
SUBATOMIC REPRESENTATION OF BESSEL POTENTIAL
SPACES MODELLED ON LORENTZ SPACES
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Abstract. Subatomic representation of Bessel potential spaces modelled on
Lorentz spaces are obtained via interpolation techniques.

1. Introduction

Subatomic representation for function spaces of Besov and Triebel-Lizorkin type
have been considered in recent years (see [8], [9], [5], [2], for example). The proofs
are quite involved, so that one can expect a lot of work if one sets as our task the
use of the same type of approach in order to get subatomic representations for other
function spaces. On the other hand, subatomic representations can be quite useful
as a means of attack of some questions. For example, Triebel [8, 20.6, 28.6] has
successfully used it in order to determine sharp upper estimates for the asymptotic
behaviour of entropy numbers of embeddings between fractal-based function spaces
of Besov type and, as a consequence, was able to determine the right asymptotic
behaviour for the eigenvalues of some fractal pseudo-differential operators.

Our objective here is to show that with the help of interpolation techniques
it is possible in some cases to take advantage of the already known subatomic
representations in order to get corresponding ones for other spaces, instead of trying
to overcome the many difficulties one can expect to meet if a more traditional
approach is used. So, rather than trying to be as general as possible, we exemplify
what we mean by setting as our task here to get subatomic representations for
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Bessel potential spaces modelled on Lorentz spaces, something which, in itself, is a
new result.

Our departure point as long as subatomic representations are concerned is what
is known in this respect for the usual Bessel potential spaces Hs

p(IRn) = F s
p,2(IR

n),
s > 0, 1 < p < ∞. This can be seen in [9, Section 2] or by specializing our
Section 4 below for this setting (taking q = p in Propositions 4.1, 4.2 and Theorem
4.3). We need to explain here what are the functions Ψβ,ρ

νm in the Schwartz class
S(IRn) which are considered there: they are the same as in [9, Corol. 2.12] and
its construction depends directly only on the consideration of the dyadic resolution
of unity (ϕk)k∈IN0 in IRn introduced in [9, 2.8] and, obviously, on the ρ, β, ν,m
which show up in our Section 4 below. In particular, they are independent of s, p, q
considered either in [9, Section 2] or in the present paper.

The Bessel potential spaces HsLpq(IRn), s > 0, 1 < p < ∞, 1 ≤ q ≤ ∞, for
which we get subatomic representations are defined by

HsLpq(IRn) := {f ∈ S ′(IRn) : ‖((1 + |x|2)s/2f̂ )̌ ‖Lpq(IRn) < ∞},
where Lpq(IRn) are Lorentz spaces and ˆ, ˇ stand, respectively, for Fourier and
inverse Fourier transformation. The subatomic results we can prove for them are
collected in Section 4.

A word or two about notation: the symbol ↪→ shall mean that the space on the
left-hand side of the symbol is continuously embedded in the space on its right-
hand side; an equality sign between spaces shall mean that each one is continuously
embedded in the other; the use of the same letter c in adjacent formulae does not
necessarily mean they assume the same value.

2. Vector-valued Lorentz spaces

We shall consider IRn the usual Euclidean space endowed with Lebesgue measure.
We recall that, given a (real or complex) Banach space (E, | · |E), a function

f : IRn → E is called strongly measurable if it is a.e. the limit of step functions,
i.e., of functions of the form

∑N
j=1 ajχAj , where aj can be any elements of E, N

can be any natural number and Aj can be any measurable subsets of IRn with finite
measure. It is well-known (see [4, p. 124]) that, in this context, strong measurability
of f is equivalent to measurability together with the hypothesis that there exists a
null set Z such that f(Zc) is separable. In particular, in the case when E equals
IR or C the two notions of measurability coincide.

As usual (see [3, pp. 101-106]), the vector space M(IRn, E) of equivalence classes
of strongly measurable functions from IRn into E (two functions being in the same
class if they are equal a.e., i.e., if they differ on a null set only) is endowed with the
metric of convergence in measure, becoming then a topological vector space which,
in particular, is Hausdorff. Also as usual, we shall sometimes refer to the elements of
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M(IRn, E) as functions (in corresponding equivalence classes), and even functions
which are only defined a.e. from IRn into E (and strongly measurable in their
domains of definition) can be thought of as elements of M(IRn, E); the important
thing is that the equivalence classes they point to in M(IRn, E) are clearly identified.

