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0 Introduction

The main aim of this paper is to prove for the eigenvalues of the Stokes operator

certain results corresponding to some that are well-known for the eigenvalues of

the Dirichlet Laplacian (and of other elliptic operators) — cf. [8].

We take a priori for the underlying set Ω any non-empty bounded open subset

of IRn, no matter how irregular its boundary ∂Ω is. In the case of the Dirichlet

Laplacian, it is known that the fractality of ∂Ω plays an important role in the

asymptotics of the eigenvalues of the operator. Here we want to show that the

same seems to be true for the asymptotics of the eigenvalues of the Stokes operator.

As far as we know, the results that have been obtained for these asymptotics

deal only with the situation when ∂Ω is smooth. Thus we have the determination

by Métivier [11] of the first term for the counting function N(λ) associated with

the problem in the case Ω is Lipschitz, namely

N(λ) ∼ |Ω|n
(2π)n (n− 1)|Bn|nλn/2 as λ →∞, (0.1)

where N(λ) is defined as the number of eigenvalues not exceeding λ, | · |n stands
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for Lebesgue measure in IRn and Bn is used to denote the Euclidean unit ball of

IRn.

Formula (0.1) can also be written in the form

N(λ)− |Ω|n
(2π)n (n− 1)|Bn|nλn/2 = o(λn/2) as λ →∞, (0.2)

which prompts us for the improvement of the estimate of the remainder.

Actually, Babenko [1] showed that, for n = 3 and smooth ∂Ω, the o(λn/2)

in (0.2) can be improved to O(λn/2

ln λ ), and Kozhevnikov [7] even got the estimate

O(λ(n−1)/2) for the remainder if ∂Ω is assumed to be infinitely smooth.

In [2] we conjectured, again in the case when Ω is assumed to be Lipschitz,

that the little o estimate in (0.2) could be replaced by O(λ(n−1/5)/2) (and we even

suggested that O(λ(n−1)/2) might also hold). It is a fact, however, that Levendorskĭı

[9] had already proved that the estimate O(λ(n−δ)/2), for any δ ∈ (0, 1/2), holds in

this case.

As a by-product of the results proved in the present work, we in fact show that,

in the case Ω is Lipschitz, the remainder in (0.2) is a O(λ(n−1)/2 ln λ).

We prove more than this, however.

First of all, we obtain (0.1) for any bounded open non-empty subset Ω of IRn

such that |∂Ω|n = 0 (see (6.5)). Secondly, we show that the remainder in (0.2) is

O(λD/2) whenever ∂Ω has (inner) Minkowski dimension equal to D ∈ (n − 1, n]

and its D-dimensional upper (inner) Minkowski content is finite (cf. Corollary

1.3). Actually, we even show something broader than this, as we also get a similar

result for some more general dimension functions used instead of the standard

power dimension function associated with D (cf. Theorem 1.2).

The approach used is the same as Métivier’s [10] — as was the case in [8] —

for elliptic operators, which is well adapted to the situation where the boundary
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of Ω is extremely irregular.

As will be apparent in section 1, when defining the Stokes operator we take the

point of view of using the space

{u ∈ (H1
0 (Ω))n : div u = 0}

for the V -space that appears in the literature on the Navier-Stokes equations (cf.

[12, 4], for example). It is known (cf. [12, p.23]) that this might not be the same

as considering the closure of {u ∈ (C∞
0 (Ω))n : div u = 0} in (H1

0 (Ω))n for the

V -space, mainly if ∂Ω is not smooth — which is the case we are more interested

in. However, it is not difficult to see that our results are blind to this distinction

— the same kind of arguments could be applied were we to consider the other

setting (in section 4 we don’t even need to distinguish between the two, because

there we deal only with the case when Ω is a n-cube).

Since there are some general procedures that we repeat several times along the

text, we would like to make the following conventions.

Whenever we consider the closure A of a subset in a Hilbert space B, the inner

product to be considered in A is, if nothing is said to the contrary, the one naturally

inherited (i.e., by restriction) from B. Also, whenever we consider product spaces

of Hilbert spaces, the inner product to be considered in the product space is, if

nothing is said to the contrary, the one we can build naturally (cf., e.g., (1.4),

which defines (·, ·)H(Ω)).

