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Abstract
Sharp estimates for the approximation numbers of embeddings between the

function spaces Bs
pq and F s

pq on domains are given in a case not thoroughly studied
by Edmunds and Triebel. Corresponding sharp estimates are also obtained for the
counterparts of that case in the weighted function space setting.
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1 Introduction

Approximation numbers of embeddings between function spaces have been stud-
ied in recent years in the general framework of the scales of spaces Bs

pq and F s
pq

on domains [4], [5]. More recently, the weighted counterparts of those embeddings
have also been dealt with [7]. The estimates (upper and lower) for the approxi-
mation numbers depend on the relationship between the parameters involved, and
the same happens with the quality of the estimates: in some cases we have sharp
ones; in other cases we don’t. One refers to the latter cases as being critical: the
relationship between the parameters is such that the technique used then fails.

Our point here is that there are some cases for which sharp estimates have been
overlooked, though they do not really fall into the category of a critical situation.
Our aim is to give the correct picture in these cases.

Let’s describe the problem in a schematic way: when considering the embed-
ding Bs1

p1q1
(Ω) → Bs2

p2q2
(Ω), where Ω is a bounded domain in IRn with smooth

boundary, s1, s2 ∈ IR, p1, p2, q1, q2 ∈]0,∞] and δ+ ≡ s1 − s2 − n
(

1
p1
− 1

p2

)

+
> 0,

Edmunds and Triebel in [5] left out, for example, the case 0 < p1 < 2 < p2 < ∞
when s1 − s2 ≤ n max{1 − 1/p2, 1/p1}. They say that the question of the true
rate of decay of the approximation numbers of the embedding in this case remains
open and also point out that it is not known whether there is such a rate in this
case or not. This is, however, in contrast with what König writes in [10, 3.c.7(1)],
from which it seems that, at least in the classical framework of Sobolev and Besov
spaces, a true rate of decay exists and is known for that case (except for critical
relationships of the parameters). In fact, in this context it has surely been known
for some time, as from the estimates for the approximation numbers of embeddings
between sequence spaces, made available by Gluskin [6], it is clear how to use the
discretization technique of Maiorov [13] to get the result. Such an approach was,
for example, used in the work of Lubitz [12] in order to get the true rate of de-
cay for Kolmogorov and Weyl numbers of classical Sobolev embeddings, this time
taking advantage of estimates for the same type of numbers in sequence spaces.
Moreover, in these estimates for the Weyl and Kolmogorov numbers, as well as for
the approximation numbers dealt with below, the phenomenon (already noticed
by Kashin [9] in a similar context — see also [11]) of the change of asymptotics for
small smoothness shows up. Unfortunately, it is not easy, at least in the West, to
find a reference for those results concerning the approximation numbers of classi-
cal Sobolev-Besov embeddings. As a consequence, we can see, for example, that in
[7] some cases in the study of the approximation numbers of embeddings between
weighted function spaces could not be satisfactorily dealt with because the author
of that paper was not aware of sharp estimates in the aforementioned case.

In view of this, the present work also aims to put an end to this state of affairs.
The plan of the paper is as follows. In Section 2 we collect, and prove as

necessary, the relevant results for approximation numbers of identity maps between

3



sequence spaces. In Section 3 we consider the case, mentioned above, left out in
[5] and show that for the non-critical relationship s1− s2 < n max{1− 1/p2, 1/p1}
one gets

k−
δ+
2n min{p′1,p2}

as the true rate of decay of the approximation numbers ak (and we also give some
complements there). We would like to stress that this is not just a proof of a
known (though not widely publicized) result: the scales of spaces Bs

pq and F s
pq we

deal with include a variety of classical spaces, but also a variety of other spaces
(for details, refer to [15]); in particular, the parameters p and q are allowed to be
positive numbers less than 1, in which case, instead of Banach function spaces,
we are dealing with quasi-Banach function spaces. In Section 4 we deal with the
influence of the preceding estimate in the context of weighted function spaces,
so that we are able to improve the results of [7] (see Subsection 4.3 below for a
summary of what can be said as a result of our study).

