

p > 1, and v ≥ 0, then, for Hd-almost all x0 in ∂Ω, there exists E ⊂ IRn such
that

lim
x→x0
x/∈E

(Gs ∗ v)(x) = (Gs ∗ v)(x0) (15)

and
Cs,p(E∩

◦
B (x0, r)) = o(rd) as r → 0, (16)

where Cs,p stands for capacity and is defined in the following way:

∀A ⊂ IRn, Cs,p(A) ≡ inf
h

∫

IRn
hp(x)dx,

where the infimum is taken over all h ∈ Lp(IRn) such that h ≥ 0 and
(Gs ∗ h)(x) ≥ 1 for all x ∈ A. It can, moreover, be seen that it is possi-
ble to choose E above as a (Lebesgue) measurable subset of IRn. We shall
consider such a choice in the sequel.

From (16) it follows that

|E ∩B(x0, r)| = o(rn) as λ → 0. (17)

To prove this, we separate in two cases:
Case s < n/p:
By Sobolev embedding theorem (cf., e.g., [1, p. 14] and the references

given there), we have Hs
p(IR

n) ↪→ Lq(IRn) for q = (np)/(n − sp). Hence, for

all h ∈ Lp(IRn) with h ≥ 0 and (Gs ∗ h)(x) ≥ 1 for all x ∈ E∩
◦

B (x0, r),

|E ∩B(x0, r)| ≤
∫

E∩B(x0,r)
(Gs ∗ h)(x)dx

≤ ‖Gs ∗ h|Lq(IRn)‖|E ∩B(x0, r)|1/q′

≤ c1‖Gs ∗ h|Hs
p(IR

n)‖|E ∩B(x0, r)|1/q′

= c1‖h|Lp(IRn)‖|E ∩B(x0, r)|1/q′ ,

for some positive constant c1, so that

|E ∩B(x0, r)|p/q ≤ cp
1Cs,p(E∩

◦
B (x0, r)).

13



Formula (17) then follows from this and (16), due to the particular value
considered for q and the hypothesis s > (n− d)/p.

Case s ≥ n/p:
If s = n/p, Sobolev embedding theorem gives now Hs

p(IR
n) ↪→ Lq(IRn)

for all q ≥ p (q < ∞, of course — recall we never consider infinite values
for such parameters). However, the same result holds also for s > n/p,
due to elementary embeddings, so that we can deal simultaneously with all
possibilities of s ≥ n/p. Formula (17) now follows as before, in case s < n/p:
in the last part it is even easier, because now any large q is at our disposal
and it is enough to choose q ≥ (np)/d.

With the help of (17) we can, in a straightforward way, obtain conclusions
(15) and (16) (and again (17)) for any complex g ∈ Lp(IRn) (instead of
v ∈ Lp(IRn), v ≥ 0) by decomposing into the real and imaginary parts and
the positive and negative parts of these. However, as we shall see, we really
need the original formulation of [8] for non negative functions in Lp(IRn).

Step 4. We come now to the proof proper of the proposition being con-
sidered.

Given f ∈ Hs
p(Ω) and any u ∈ Hs

p(IR
n) such that u|Ω = f , by Step 3

(see, in particular, the conclusion (14)) we can find g ∈ Lp(IRn) such that
u = Gs ∗ g and

tr|∂Ωu(x0) = (Gs ∗ g)(x0) (18)

for Hd-almost all x0 in ∂Ω.
In what follows, v will denote either one of (<g)+, (<g)−, (=g)+, (=g)−.

Of course, also Gs ∗ v ∈ Hs
p(IR

n), so that, by (14) and Step 2, we can write

(Gs ∗ v)(x0) = lim
r→0

1
|B(x0, r)|

∫

B(x0,r)
(Gs ∗ v)(x)dx (19)

for Hd-almost all x0 in ∂Ω.
We note that it is clearly possible to find a set S ⊂ ∂Ω of Hd-measure

0 such that, for any x0 ∈ ∂Ω \ S, (18) and (19) hold and there is a set E,
common to all four possibilities for our v, such that (15), (16) and (17) hold,
as well as the limit result

lim
r→0

|Ec ∩B(x0, r)|
|B(x0, r)|

= 1,

14



easily implied by (17). For such a x0 it is then not difficult to see that,
indeed,

(Gs ∗ v)(x0) = lim
r→0

1
|B(x0, r)|

∫

B(x0,r)∩Ec
(Gs ∗ v)(x)dx. (20)

This and (19), in turn, imply that

lim
r→0

1
|B(x0, r)|

∫

B(x0,r)∩E
(Gs ∗ v)(x)dx = 0,

which, being valid for all four possibilities considered for our v, allows, to-
gether with the hypothesis of interior regularity for ∂Ω, to conclude that

lim
r→0

1
|B(x0, r) ∩ Ω|

∫

B(x0,r)∩Ω∩E
(Gs ∗ g)(x)dx = 0. (21)

The interior regularity of Ω also allows, together with the ingredients that
led to (20), to obtain

lim
r→0

1
|B(x0, r) ∩ Ω|

∫

B(x0,r)∩Ω∩Ec
(Gs ∗ g)(x)dx = (Gs ∗ g)(x0).