As to the notation, (·, ·)A and ‖ · ‖A stand, respectively, for the inner product

and norm in A. Also, the letter c, possibly with subscripts and/or superscripts, is

used for a positive constant, the precise value of which is unimportant for us. And,

though we have made an effort to use different c’s in neighbouring formulae, the

use of the same letter c in two of them does not necessarily mean that the two c’s
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represent the same value.

1 Setting of the problem and main results

Let IRn be the n-dimensional Euclidean space (with n ≥ 2) and let Ω stand for an

arbitrary bounded open non-empty subset of IRn.

We shall use the standard notation L2(Ω) for the space of (equivalence classes

of) complex measurable functions on Ω which are square-integrable with respect

to the Lebesgue σ-field and measure. Moreover, H1(Ω) will stand for the Sobolev

space consisting of the functions of L2(Ω) which have first order weak partial

derivatives also in L2(Ω).

These spaces are endowed with the usual Hilbert structures, by means of the

usual inner products, namely

(u, v)L2(Ω) ≡
∫

Ω
u(x)v(x)dx, (1.1)

(u, v)H1(Ω) ≡ (u, v)L2(Ω) +
n

∑

j=1

∫

Ω

∂u
∂xj

(x)
∂v
∂xj

(x)dx. (1.2)

Also as usual, H1
0 (Ω) will denote the closure of C∞

0 (Ω) (the space of infinitely

continuously differentiable complex functions with compact support on Ω) in H1(Ω).

The Stokes operator arises when we consider the variational form of Stokes’

problem. In order to define it, we need thus to consider the following sesquilinear

form a:

a(u, v) ≡
n

∑

i=1

n
∑

j=1

∫

Ω

∂ui

∂xj
(x)

∂vi

∂xj
(x)dx, (1.3)

for u ≡ (ui)n
i=1, v ≡ (vi)n

i=1 ∈ (H1(Ω))n, where (H1(Ω))n is the product of n copies

of H1(Ω).

We note that (H1(Ω))n, which will be denoted more simply by H(Ω), is a

Hilbert space for the natural inner-product we can define in a product space of
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Hilbert spaces:

(u, v)H(Ω) ≡
n

∑

i=1
(ui, vi)H1(Ω). (1.4)

Analogously, L(Ω) will denote the Hilbert product space (L2(Ω))n with the natural

inner product given by

(u, v)L(Ω) ≡
n

∑

i=1
(ui, vi)L2(Ω).

The form a in H(Ω) is obviously Hermitian, continuous and coercive with

respect to L(Ω) (cf. footnotes 1 and 2 in section 2), as we have, for all u, v ∈ H(Ω),

a(u, v) = a(v, u), (1.5)

|a(u, v)| ≤ ‖u‖H(Ω)‖v‖H(Ω) (1.6)

‖u‖2
H(Ω) − ‖u‖2

L(Ω) = a(u, u). (1.7)

We need still another space:

V0(Ω) ≡ {u ∈ H0(Ω) : div u = 0}, (1.8)

where H0(Ω) ≡ (H1
0 (Ω))n and div u stands for the divergence of u (i.e., div u =

∑n
i=1 ∂ui/∂xi).

Clearly, both H0(Ω) and V0(Ω) are complete subspaces of H(Ω) — and so are

Hilbert spaces with respect to the restriction to those spaces of the inner product

in H(Ω).

In view of what was pointed out above, we have that the form a is also Hermi-

tian, continuous and coercive with respect to L(Ω) in H0(Ω) and V0(Ω) — actually,

(1.5) to (1.7) hold true in these spaces.

Since

‖u‖L(Ω) ≤ ‖u‖H(Ω), for all u ∈ H(Ω), (1.9)
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we can say that all the three spaces V0(Ω), H0(Ω) and H(Ω) are continuously

embedded in L(Ω), so that the following are variational triplets (cf. section 2):

(V0(Ω), L(Ω), a), (H0(Ω), L(Ω), a), (H(Ω), L(Ω), a). (1.10)

(Of course, in each case a is restricted to pairs of functions belonging to the first

element of the triplet, though we always use the same letter a — such a convention

will be in force throughout).