We recall here the definition of the k-th approximation number ak(T ) (with
k ∈ IN) of the continuous linear operator T : B1 → B2, where B1 and B2 are two
quasi-Banach spaces:

ak(T ) ≡ inf
S

sup{‖Tu− Su|B2‖ : ‖u|B1‖ ≤ 1},

where the infimum is taken over all continuous linear operators S : B1 → B2 such
that rank S < k. Here ‖.|B‖ denotes the quasi-norm in the quasi-normed space
B, though we shall write simply |.| for the Euclidean norm in IRn.

We shall occasionally need to refer to S(IRn) and S ′(IRn), which stand, respec-
tively, for the space of complex-valued rapidly decreasing infinitely differentiable
functions on IRn equipped with the usual topology and for the space of tempered
distributions equipped with the strong topology. We will use then the notation ∧

and ∨ to denote the Fourier transformation and its inverse, respectively.
Finally, positive constants the precise values of which have no influence on

the estimates will be just denoted by c, occasionally with additional subscripts to
distinguish between them within the same formula or the same step of a proof.

2 Required results in sequence spaces

Let m ∈ IN, p ∈]0,∞] and `m
p be the linear space of all complex m-tuples y ≡

(yi)n
i=1 furnished with the quasi-norm

‖y|`m
p ‖ ≡





m
∑

j=1

|yj |p




1/p

(usual modification if p = ∞). Define p′ by 1
p + 1

p′ = 1 if p ∈ [1,∞] and by p′ = ∞
if p ∈]0, 1[. Let am

k be the k-th approximation number of the natural embedding

idm : `m
p1
→ `m

p2
,
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where p1, p2 ∈]0,∞].
We have the following results (mainly due to Gluskin [6], though the extension

to p1 < 1 is being taken from [5, 3.2.2]), where am
k ≈ K means that am

k /K is
bounded above and below by positive constants independent of m and k.

Lemma 2.1 (i) Let 1 ≤ p1 ≤ 2 ≤ p′1 ≤ p2 ≤ ∞, with (p1, p2) 6= (1,∞) and
k ≤ m/2. Then

am
k ≈ min{1,m1/p′1k−1/2}.

(ii) Let 0 < p1 < 2 ≤ p2 < p′1 and k ≤ m/2. Then

am
k ≈ min{1,m1/p2k−1/2}.

From these one easily gets the following estimates.

Corollary 2.2 Let 0 < p1 ≤ 2 ≤ p2 < ∞ (or 1 < p1 ≤ 2 < p2 = ∞). Then
(i) there is c > 0 such that, for all k,m ∈ IN,

am
k ≤ cm1/ min{p′1,p2}k−1/2;

(ii) there is c > 0 such that, for all k, m ∈ IN with k ≤ 1
2m2/ min{p′1,p2},

am
k ≥ c.

Proof. (i) Consider the composition

`m
p1

J−→ `2m
p1

id2m
−→ `2m

p2

P−→ `m
p2

,

where J(ξi)m
i=1 ≡ (ξ1, . . . , ξm, 0, . . . , 0) and P (ξi)2m

i=1 ≡ (ξi)m
i=1, apply the Lemma to

id2m and use the multiplicativity of the approximation numbers to get, for k ≤ m,

am
k ≤ c(2m)1/ min{p′1,p2}k−1/2.

The required result then follows by redefining the constant c and taking into
account the well-known fact that am

k = 0 when k > m.
(ii) Note that min{p′1, p2} ≥ 2, so that the assumption k ≤ 1

2m2/ min{p′1,p2}

implies that k ≤ m/2 and m1/ min{p′1,p2}k−1/2 ≥
√

2 > 1. We again obtain the
stated result by applying the Lemma.
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3 Approximation numbers in unweighted function spaces

Let Ω be a non-empty bounded open subset of IRn with C∞ boundary ∂Ω. Let
Bs

pq(Ω) and F s
pq(Ω), for s ∈ IR and p, q ∈]0,∞] (p ∈]0,∞[ in the F -case), be the

function spaces extensively studied in the books [15] and [16] of Triebel — to
which we refer for definitions and properties (we just note that these scales of
spaces include the classical Sobolev and Besov spaces defined on Ω).