For 1 ≤ p < ∞, the Lebesgue space Lp(IRn, E) is defined as the linear subspace
of M(IRn, E) of equivalence classes containing at least a (strongly measurable)
function f : IRn → E such that |f(·)|pE is (Lebesgue) integrable. Endowed with

‖f‖p :=
(∫

IRn

|f(x)|pE dx
)1/p

it is a Banach space continuously embedded in M(IRn, E). The space L∞(IRn, E)
is defined as the linear subspace of M(IRn, E) of equivalence classes containing
at least a (strongly measurable) essentially bounded function f . Endowed with
‖f‖∞ := ess supx∈IRn |f(x)|E , it is also a Banach space continuously embedded in
M(IRn, E).

For any f ∈ M(IRn, E), the decreasing rearrangement of f is defined (with
possibly infinite values) by

f∗(t) := inf{σ > 0 : ρ(f, σ) ≤ t}, t > 0,

where

ρ(f, σ) := |{x ∈ IRn : |f(x)|E > σ}|, σ > 0.

Note that f∗ = |f(·)|∗E .

Definition 2.1. Let E be a Banach space, 1 < p < ∞, 1 ≤ q < ∞. The Lorentz
space Lpq(IRn, E) is defined as

Lpq(IRn, E) := {f ∈ M(IRn, E) : ‖f‖pq :=
(∫ ∞

0

(t1/pf∗(t))q dt

t

)1/q

< ∞};

the Lorentz space Lp∞(IRn, E) is defined by

Lp∞(IRn, E) := {f ∈ M(IRn, E) : ‖f‖p∞ := sup
t>0

t1/pf∗(t) < ∞}.

With the expressions ‖·‖pq, these are in general only quasi-Banach spaces, but since
there are norms equivalent to ‖·‖pq (see, for example, next section on interpolation),
one can say that these Lorentz spaces are also Banach spaces. Moreover, it follows
from properties of the decreasing rearrangement that Lpp(IRn, E) = Lp(IRn, E),
1 < p < ∞, with ‖ · ‖pp = ‖ · ‖p.

It is clear that if f ∈ Lpq(IRn, E) then also |f(·)|E ∈ Lpq(IRn, C) (or Lpq(IRn, IR)).
In the sequel we shall also need a partial converse of these result:



4 ANTÓNIO M. CAETANO

Proposition 2.1. Let I be a countable set and `r := `r(I, C) be the Banach space
of complex-valued r-summable families indexed by I, with 1 ≤ r < ∞ (see end of
section for a precise definition). Let 1 < p < ∞, 1 ≤ q ≤ ∞. If

f : IRn −→ `r

x 7→ {fi(x)}i∈I

(possibly defined only a.e.) is such that |f(·)|r ∈ Lpq(IRn, C) and fi ∈ M(IRn, C)
for every i ∈ I, then f ∈ Lpq(IRn, `r).

Proof. All that remains to prove is that f ∈ M(IRn, `r), because then we will
have ‖f‖pq = ‖ |f(·)|r ‖pq < ∞.

By hypothesis, each fi is strongly measurable, so the same happens with the
composition with the natural embedding in `r and, afterwards, with any finite sum
of such compositions. Since, also by hypothesis, (

∑
i∈I |fi(·)|r)1/r ∈ M(IRn, C), so

in particular the infinite sum
∑

i∈I |fi(·)|r is a.e. pointwise convergent, then f is
a.e. the pointwise limit of the above considered finite sums, and therefore is also
strongly measurable. ¤

It is clear that the above result also holds with IR in place of C. However, from
now on, we shall assume that all vector spaces are complex ones.

Since our function spaces will always be of “functions” defined on IRn, from now
on we shall omit IRn from the notation. We shall also omit the Banach space E
when E = C. Therefore, Lpq(E) will stand for Lpq(IRn, E) and Lpq(IRn, C) will be
simply written as Lpq.

We shall also need to deal with the Banach “sequence” spaces `r(I, E) of E-
valued r-summable (if 1 ≤ r < ∞) or bounded (if r = ∞) families indexed by the
countable set I and equipped with the norm | · |r:

`r(I, E) :=
{
a ≡ {ai}i∈I ⊂ E : |a|r :=

( ∑

i∈I

|ai|rE
)1/r

< ∞}
,

where |a|∞ must be interpreted as supi∈I |ai|E . Usually the I will be omitted from
the notation if it is clear from the context. We shall also omit E when E = C.

3. Interpolation spaces

Recall that two Banach spaces A and B are said to form an interpolation couple
{A,B} if they are both continuously embedded in the same Hausdorff topological
vector space.