For technical reasons, one temporarily needs one further space, namely L0(Ω),

which is defined as the closure of V0(Ω) in L(Ω). It is endowed with the Hilbert

structure of L(Ω) (becoming itself a Hilbert space), so that

(V0(Ω), L0(Ω), a)

is also a variational triplet. The point is that now we have V0(Ω) densely embedded

in the second space of the triplet, this allowing us to associate with the form a

in V0(Ω) a lower semi-bounded self-adjoint operator A in L0(Ω) by means of the

Lax-Milgram lemma.

It is this A that is called the Stokes operator.

Note now that the embedding V0(Ω) → L0(Ω) is compact, as it can be obtained

by means of the diagram

V0(Ω) → L0(Ω)
↓ ↑

H0(Ω) → L(Ω),

where V0(Ω) → H0(Ω) and H0(Ω) → L(Ω) are the natural embeddings and L(Ω) →

L0(Ω) is the orthogonal projection; since the lower embedding of the diagram is

compact (recall that we are assuming Ω bounded), the proof for our claim of the

compacity of V0(Ω) → L0(Ω) follows immediately.
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This fact implies that the spectrum of the Stokes operator is formed of eigen-

values alone, and that these can be written in a sequence (λk)k∈IN obeying the

following:

λ1 ≤ λ2 ≤ . . . → +∞.

We suppose (as is usual) that the λk’s in this sequence appear repeated according

to multiplicity, so that a corresponding sequence of orthonormal eigenfunctions

constitutes a basis for the space L0(Ω).

The main objective of this paper is to study the asymptotic behaviour of such

a sequence (λk)k∈IN when k goes to infinity. Also as usual, we adopt the point of

view of the counting function

N(λ) = #{k ∈ IN : λk ≤ λ} (1.11)

to accomplish that goal.

In order to state our main result, we need to say what is meant by functions

of class H.

Definition 1.1 A function h : [c, +∞) → IR, with c > 0, is said to be of class H

if it is strictly positive, differentiable and if

lim
x→∞

xh′(x)
h(x)

= 0.

In what follows, the following notations will be consistently used: | · |n for

Lebesgue measure in IRn; Bn for the Euclidean unit ball in IRn; for ε > 0,

(∂Ω)ε ≡ {x ∈ Ω : dist(x, ∂Ω) < ε} (1.12)

And now for our main result:
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Theorem 1.2 Let Ω be a bounded open non-empty subset of IRn and d > n − 1.

Assume there exists a function f(x) = xd/2h(x), for some h ∈ H, such that

lim sup
ε→0+

|(∂Ω)ε|n
εnf(ε−2)

< +∞.

Then

N(λ) =
|Ω|n
(2π)n (n− 1)|Bn|nλn/2 + O(f(λ)) as λ →∞. (1.13)

If, on the other hand, d = n− 1 and h ≡ 1, and if we make the same assumption

as before for the corresponding lim sup, the same result holds with the last term

replaced by O(λ(n−1)/2 ln λ).

Remark. The second part of the theorem applies, in particular, to the case

when Ω is Lipschitz.

Corollary 1.3 Let Ω be a bounded open non-empty subset of IRn such that ∂Ω

has (inner) Minkowski dimension D ∈ (n− 1, n]. Assume that

lim sup
ε→0+

|(∂Ω)ε|n
εn−D < +∞.

Then

N(λ) =
|Ω|n
(2π)n (n− 1)|Bn|nλn/2 + O(λD/2) as λ →∞. (1.14)

Remark. We note once and for all that this corollary is an immediate conse-

quence of the theorem: one just has to read the latter with d and h(x) replaced by

D and 1 respectively, for the assertion that ∂Ω has (inner) Minkowski dimension

D just means that

D = inf{d ≥ 0 : lim sup
ε→0+

|(∂Ω)ε|n
εn−d < +∞}.
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(and note that such a D is known to belong necessarily to [n − 1, n] — cf. [8,

p.475]).

From this and the theorem it is also clear that if the boundary of the bounded

open non-empty subset Ω of IRn has Minkowski dimension D then, with no further

assumptions, (1.14) holds with d instead of D for all d > D.

2 Preliminaries

It is not necessary for us to work with the above space L0(Ω): we have (following

[10]) alternative means to characterize N(λ).