Denote by aBB
k the k-th approximation number of the natural embedding

Bs1
p1q1

(Ω) → Bs2
p2q2(Ω), where s1, s2 ∈ IR and p1, p2, q1, q2 ∈]0,∞] are such that

δ+ ≡ s1 − s2 − n
(

1
p1
− 1

p2

)

+
> 0. We also use the self-explanatory notation aBF

k ,

aFB
k and aFF

k to cover all possibilities of B- and F -spaces in the domain and the
target spaces of the embedding.

In [4], [5], Edmunds and Triebel studied these numbers, obtaining sharp esti-
mates (in the sense of ≈ with a constant independent of k) except in the following
cases:

(i) 0 < p1 ≤ 1 < p2 = ∞;
(ii) 0 < p1 < 2 < p2 < ∞ (or 1 < p1 < 2 < p2 = ∞) and s1 − s2 ≤

nmax{1− 1/p2, 1/p1}.
The reason for the exception in case (i) has to do with the lack of corresponding

precise estimates in sequence spaces, and we have nothing further to add here.
However in case (ii), apart from the critical situation when s1 − s2 = n max{1 −
1/p2, 1/p1}, it is possible to get sharp estimates in a streamlined way, by using
what is known for the corresponding situations in sequence spaces.

Before proceeding we would like to remark that s1−s2 < n max{1−1/p2, 1/p1}
if and only if δ+ < n/ min{p′1, p2}, under the assumption p1 ≤ p2. Note also that
in this section it will always be δ+ = s1−s2−n

(

1
p1
− 1

p2

)

, since we will always have

p1 ≤ p2. For future reference it is convenient to define δ ≡ s1 − s2 − n
(

1
p1
− 1

p2

)

and remark that s1− s2 < n max{1− 1/p2, 1/p1} if and only if δ < n/ min{p′1, p2}
(irrespective of the order relation between p1 and p2). Of course, δ = δ+ if p1 ≤ p2.

Theorem 3.1 Let s1, s2 ∈ IR and p1, p2, q1, q2 ∈]0,∞] be such that δ+ > 0. Let
0 < p1 < 2 < p2 < ∞ (or 1 < p1 < 2 < p2 = ∞) and δ < n/ min{p′1, p2}. Then

aBB
k ≈ k−

δ
2n min{p′1,p2}

Proof. (i) Upper estimate
The idea is to use the discretization technique given in [1, II.4.8] — see also

[3, Prop. 2.2.3] — and the first part of the proof of Theorem II.4.9 in [1] — see
also [2, 3.3.2] —, so that

(aBB
c1k )ρ ≤ c2



2−Nδρ +
N

∑

j=L

2−jδρ(aMj
rj )ρ



 , (1)
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where c1, c2 are positive constants (i.e., positive numbers independent of k),
ρ ≡ min{1, p2, q2}, L = [ 1

n log2 k], N = [ γ
n log2 k], γ(≥ 1) is to be fixed later

on independently of k, Mj is the number of m ∈ ZZn such that |m| ≤ 2j+2√n,
rj = [k1−γε/n2jε] and ε(> 0) is to be fixed later on independently of k and as small
as we wish (in order that the inequality rj ≥ 1 holds true). Note that a positive
constant c3 can be found such that Mj ≤ c32jn.

The use of Corollary 2.2(i) within the summation
∑N

j=L leads to the inequalities

N
∑

j=L

2−jδρ(aMj
rj )ρ ≤

N
∑

j=L

2−jδρc4M
ρ/ min{p′1,p2}
j [k1−γε/n2jε]−ρ/2

≤ c5k−ρ/2+γερ/(2n)
N

∑

j=L

2jρ(−δ+n/ min{p′1,p2}−ε/2).