As far as methods of interpolation are concerned, we deal only with the real
method (·, ·)θ,q, where 0 < θ < 1 and 1 ≤ q ≤ ∞ (see [7], for example).

We begin with a somewhat abstract result, dealing with the spaces of type
`∞(I, E) introduced before.
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Proposition 3.1. Given an interpolation couple {A, B} and 0 < θ < 1, 1 ≤ q ≤
∞, {`∞(A), `∞(B)} is also an interpolation couple and the continuous embedding

(`∞(A), `∞(B))θ,q ↪→ `∞((A,B)θ,q)

holds.

The proof is straightforward, so we shall omit it.
The Lorentz spaces introduced in the preceding section can be seen as interpo-

lation spaces of Lebesgue spaces:

Proposition 3.2. Given a Banach space E and numbers 1 < p0, p1 < ∞, with
p0 6= p1, 1 ≤ q ≤ ∞, 0 < θ < 1 and 1

p = 1−θ
p0

+ θ
p1

, the equality

Lpq(E) = (Lp0(E), Lp1(E))θ,q

holds (with equivalence of (quasi-)norms).

A proof of this result in a somewhat different framework can be seen in [7, pp.
133-134]; see also [1, pp. 109-110].

Recall that HsLp stands for Hs
p , the Bessel potential space of the tempered

distributions f such that ‖f‖HsLp := ‖((1+ |x|2)s/2f̂ )̌ ‖p < ∞, s ∈ IR, 1 < p < ∞.
With the norm ‖ · ‖HsLp , it becomes a Banach space.

Definition 3.1. We define HsLpq, the Bessel potential space modelled on a Lorentz
space, as

HsLpq := {f ∈ S ′ : ‖f‖HsLpq := ‖((1 + |x|2)s/2f̂ )̌ ‖pq < ∞},
s ∈ IR, 1 < p < ∞, 1 ≤ q ≤ ∞, quasi-normed by ‖ · ‖HsLpq .

Though the quasi-norm above is not, in general, a norm, HsLpq can still be
considered as a Banach space, for an equivalent norm. This can, for example, be
seen as a consequence of the next result.

Proposition 3.3. Given numbers s ∈ IR, 1 < p0, p1 < ∞, with p0 6= p1, 1 ≤ q ≤
∞, 0 < θ < 1 and 1

p = 1−θ
p0

+ θ
p1

, the equality

HsLpq = (HsLp0 ,H
sLp1)θ,q

holds (with equivalence of (quasi-)norms).

Proof. We use the method of retraction and co-retraction (cf. [7, p. 22]). The
operator

S : S ′ −→ S ′
f 7→ ((1 + |x|2)s/2f̂ )̌
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is obviously a co-retraction from HsLpi into Lpi , i = 0, 1, with S−1 a correspond-
ing retraction from Lpi

into HsLpi
, i = 0, 1. Therefore, S also establishes a topo-

logical isomorphism from (HsLp0 ,H
sLp1)θ,q onto the complemented subspace of

(Lp0 , Lp1)θ,q given by SS−1(Lp0 , Lp1)θ,q, that is, by (Lp0 , Lp1)θ,q itself, which, by
the preceding proposition, equals Lpq. That is, f ∈ S ′ is in (HsLp0 , H

sLp1)θ,q if,
and only if, Sf ∈ Lpq and, moreover, ‖f‖(HsLp0 ,HsLp1 )θ,q

is equivalent to ‖Sf‖pq.
This finishes our proof. ¤

Let now, for each ν ∈ IN0 and m ∈ ZZn, Qνm denote the cube in IRn, with sides
parallel to the coordinate axes, with centre 2−νm and side length 2−ν . Denote
by χνm the characteristic function of Qνm. Let also, from now on, I stand for
INn

0 × IN0 × ZZn.

Definition 3.2. Given 1 < p < ∞, define hLp as the vector space

hLp :=
{
λ ≡ {λ(β,ν,m)}(β,ν,m)∈I ⊂ C :

‖λ‖hLp :=
∥∥∥
( ∑

(β,ν,m)∈I

|λ(β,ν,m)χνm(·)|2
)1/2∥∥∥

p
< ∞}

(3.1)

endowed with the norm ‖ · ‖hLp .

Note that the convergence of the sum in (3.1) is considered pointwise (a.e. is
enough, of course). Note also that, due to Proposition 2.1, hLp can be equiva-
lently described as the space of all λ ≡ {λ(β,ν,m)}(β,ν,m)∈I ⊂ C such that x 7→
{λ(β,ν,m)χνm(x)}(β,ν,m)∈I belongs to Lp(`2). One can take advantage of this char-
acterization in order to get an easy proof that hLp is a Banach space.