The latter and (21) show that

(Gs ∗ g)(x0) = lim
r→0

1
|B(x0, r) ∩ Ω|

∫

B(x0,r)∩Ω
(Gs ∗ g)(x)dx.

Combining with (18) and the hypotheses made on u at the beginning of
the present step, we get

tr∂Ωu(x0) = lim
r→0

1
|B(x0, r) ∩ Ω|

∫

B(x0,r)∩Ω
f(x)dx (22)

for Hd-almost all x0 in ∂Ω. Since the right-hand side of (22) is independent
of the particular u considered, the proof is finished. �

Remark 3.4 (i) The main ideas for the preceding proof are taken from the
proofs of Proposition 2 in [6, pp. 206-208] or Theorem 1 in [14, pp.
121-122].

15



(ii) As a bonus we got, in the course of the preceding proof, the representation
(13) for tr∂Ωu, u ∈ Hs

p(IR
n), and the representation (22) for the common

trace on ∂Ω of all u ∈ Hs
p(IR

n) such that u|Ω = f , for some given
f ∈ Hs

p(Ω), in both cases under the conditions considered. After the
next definition, (22) will also be a representation for the trace Tr∂Ωf of
f on ∂Ω. We want nevertheless to point out that, though they might ease
some considerations below, those representations are really not needed
in what follows, and so they are not used hereafter.

Definition 3.5 Let Ω be an interior regular domain such that ∂Ω is a d-set.
If p > 1 and s > (n − d)/p, we define the trace of f ∈ Hs

p(Ω) on ∂Ω as the
element Tr∂Ωf of Lp(∂Ω) given by

Tr∂Ωf ≡ tr∂Ωu,

where u is any element of Hs
p(IR

n) such that u|Ω = f (we recall that Lp(∂Ω)
is considered with respect to the measure Hd|∂Ω).

By Proposition 3.3, this definition makes sense.

Proposition 3.6 Let Ω be an interior regular domain such that ∂Ω is a
d-set. If p > 1 and s > (n− d)/p, the trace operator

Tr∂Ω : Hs
p(Ω) → Lp(∂Ω)

is linear and continuous.

Proof. Both linearity and boundedness are obvious from the corresponding
properties of tr∂Ω and the definition of Hs

p(Ω). �

Proposition 3.7 Let Ω be an interior regular domain such that ∂Ω is a
d-set. Then, for any A ∈ {B,F},

As
pq(Ω) 6=

◦
A s

pq(Ω) (23)

if either
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(i) p > 1 and s > n−d
p or

(ii) p ≤ 1 and s > n
p − d.

Proof. Step 1. We deal first with (i) and As
pq(Ω) = Hs

p(Ω).
On one hand, there are elements of Hs

p(Ω) with a non-zero trace on ∂Ω:
for example, any ϕ|Ω such that ϕ ∈ C∞

0 (IRn) and ϕ ≡ 1 on B(γ, 1), for some
γ ∈ ∂Ω.

On the other hand, if Hs
p(Ω) =

◦
H s

p(Ω) were true, any f ∈ Hs
p(Ω) could be

arbitrarily approximated in Hs
p(Ω) by functions in C∞

0 (Ω), the trace of which
is zero. Hence, by the continuity asserted in Proposition 3.6, Tr∂Ωf = 0 too.

We got a contradiction and therefore Hs
p(Ω) 6=

◦
H s

p(Ω) in case (i).
Step 2. Next we deal with both (i) and (ii) for A = F .
In case (i) one simply has to note that we can choose ε > 0 such that

s − ε > (n − d)/p and F s
pq(Ω) ↪→ F s−ε

p2 (Ω) = Hs−ε
p (Ω) (see [9, p.47] for the

case of Ω = IRn and take advantage of the definition by restriction for the
case of general Ω). Lemma 2.1 and Step 1 do the rest.

In case (ii) it is possible to choose p1 > 1 ≥ p and s1 > (n − d)/p1

such that s − n/p = s1 − n/p1. If F s
pq(Ω) =

◦
F s

pq(Ω) were true, then, since
F s

pq(Ω) ↪→ F s1
p1q(Ω) (see [9, p. 129] for the case Ω = IRn), Lemma 2.1 would

imply that F s1
p1q(Ω) =

◦
F s1

p1q(Ω), contradicting what we have already obtained
in case (i).