The hypothesis δ < n/ min{p′1, p2} permits us to choose ε > 0 in such a way
that −δ + n/min{p′1, p2} − ε/2 > 0 and so

N
∑

j=L

2−jδρ(aMj
rj )ρ ≤ c6k−ρ/2−γρδ/n+γρ/ min{p′1,p2}. (2)

Comparing this with the term 2−Nδρ of (1), which is O(k−γρδ/n) as k → ∞,
we see that for optimal results one should choose γ in such a way that −ρ/2 +
γρ/min{p′1, p2} = 0, that is, γ = min{p′1, p2}/2; since this is greater than 1, it is
a possible choice, so that putting (2) in (1) gives

(aBB
c1k )ρ ≤ c7k−γρδ/n = c7k−δ min{p′1,p2}ρ/(2n),

from which the stated upper estimate follows .
(ii) Lower estimate
We use the fact that there is c1 > 0 such that, for all j, k ∈ IN,

aBB
k ≥ c12−jδaNj

k , (3)

with Nj = 2jn (cf. [5, 4.3.1]).
For each k ∈ IN we choose j ∈ IN such that

1
2
2(j−1)2n/ min{p′1,p2} ≤ k ≤ 1

2
2j2n/ min{p′1,p2}.

Using part (ii) of Corollary 2.2 in (3) we obtain the inequalities

aBB
k ≥ c22−jδ = c22−δ

(

2(j−1)2n/ min{p′1,p2}
)−δ min{p′1,p2}/(2n)

≥ c3k−δ min{p′1,p2}/(2n),

and the proof is complete.
Remark. We didn’t need the hypothesis δ < n/min{p′1, p2} to prove the lower

estimate.
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Corollary 3.2 Under the same hypotheses of the preceding theorem (except that
when F -spaces are involved the corresponding parameter p must not be ∞), the
result holds true for any of aBF

k , aFB
k or aFF

k instead of aBB
k .

Proof. This follows as in [5, 2.1.5].

4 Approximation numbers in weighted function spaces

Let Bs
pq(α) ≡ Bs

pq((1 + |x|2)α/2) and F s
pq(α) ≡ F s

pq((1 + |x|2)α/2), for α, s ∈ IR
and p, q ∈]0,∞] (p ∈]0,∞[ in the F -case), be weighted function spaces (with (1 +
|x|2)α/2 the weight function) corresponding to Bs

pq ≡ Bs
pq(IR

n) and F s
pq ≡ F s

pq(IR
n),

respectively (for definitions and properties, see [7] and references therein).
Denote by aB

k the k-th approximation number of the natural embedding Bs1
p1q1(α) →

Bs2
p2q2

, where α, s1, s2 ∈ IR, p1, p2 ∈]0,∞[ and q1, q2 ∈]0,∞] are such that s1 > s2,

α > n
(

1
p2
− 1

p1

)

+
and δ ≡ s1 − s2 − n

(

1
p1
− 1

p2

)

> 0. Analogously, aF
k will stand

for the k-th approximation number of the natural embedding F s1
p1q1(α) → F s2

p2q2
,

with the same restrictions on the parameters.
In [7] Haroske studied these numbers off the critical line δ = α, obtaining

sharp estimates (in the sense of ≈ with a constant independent of k) except in the
following four cases:

(i) 0 < p1 < 2 < p2 < ∞ and δ > α > n/ min{p′1, p2};
(ii) 0 < p1 < 2 < p2 < ∞, α > δ and δ ≤ n/ min{p′1, p2};
(iii) 0 < p1 < 2 < p2 < ∞ and n/min{p′1, p2} ≥ δ > α;
(iv) 0 < p1 < 2 < p2 < ∞ and δ > n/ min{p′1, p2} ≥ α.
These correspond, respectively, to what Haroske calls regions IV, VII, VIII

and IX in [7, 3.2].
We have not much to say about case (i): it is possible to reduce it to the

study of what happens on the critical line δ = α, but then the best we can do is
to show that the power exponent of k for the lower estimate given by Haroske,
namely −α/n−min{1/p1−1/2, 1/2−1/p2}, is the correct exponent for the upper
estimate, even if we can’t get rid of a perturbing factor of the type of a positive
power of log(1 + k). We will not dwell upon this here, as it is more or less clear
from the results in [7].

As in the context of unweighted function spaces, we would like to get sharp
estimates for the remaining cases in a streamlined way. This will necessarily rule
out some critical situations, but there might be some surprises here. We shall
come back to this again later on.