We would like to remark that, given 1 < p0, p1 < ∞, {hLp0 , hLp1} is an interpo-
lation couple, as both spaces are continuously embedded in (in obvious notation)
the Hausdorff topological vector space h(Lp0 + Lp1).

Analogously to hLp, one can consider hLpq (1 < p < ∞, 1 ≤ q ≤ ∞): in the
definition above one just has to use ‖ · ‖pq instead of ‖ · ‖p and ‖ · ‖hLpq in place
of ‖ · ‖hLp , though now ‖ · ‖hLpq is generally only a quasi-norm. However, as for
the big H spaces, hLpq can also be considered as a Banach space, for an equivalent
norm (see, for example, the proposition below).

Note that, as for hLp, due to Proposition 2.1, hLpq can be equivalently
described as the space of all λ ≡ {λ(β,ν,m)}(β,ν,m)∈I ⊂ C such that
x 7→ {λ(β,ν,m)χνm(x)}(β,ν,m)∈I belongs to Lpq(`2).

Proposition 3.4. Given numbers 1 < p0, p1 < ∞, with p0 6= p1, 1 ≤ q ≤ ∞,
0 < θ < 1 and 1

p = 1−θ
p0

+ θ
p1

, the equality

hLpq = (hLp0 , hLp1)θ,q

holds (with equivalence of (quasi-)norms).
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Proof. We use again the method of retraction and co-retraction (cf. [7, p. 22]).
We show that

S : hLp0 + hLp1 −→ Lp0(`2) + Lp1(`2)

{λ(β,ν,m)}(β,ν,m)∈I 7→ [
x 7→ {λ(β,ν,m)χνm(x)}(β,ν,m)∈I

]

is a co-retraction from hLpi
into Lpi

(`2), i = 0, 1, with

R : Lp0(`2) + Lp1(`2) −→ hLp0 + hLp1

[
x 7→ {a(β,ν,m)(x)}(β,ν,m)∈I

] 7→ {
2νn

∫

χνm

a(β,ν,m)(y) dy
}

(β,ν,m)∈I

a corresponding retraction from Lpi
(`2) into hLpi

, i = 0, 1.
Using the equivalent characterization of each hLpi , given immediately after its

definition, it is straightforward to see that S is well-defined, it is linear, its restriction
to each hLpi is a bounded linear operator into Lpi(`2) and, assuming R is well-
defined, that the restriction of RS to each hLpi

is the identity operator.
As to R, it is clear that it will be a linear well-defined operator if one can

prove that its restriction to each Lpi(`2) is well-defined taking this space into the
corresponding hLpi . We show this next:

Given any
[
x 7→ {a(β,ν,m)(x)}(β,ν,m)∈I

] ∈ Lpi(`2), it is clear, since pi is assumed
greater than 1, that, for each (β, ν, m) ∈ I, a(β,ν,m) is a (strongly) measurable lo-
cally integrable function, so that the expression 2νn

∫
χνm

a(β,ν,m)(y) dy makes sense.
Furthermore, it is also clear that x 7→

∣∣{2νn
∫

χνm
a(β,ν,m)(y) dy χνm(x)

}
(β,ν,m)∈I

∣∣
2

is measurable in the sense of a function with values in the extended real number
system. Therefore

∥∥R
[
x 7→ {a(β,ν,m)}(β,ν,m)∈I

]∥∥
hLpi

=
∥∥∥
( ∑

(β,ν,m)∈I

∣∣∣2νn

∫

χνm

a(β,ν,m)(y) dy χνm(·)
∣∣∣
2)1/2∥∥∥

pi

≤
∥∥∥
( ∑

(β,ν,m)∈I

(
2νn

∫

χνm

|a(β,ν,m)(y)| dy χνm(·)
)2)1/2∥∥∥

pi

≤
∥∥∥
( ∑

(β,ν,m)∈I

|(Ma(β,ν,m))(·)|2
)1/2∥∥∥

pi

≤ c
∥∥∥
( ∑

(β,ν,m)∈I

|a(β,ν,m)(·)|2
)1/2∥∥∥

pi

= c
∥∥[

x 7→ {a(β,ν,m)(x)}(β,ν,m)∈I

]∥∥
Lpi

(`2)
< ∞ ,
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where M is the Hardy-Littlewood maximal function and we have used the maximal
inequality of Fefferman-Stein (cf. [6, pp. 14-15]).