Step 3. Finally, we get (i) and (ii) for A = B by choosing ε > 0 such that
s− ε > (n− d)/p (in case (i)) or s− ε > n/p− d (in case (ii)) and Bs

pq(Ω) ↪→
Bs−ε

p,min{p,q}(Ω) ↪→ F s−ε
pq (Ω) (see again [9, p. 47] for the case Ω = IRn), and by

applying the preceding step and Lemma 2.1 (once more). �

4 Examples

As we have just seen in Proposition 3.7, in the case p ≥ 1 we have obtained
a reasonable converse to Corollary 2.7. The case p < 1 is less satisfactory:
combining the results just mentioned, there is a gap for s between (n− d)/p
and n/p−d where neither (23) nor its opposite is asserted. The natural guess
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would, of course, be that (23) also holds in that gap. In the present section
we want to describe classes of examples which point out in that direction.

Proposition 4.1 Let ω be a bounded domain in IRn and Γ a d-set, d < n,
such that Γ ⊂ ω. Let Ω ≡ ω \ Γ. If s > σp ≡ n(1/p− 1)+, then

s >
n− d

p
⇒ As

pq(Ω) 6=
◦

A s
pq(Ω) for any A ∈ {B, F}.

Proof. Step 1. We first remark that, on the assumption s > (n − d)/p,
trΓAs

pq(IR
n) cannot be zero (that it exists follows from Lemma 3.1). Indeed,

any ϕ ∈ C∞
0 (IRn) such that ϕ ≡ 1 on B(γ, 1), for some γ ∈ Γ, is an element

of As
pq(IR

n) with a non-zero trace on Γ.
Step 2. Assume that the conclusion was false for such a Ω, that is,

As
pq(Ω) =

◦
A s

pq(Ω) with s > σp,
n− d

p
.

Let f be any function in As
pq(IR

n). Then f |Ω ∈ As
pq(Ω) and therefore for

each ε > 0 there would exist ϕ ∈ C∞
0 (Ω) such that ‖f |Ω − ϕ |As

pq(Ω)‖ < ε.
By definition of this quasi-norm, it would also exist g ∈ As

pq(IR
n) such that

g|Ω = f |Ω − ϕ and ‖g |As
pq(IR

n)‖ < ε . Consider fΩ ≡ f − g. We have

‖f − fΩ |As
pq(IR

n)‖ < ε (24)

and fΩ|Ω = ϕ. As a consequence, it would be possible to approach arbitrarily
any given f ∈ As

pq(IR
n) by functions (as fΩ above) which vanish in a one-

sided neighbourhood
◦

(∂Ω)δ of ∂Ω, where δ > 0 may change with the fΩ, of

course (for the definition of
◦

(∂Ω)δ, see (6) and (1)).
Step 3. Note that from the hypotheses made about ω, Γ and Ω in the

proposition, it follows that, for sufficiently small δ > 0,

Γδ \ Γ =
◦
Γδ ≡ Γδ ∩ Ω ⊂

◦
(∂Ω)δ,

so that fΩ would also vanish in Γδ \ Γ. Now, since |Γ| = 0 (because Γ is a
d-set with d < n) and fΩ is a regular distribution (because fΩ ∈ As

pq(IR
n) ↪→

Lloc
1 (IRn), as follows from the hypothesis s > σp and the properties of the
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spaces in question — cf. [9]), fΩ could be identified with a distribution in
As

pq(IR
n) vanishing in all Γδ.

Step 4. Consider ϕδ ∈ C∞
0 (IRn) equal to 1 in Γδ/2 and with support in

Γδ and define χδ ≡ 1− ϕδ. It is easily seen that χδ belongs to the Zygmund
space Cρ(IRn) — cf. [9, p. 36] —, for any ρ > 0, and that χδfΩ = fΩ.
Hence χδ is a pointwise multiplier for As

pq(IR
n) (see [9, pp. 140-141]) and,

therefore, by multiplying it with any given sequence (ψk)k∈IN ∈ S tending to
fΩ in As

pq(IR
n) we see that fΩ can be arbitrarily approximated in this space

by S-functions vanishing in Γ.
An application of Lemma 3.1 now shows that, on the assumption s >

(n − d)/p, trΓfΩ would be zero. Combining this with Step 2 we would get,
under the same assumptions and again by Lemma 3.1, that any f ∈ As

pq(IR
n)

would have zero trace on Γ.
However, this contradicts Step 1 and therefore the conclusion of the

proposition must be valid. �

Remark 4.2 (i) In order to compare this result with Proposition 2.2 or
Proposition 2.5, note that for smooth enough ∂ω (∂ω with u.M.d. equal
to n−1 is enough) and admissible d ∈ [n−1, n[ we get Ω in Proposition
4.1 such that the u.M.d. of ∂Ω is d.