4.1 Lower estimates

4.1.1 In case (ii)
aB

k ≥ ck−
δ
2n min{p′1,p2},
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for some c > 0 independent of k.
In fact, as in [7, 4.2, Step 1], we can write aB

k ≥ caBB
k (recall the notation

used in our Section 3 — in particular, the Ω we are considering can be any fixed
non-empty bounded open subset of IRn with C∞ boundary), so that we get the
stated result by applying Theorem 3.1 and the Remark that follows it.

Observe also that, by standard arguments (cf. [7, 3.2]), the same lower estimate
holds for aF

k .
4.1.2 In cases (iii) and (iv)

aF
k ≥ ck−

α
2n min{p′1,p2},

for some c > 0 independent of k.
Actually, since this estimate does not depend on the parameters s and q and

we are assuming δ > α, an argument as in [7, 4.2, Step 2] shows that the same
estimate holds also for aB

k . Accordingly, we shall concentrate here on proving it
for aF

k only.
We use [7, (4.2/17)], namely that there is c1 > 0 such that, for all j, k ∈ IN,

aF
k ≥ c12−jαaNj

k (4)

with Nj = 2jn, and proceed as in the context of the unweighted function spaces:
for each k ∈ IN we choose j ∈ IN such that

1
2
2(j−1)2n/ min{p′1,p2} ≤ k ≤ 1

2
2j2n/ min{p′1,p2}

and use part (ii) of Corollary 2.2 in (4) to conclude that

aF
k ≥ c22−jα ≥ c3k−

α
2n min{p′1,p2}.

4.2 Upper estimates

4.2.1 A localization technique

For each j ∈ IN consider the operators

Fj : Bs1
p1q1

(α) → Bs2
p2q2

given by Fjf = ϕjf,

where (ϕj)j∈IN is a dyadic resolution of unity defined in the following way: ϕ0 ∈
S(IRn) is chosen so that supp ϕ0 ⊂ {x ∈ IRn : |x| < 2} and ϕ0(x) = 1 if |x| ≤ 1;
ϕj(x) = ϕ0(2−jx)− ϕ0(2−j+1x) for each j ∈ IN.

Define also, for given L ∈ IN, FL = idB −
∑L

j=0 Fj , where idB is the natural
embedding Bs1

p1q1
(α) → Bs2

p2q2
. We remark that FLf = (1 − ϕ(2−N ·))f for every

f ∈ Bs1
p1q1

(α).
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Proposition 4.1 Assume s1 > n(1/p1−1)+ and s2 < 0, together with the general
conditions on α, s1, s2, p1, p2, q1 and q2 set forth at the beginning of Section 4.
Let ρ ≡ min{1, p2, q2}, k, L ∈ IN. Let kj ∈ IN, j ∈ {0, . . . , L}, be such that
k =

∑L
j=0 kj. There is a positive constant c (independent of k, L, j and the kj)

such that

(aB
k )ρ ≤ c



2−Lαρ +
L

∑

j=0

2j(δ−α)ρ(aBB
kj

)ρ



 ,

where the Ω involved in aBB
kj

is here the set {x ∈ IRn : |x| < 2}.

Proof. The result follows by the same reasoning as in [8, pp. 151-152] for the
entropy numbers, where homogeneity arguments were used.

We shall want to apply this localization technique to the cases (ii) and (iii)
mentioned before in this Section 4 and take advantage of the already known esti-
mates for aBB

kj
in these situations. As we have seen in Section 3, if we make the

further assumption that δ be strictly less than n/ min{p′1, p2} in these two cases,
then we can write

aBB
k = O(k−

δ
2n min{p′1,p2}) as k →∞.

If we also assume that s1 > n(1/p1 − 1)+ and s2 < 0, then we can apply the
preceding proposition and obtain the inequality

(aB
k )ρ ≤ c



2−Lαρ +
L

∑

j=0

2j(δ−α)ρk−δρ min{p′1,p2}/(2n)
j



 , (5)

where the meaning of the letters is as in Proposition 4.1.
At this point we can get rid of the annoying restrictions s1 > n(1/p1 − 1)+

and s2 < 0. To that effect, we use the fact that the lift operator Iσ on S ′(IRn) (for
σ ∈ IR), given by

Iσf = ((1 + |x|2)σ/2f̂)∨,

maps Bs
pq isomorphically onto Bs−σ

pq and also Bs
pq(α) isomorphically onto Bs−σ

pq (α)
(see [15, 2.3.8] and [14, Chapter 5] and the references given there). We proceed
then as follows.