It is also now clear that the restriction of R to each Lpi
(`2) is a bounded linear

operator into hLpi .
Therefore S establishes a topological isomorphism from (hLp0 , hLp1)θ,q onto the

complemented subspace of (Lp0(`2), Lp1(`2))θ,q given by SR(Lp0(`2), Lp1(`2))θ,q,
i.e., due to Proposition 3.2, onto the complemented subspace of Lpq(`2) given by
SRLpq(`2).

From this it immediately follows that
∥∥[

x 7→ {λ(β,ν,m)χνm(x)}(β,ν,m)∈I

]∥∥
Lpq(`2)

≤ c
∥∥{λ(β,ν,m)}(β,ν,m)∈I

∥∥
(hLp0 ,hLp1 )θ,q

,

which proves the continuous embedding

(hLp0 , hLp1)θ,q ↪→ hLpq.

On the other hand, given {λ(β,ν,m)}(β,ν,m)∈I ∈ hLpq, one knows that x 7→
{λ(β,ν,m)χνm(x)}(β,ν,m)∈I belongs to Lpq(`2), so that applying R one gets
{λ(β,ν,m)}(β,ν,m)∈I ∈ (hLp0 , hLp1)θ,q and the continuous embedding

hLpq ↪→ (hLp0 , hLp1)θ,q.

¤

4. Subatomic representations

Let r ≥ 0 and ψ ≥ 0 be a C∞ function in IRn with supp ψ ⊂ {y ∈ IRn : |y| < 2r}
and

∑
m∈ZZn ψ(x−m) = 1 for all x ∈ IRn. Given any β ∈ INn

0 , define ψβ(x) :=
xβψ(x).

Consider, in what follows, that the real number ρ has been chosen greater than
r and that Ψβ,ρ

νm ∈ S has the same meaning as in the Introduction.
Let also I stand for INn

0 × IN0 × ZZn and I ′ := IN0 × ZZn.

Proposition 4.1. Let s > 0, 1 < p < ∞, 1 ≤ q ≤ ∞. If f ∈ HsLpq, then

(4.1) f =
∑

(β,ν,m)∈I

λβ
νm(f)ψβ(2ν · −m),

summability in S ′, where the λβ
νm(f) := 2−ρ|β| 〈f, Ψβ,ρ

νm

〉
satisfy the relation

(4.2)

|λ(f)|ρ,s,p,q := sup
β∈INn

0

2ρ|β|
∥∥∥
( ∑

(ν,m)∈I′
22νs|λβ

νm(f)χνm(·)|2
)1/2∥∥∥

pq
≤ c ‖f‖HsLpq ,

for some c > 0 independent of the f considered.
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Proof. Choose 1 < p0, p1 < ∞, with p0 6= p1, and 0 < θ < 1 such that 1
p =

1−θ
p0

+ θ
p1

and consider the linear operator

T : HsLp0 + HsLp1 −→ `∞(Lp0(`2)) + `∞(Lp1(`2)) .

f 7→ {
x 7→ {2νs

〈
f, Ψβ,ρ

νm

〉
χνm(x)}(ν,m)∈I′

}
β∈INn

0

That this is well-defined comes from the subatomic decomposition for the spaces
HsLpi

= Hs
pi

= F s
pi,2, i = 0, 1 — cf. [9, 2.6, 2.9, 2.11, 2.12] — together with

our Proposition 2.1. Since from these references it also follows that the restric-
tion of T to each HsLpi

is bounded with values in `∞(Lpi
(`2)), using real inter-

polation we also get that T takes (HsLp0 ,H
sLp1)θ,q linearly and boundedly into

(`∞(Lp0(`2)), `∞(Lp1(`2)))θ,q. Now just conjugate this with Propositions 3.1, 3.2
and 3.3 in order to get (4.2). As to (4.1), it follows immediately from the corre-
sponding result for the elements of HsLpi

, i = 0, 1 — cf. [9, 2.6, 2.9, 2.11, 2.12] —
and the fact that each f ∈ HsLpq can be written as f = f0 + f1, with f0 ∈ HsLp0 ,
f1 ∈ HsLp1 . ¤

Proposition 4.2. Let s > 0, 1 < p < ∞, 1 ≤ q ≤ ∞. If λ ≡ {λβ
νm}(β,ν,m)∈I ⊂ C

is such that

(4.3) |λ|ρ,s,p,q := sup
β∈INn

0

2ρ|β|
∥∥∥
( ∑

(ν,m)∈I′
22νs|λβ

νmχνm(·)|2
)1/2∥∥∥

pq
< ∞,

then

(4.4) f :=
∑

(β,ν,m)∈I

λβ
νm ψβ(2ν · −m)

(summability in S ′) belongs to HsLpq and there is some constant c > 0 (indepen-
dent of f and λ) such that

(4.5) ‖f‖HsLpq ≤ c inf |λ|ρ,s,p,q,

where the infimum runs over all λ satisfying (4.3) and giving rise to the same f
according to (4.4).