We recall that a variational triplet is a triplet (V, H, a) where V and H are

complex Hilbert spaces such that V is continuously embedded in H, and where a

is a Hermitian, continuous and coercive1 (with respect to H) sesquilinear form in

V . One then defines, for all λ ∈ IR,

N(λ, V, H, a) ≡ inf codimV (E), (2.1)

where the infimum is taken over all closed subspaces E of V such that the form

a − λ(·, ·)H is strongly coercive2 in E (codimV (E) denotes the (finite or infinite)

co-dimension of E in V ).

The relation of this concept with N(λ) comes from the following [10, p.143]

Proposition 2.1 Let (V,H, a) be a variational triplet with V densely and com-

pactly embedded in H. Then, for all λ ∈ IR,

N(λ, V, H, a) = #{k ∈ IN : λk ≤ λ},
1Coercivity of a in V with respect to H means that there is a λ0 ∈ IR such that a + λ0(·, ·)H

is strongly coercive in V .
2A form b in V is said to be strongly coercive in a subspace E of V if there is a m > 0 such

that the relation m‖u‖2V ≤ b(u, u) holds for all u ∈ E.
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where (λk)k∈IN is the sequence of eigenvalues of the operator in H associated with

a by means of the Lax-Milgram lemma.

Using the notations of the preceding section, if we apply this to the case when

V = V0(Ω), H = L0(Ω) and a is the form given by (1.3), we get

N(λ) = N(λ, V0(Ω), L0(Ω), a), λ ∈ IR, (2.2)

which gives a characterization of the counting function for the Stokes operator

(originally defined by (1.11)).

Remark. We still call N(·, V,H, a) a counting function, even if the hypotheses

of the last proposition are not verified.

From the definition of N(λ, V, H, a) it follows that

N(λ) = N(λ, V0(Ω), L(Ω), a), λ ∈ IR. (2.3)

This is what we had in mind when stating that the space L0(Ω) was not needed

in what follows — for the purpose of studying the asymptotics of the eigenvalues

of the Stokes operator, we can work with the variational triplet (V0(Ω), L(Ω), a)

instead of (V0(Ω), L0(Ω), a).

2.1 A special variational triplet

Let Ω be an open non-empty subset of IRn and V a Hilbert space continuously

embedded in L(Ω). Let ω be an open non-empty subset of Ω and define the space

V = {v|ω : v ∈ V }.

It is known (see, for example, [10, p.146]) that V is a Hilbert space when

endowed with the inner product corresponding to the norm defined by

‖u‖V ≡ inf
v∈V

v|ω=u

‖v‖V , ∀u ∈ V . (2.4)
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Consider the sesquilinear form defined by

(u, u′)V ≡ (v − Pv, v′ − Pv′)V , ∀u, u′ ∈ V,

where v, v′ are any elements of V satisfying the identities v|ω = u, v′|ω = u′ and

P is the orthogonal projection onto the subspace {v ∈ V : v|ω = 0}.

It is a nice exercise to check that this form is in fact an inner product and that

the norm corresponding to it is precisely given by (2.4). We can also say that

(V, L(ω), (·, ·)V)

is a variational triplet.

3 The method

Let Ω be as in section 1: an arbitrary bounded open non-empty subset of IRn

(the notation we are going to use in this section is indeed consistent with the one

introduced in section 1).

In view of our discussion in the preceding section, we are trying to prove an

asymptotic formula like (1.13) for

N(λ, V0(Ω), L(Ω), a)

— as this is the same as N(λ) of (1.11).

For each r ∈ IN0 consider the tessellation {Jr
ν : ν ∈ ZZn} of IRn by the open

n-dimensional cubes Jr
ν ≡

∏n
i=1]2

−rνi, 2−r(νi + 1)[. We define, by induction on r,

the following sets Ar, Ωr and ωr (cf. also Figure 1):

r = 0 : A0 ≡ {ν ∈ ZZn : J0
ν ⊂ Ω};

Ω0 ≡ ∪ν∈A0J
0
ν ; ω0 ≡ Ω \ Ω0;
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Figure 1: Example of Ω and Ωr in the case n = 2.

r ∈ IN : Ar ≡ {ν ∈ ZZn : Jr
ν ⊂ Ω ∧ Jr

ν ∩ Ωr−1 = ∅};

Ωr ≡ Ωr−1 ∪ (∪ν∈ArJ
r
ν ) ; ωr ≡ Ω \ Ωr

In what follows we consider r ≥ r0, where r0 is the smallest number r ∈ IN0

such that Ωr 6= ∅.