Let α, s1, s2, p1, p2, q1, q2 be required to satisfy only the inequalities 0 < p1 <
2 < p2 < ∞, together with the general conditions set forth at the beginning of
Section 4. Consider s0 such that s1 > s0 > s2 and s′1 ≡ s1 − s0 > n(1/p1 − 1)+
and s′2 ≡ s2 − s0 < 0. Then (5) holds for the embedding Bs′1

p1q1(α) → Bs′2
p2q2 . If we

now write the embedding Bs1
p1q1

(α) → Bs2
p2q2 as the composition

Bs1
p1q1

(α)
Is0−→ Bs1−s0

p1q1
(α) → Bs2−s0

p2q2

I−1
s0−→ Bs2

p2q2
,
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apply the multiplicativity of the approximation numbers and use the fact that
s′1 − s′2 − n(1/p1 − 1/p2) = s1 − s2 − n(1/p1 − 1/p2) = δ, we obtain the inequality
(5) without the restrictions made for s1 and s2 in Proposition 4.1.

For future reference, we state carefully the result we have just proved.

Corollary 4.2 Assume 0 < p1 < 2 < p2 < ∞ and δ < n/ min{p′1, p2}, together
with the general conditions on α, s1, s2, p1, p2, q1 and q2 set forth at the beginning
of Section 4. Let ρ, k, L and the kj be as in the Proposition. Then there is a
positive constant c (independent of k, L, j and the kj) such that (5) holds true.

4.2.2 The case (ii)

In the case (ii) under the further restriction δ < n/ min{p′1, p2} we obtain the
inequality

aB
k ≤ ck−

δ
2n min{p′1,p2},

for some c > 0 independent of k.
In fact, use Corollary 4.2 with kj = [k2−εj+1], j = 0, . . . , L, and L = [ γ

n log2 k+
1], where ε, γ(> 0) are to be fixed later on independently of k. Note that

∑L
j=0 kj ≤

c1k, so that
(aB

c1k)
ρ ≤ c(k−αγρ/n + k−δρ min{p′1,p2}/(2n)),

where ε > 0 was chosen in such a way that α− δ− εδ min{p′1, p2}/(2n) > 0. If we
choose now γ = δ min{p′1, p2}/(2α) we obtain the inequality

aB
c1k ≤ ck−δ min{p′1,p2}/(2n),

and, clearly, the same estimate holds if we substitute aB
k for aB

c1k.

4.2.3 The case (iii)

In the case (iii) under the further restriction δ < n/ min{p′1, p2} we obtain the
inequality

aB
k ≤ ck−

α
2n min{p′1,p2},

for some c > 0 independent of k.
In fact, use Corollary 4.2 with kj = [k1−εγ/n2εj + 1], j = 0, . . . , L, and L =

[ γ
n log2 k + 1], where ε, γ(> 0) are to be fixed later on independently of k. Note

that
∑L

j=0 kj ≤ c1k, so that

(aB
c1k)

ρ ≤ c(k−αγρ/n + k−αγρ/n+δγρ/n−δρ min{p′1,p2}/(2n)),

where ε > 0 was chosen in such a way that δ−α− εδ min{p′1, p2}/(2n) > 0. If we
choose now γ = min{p′1, p2}/2 we obtain the inequality

aB
c1k ≤ ck−α min{p′1,p2}/(2n),

and, clearly, the same estimate holds if we substitute aB
k for aB

c1k.
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4.2.4 The case (iv)

We can now study the case (iv) under the further restriction α < n/ min{p′1, p2}
and the case (iii) when δ = n/min{p′1, p2}. The conclusion is again that

aB
k ≤ ck−

α
2n min{p′1,p2},

for some c > 0 independent of k.
In fact, it is possible to find s0 such that s1 > s0 > s2 and α < δ′ ≡ s1 − s0 −

n(1/p1 − 1/p2) < n/ min{p′1, p2}, so that the embedding Bs1
p1q1

(α) → Bs0
p2q2 falls

under the case studied in 4.2.3. If we then use the estimate obtained there for the
approximation numbers together with their multiplicativity, the composition

Bs1
p1q1

(α) → Bs0
p2q2

→ Bs2
p2q2

leads us to the result announced above.