Proof. Given λ according to the hypotheses and ε > 0, using summability prop-
erties, properties of the decreasing rearrangement of functions and the fact that Lpq

can be viewed as a Banach space continuously embedded in Lp0 + Lp1 , for some
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1 < p0, p1 < ∞, we have that
∥∥∥
( ∑

(β,ν,m)∈I

22(ρ−ε)|β| 22νs|λβ
νmχνm(·)|2

)1/2∥∥∥
pq

≤
∥∥∥

∑

β∈INn
0

2−ε|β| 2ρ|β|
( ∑

(ν,m)∈I′
22νs|λβ

νmχνm(·)|2
)1/2∥∥∥

pq

≤ c
∑

β∈INn
0

2−ε|β| 2ρ|β|
∥∥∥
( ∑

(ν,m)∈I′
22νs|λβ

νmχνm(·)|2
)1/2∥∥∥

pq

≤ c
( ∑

β∈INn
0

2−ε|β|
)
|λ|ρ,s,p,q < ∞ .

Assume, from now on, that ε > 0 has been chosen in such a way that ρ− ε > r.
Choose 1 < p0, p1 < ∞, with p0 6= p1, and 0 < θ < 1 such that 1

p = 1−θ
p0

+ θ
p1

and consider the linear operator

U : hLp0 + hLp1 −→ HsLp0 + HsLp1 ,

{λβ
νm}(β,ν,m)∈I 7→

∑

(β,ν,m)∈I

2−(ρ−ε)|β| 2−νsλβ
νm ψβ(2ν · −m)

where the convergence (summability) of the sum is considered in S ′ (or in Lp0 +Lp1 ,
if one wishes some more precise information). That this is well-defined follows easily
from the subatomic representation for the spaces HsLpi = Hs

pi
= F s

pi,2, i = 0, 1
— cf. [9, 2.6, 2.7, 2.9]. Since these references also guarantee that the restriction
of U to each hLpi is bounded with values in HsLpi , using real interpolation one
gets that U takes (hLp0 , hLp1)θ,q linearly and boundedly into (HsLp0 ,H

sLp1)θ,q.
Conjugating this with Propositions 3.3 and 3.4 and the first part of the present
proof, it follows that f given by (4.4) is well-defined (with summability meant in
S ′, or even in Lp0 + Lp1) and (4.5) holds true. ¤
Remark 4.1. We would like to stress that the summability implied by (4.4) in S ′
is not an assumption, but rather a consequence of (4.3). Also that the summability
can even be taken in Lp0 + Lp1 , for suitable 1 < p0, p1 < ∞ according to the proof
given above.

Now the theorem on the subatomic representation for spaces HsLpq which follows
is a simple corollary of the two preceding propositions:

Theorem 4.3. Let s > 0, 1 < p < ∞, 1 ≤ q ≤ ∞. Then f ∈ S ′ belongs to HsLpq

if, and only if, it can be represented by

(4.6) f =
∑

(β,ν,m)∈I

λβ
νm ψβ(2ν · −m)
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(summability in S ′) for some λ ≡ {λβ
νm}(β,ν,m)∈I ⊂ C satisfying |λ|ρ,s,p,q < ∞,

where | · |ρ,s,p,q has the same meaning as in (4.3).
Moreover, an equivalent quasi-norm in HsLpq is given by

inf |λ|ρ,s,p,q,

where, for each f ∈ HsLpq, the infimum is taken over all families λ ≡ {λβ
νm}(β,ν,m)∈I

⊂ C satisfying (4.6) and such that |λ|ρ,s,p,q is finite.
Further, given any f ∈ HsLpq, one can choose λ in an optimal way (in the sense

that — besides (4.6) — it verifies

|λ|ρ,s,p,q ≤ c ‖f‖HsLpq
,

for some c > 0 independent of f), namely

λ = λ(f) = {2−ρ|β| 〈f, Ψβ,ρ
νm

〉}(β,ν,m)∈I .
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