(ii) If, instead of Lemma 3.1, we use Corollary 18.12 in [10, p. 142], we can

even get, for the same class of sets Ω, As
pq(Ω) 6=

◦
A s

pq(Ω) for s = (n−d)/p,
as long as we further assume that q ≤ min{1, p} (in the case A = B)
or p ≤ 1 (in the case A = F ) and (in both cases) p > d/n.

Proposition 4.3 For each D ∈ [n − 1, n[ (with n ≥ 2) there is a bounded
simply connected domain Ω such that ∂Ω has u.M.d. equal to D and for
which we have

s >
n−D

p
⇒ As

pq(Ω) 6=
◦

A s
pq(Ω) for any A ∈ {B,F}.

Proof. Step 1. Consider any D as above. According to Theorem 16.2,
its proof and Remark 16.3 in [10, pp. 120-122], there is a continuous non-
negative function h defined in the closed unit cube Q (centred at 0) in IRn−1
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such that h = 0 on ∂Ω and

Γ ≡ {(x, h(x)) ∈ IRn : x ∈ Q}

is a D-set (in IRn). Consider the bounded simply connected domain

Ω ≡ {(x, y) ∈ IRn : x ∈ 2
◦

Q ∧ − 1 < y < h(x)},

where 2
◦

Q denotes a cube (in IRn−1) with the same centre of
◦

Q (the interior
of Q) and twice its side length, and where h has been extended by 0 outside
Q. Clearly, ∂Ω has u.M.d. equal to D (though it is not a D-set, unless
D = n− 1).

Now assume that the conclusion of the proposition was false for such a
Ω, that is,

As
pq(Ω) =

◦
A s

pq(Ω) with s >
n−D

p
,

and, for any f ∈ As
pq(IR

n), repeat the arguments given in Step 2 of the proof
of Proposition 4.1 in order to show that it would be possible to approach
f arbitrarily by functions fΩ ∈ As

pq(IR
n) which vanish in a one-sided neigh-

bourhood
◦

(∂Ω)δ of ∂Ω (with δ > 0 depending on fΩ).
Step 2. Consider any such fΩ and assume δ < 1 (which we can certainly

do). It is easy to see that fΩ also would vanish in the set

Aδ ≡ {(x, y) ∈ IRn : x ∈ 2
◦

Q ∧ h(x)− δ < y < h(x)}

and, consequently, for each 0 < t < δ, the function fΩ((x, y − t)) would

vanish in the set (0, t) + Aδ, which contains {(x, h(x)) ∈ IRn : x ∈ 2
◦

Q}.
We claim that, as t → 0,

fΩ((x, y − t)) → fΩ in As
pq(IR

n). (25)

In fact, given any ε > 0, there exists ψ ∈ C∞
0 (Ω) such that

‖fΩ((x, y − t))− ψ((x, y − t))|As
pq(IR

n)‖ = ‖fΩ − ψ|As
pq(IR

n)‖ < ε,

so that we can write, with some positive constant c,

‖f − fΩ((x, y − t))|As
pq(IR

n)‖ ≤ c (2ε + ‖ψ − ψ((x, y − t))|As
pq(IR

n)‖).
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Since, using the continuous embedding S ↪→ As
pq(IR

n), we can easily estimate
the latter quasi-norm by constant times ε, for small enough values of t, the
claim follows.

Step 3. Since the compact set Γ = {(x, h(x)) ∈ IRn : x ∈ Q} and the
closed set ((0, t) + Aδ)c are disjoint, there is a neighbourhood Γt′ of Γ all
inside (0, t) + Aδ, and therefore fΩ((x, y − t)) also would vanish in Γt′ .

Now argue as in Step 4 of the proof of Proposition 4.1, with t′ and
fΩ((x, y− t)) in place of δ and fΩ, respectively, and get trΓfΩ((x, y− t)) = 0
on the assumption s > (n − D)/p. Lemma 3.1 applied first to (25) and
afterwards to the conclusion of Step 1 would then lead to trΓf = 0, again
under the assumption s > (n − D)/p. However, since this would be true
for any f ∈ As

pq(IR
n), we would have got a contradiction with the fact that

trΓAs
pq(IR

n) cannot be zero (cf. Step 1 of the proof of Proposition 4.1). �

Remark 4.4 Remark 4.2(ii) also applies here, mutatis mutandis (but now
there is no need for the assumption p >D/n).
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Stuttgart, 1983.

[10] , Fractals and spectra, Birkhäuser, Basel Boston Berlin, 1997.
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