4.3 Some remarks

We have accomplished one of the goals stated in the introduction to this section,
namely to get sharp estimates for the cases (ii), (iii) and (iv) considered there, with
the exception of some critical situations. One just has to put together what has
been obtained in 4.1 and 4.2 to get the picture (observe that the same estimates
hold for aF

k , as follows from standard arguments — cf. [7, 3.2]).
It is worth remarking that, as we have seen in 4.2.4, the situation δ = n/min{p′1, p2}

in case (iii) is not a critical one and, in view of the results obtained, we can think
of cases (iii) and (iv) as one case only:

0 < p1 < 2 < p2 < ∞ and δ > α and α ≤ n/min{p′1, p2}.

This reformulation has the advantage that it makes it evident that the situation
α = n/min{p′1, p2} is the only critical one here.

We want also to remark that, when comparing the result of this unified case
with case (ii), namely

0 < p1 < 2 < p2 < ∞ and α > δ and δ ≤ n/min{p′1, p2},

the roles of α and δ appear interchanged both in the definitions of the cases and
in the estimates for the approximation numbers. Moreover, we can also unify (ii),
(iii) and (iv) in those same two aspects, as we can state, in view of the results
obtained, that, off the critical line α = δ,

in the case 0 < p1 < 2 < p2 < ∞ and µ ≡ min{α, δ} ≤ n/min{p′1, p2},

if the last inequality is strict,

aB
k ≈ k−

µ
2n min{p′1,p2}
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(the same holds for aF
k , of course).

It is interesting to note that the introduction of the parameter µ ≡ min{α, δ}
allows us also to unify the results in the cases for which Haroske [7] obtained sharp
results, as can be observed in the following summary of the results known after our
study (always assuming δ 6= α and taking into consideration that we are forcing
the entry in the second line below, because in the subcase of it given by µ = α we
only know that the exponent of the power is the correct one: as pointed out at
the beginning of Section 4, we couldn’t get rid of a perturbing factor of the type
of a positive power of log(1 + k) in the upper estimate):

aB
k ≈ aF

k ≈



























k−
µ
n if 0 < p1 ≤ p2 ≤ 2 or 2 ≤ p1 ≤ p2 < ∞

k−
µ
n−min{ 1

p1
− 1

2 , 12−
1

p2
} if 0 < p1 < 2 < p2 < ∞ and µ > n

min{p′1,p2}
k−

µ
2n min{p′1,p2} if 0 < p1 < 2 < p2 < ∞ and µ < n

min{p′1,p2}

k−
µ
n+ 1

p2
− 1

p1 if p2 ≤ p1

.

If one compares this with the known behaviour for the approximation numbers
of compact embeddings between spaces Bs

pq and F s
pq on domains, one can’t fail to

notice that for δ < α the estimates coincide. As a consequence we conclude that
if δ < α then the weight function has no influence in the estimates.

Acknowledgement: We would like to thank the editor and the referees for their
help in the improvement of the presentation and on turning the references more
accurate.
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Basel, 1986.

[11] G. G. Lorentz, M. v. Golitschek, Y. Makovoz, “Constructive Approx-
imation”, Springer, Berlin, 1996.

[12] C. Lubitz, Weylzahlen von Diagonaloperatoren und Sobolev-Einbettungen,
Dissertation, Univ. Bonn, 1982.

[13] V. E. Maiorov, Discretization of the problem of diameters, Uspeki Mat.
Nauk 30 (1975), 179-180.

[14] H.-J. Schmeisser, H. Triebel, “Topics in Fourier analysis and function
spaces”, Wiley, Chichester, 1987.

[15] H. Triebel, “Theory of function spaces,” Birkhäuser, Basel, 1983.
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