With an eye on formula (1.13), which we want ultimately to prove, we can

write, for all λ ∈ IR and all integers r ≥ r0,

N(λ, V0(Ω), L(Ω), a)− |Ω|n
(2π)n (n− 1)|Bn|nλn/2

≥
∑

ρ,ν
N(λ, V0(Jρ

ν ), L(Jρ
ν ), aρ

ν)−
∑

ρ,ν

|Jρ
ν |n

(2π)n (n− 1)|Bn|nλn/2

− |ωr|n
(2π)n (n− 1)|Bn|nλn/2 (3.1)

≥
∑

ρ,ν

(

N(λ, V0(Jρ
ν ), L(Jρ

ν ), aρ
ν)−

|Jρ
ν |n

(2π)n (n− 1)|Bn|nλn/2

)

−n− 1
(2π)n |B

n|n|(∂Ω)(
√

n+1)2−r |nλn/2,

where aρ
ν stands for the form in V0(Jρ

ν ) given by expression (1.3) but with Ω replaced

by Jρ
ν and the summation

∑

ρ,ν runs over all ρ ∈ [r0, r] and ν ∈ Aρ. We remark
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that the last inequality in (3.1) follows from the — easy to prove — inclusion

ωr ⊂ (∂Ω)(
√

n+1)2−r (3.2)

— recall the definition of (∂Ω)ε in (1.12); as to the first inequality, it follows as

in the case of the Dirichlet Laplacian, using now the abstract setting developed in

[10, Ch. II], in particular [10, Lem. 2.1, Lem. 2.5, Prop. 2.8].

The same abstract setting developed in [10, Ch. II], in particular [10, Prop.

2.7, Lem. 2.1, Prop. 2.8], allows us to get an inequality opposite to that of (3.1),

namely, for all λ ∈ IR and all integers r ≥ r0,

N(λ, V0(Ω), L(Ω), a)− |Ω|n
(2π)n (n− 1)|Bn|nλn/2

≤
∑

ρ,ν

(

N(λ, V0(Jρ
ν ), L(Jρ

ν ), aρ
ν)−

|Jρ
ν |n

(2π)n (n− 1)|Bn|nλn/2

)

(3.3)

+N(λ, Zr
λ(Ω), L(Ω), a),

where

Zr
λ(Ω) ≡ {u ∈ V0(Ω) : ∀v ∈ V0(Ωr), a(u, ṽ) = λ(u, ṽ)L(Ω)}, (3.4)

with ṽ denoting the extension of v by 0 outside Ωr.

This is the exact counterpart of what is done to get a corresponding inequality

in the case of the Dirichlet Laplacian (cf. [10] or [8]).

From (3.1) and (3.3) we see the need to control

N(λ, V0(Jρ
ν ), L(Jρ

ν ), aρ
ν)

for large values of λ (which we shall be doing in section 4) and the need to estimate

N(λ, Zr
λ(Ω), L(Ω), a)

from above when λ goes to infinity.
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Arguing as in [10, Lem. 5.8], one obtains

N(λ, Zr
λ(Ω), L(Ω), a) ≤ N(2(λ + 1),V0(ωr), L(ωr), (·, ·)V0(ωr)) (3.5)

+
∑

ρ,ν
N(2(λ + 1), Zλ(Jρ

ν ), L(Jρ
ν ), (·, ·)H(Jρ

ν )),

where V0(ωr) — the set of restrictions to ωr of the elements of V0(Ω) — is made a

Hilbert space by means of the procedure described in subsection 2.1 for the space

V and, for each integer ρ ≥ r0 and each ν ∈ Aρ, the space Zλ(Jρ
ν ) is defined by

Zλ(Jρ
ν ) ≡ {u ∈ H(Jρ

ν ) : div u = 0 ∧ ∀v ∈ V0(Jρ
ν ), aρ

ν(u, v) = λ(u, v)L(Jρ
ν )}. (3.6)

The question of estimating N(λ, Zr
λ(Ω), L(Ω), a) from above is then reduced to

estimating from above the counting functions

N(2(λ + 1), Zλ(Jρ
ν ), L(Jρ

ν ), (·, ·)H(Jρ
ν ))

and

N(2(λ + 1),V0(ωr), L(ωr), (·, ·)V0(ωr))

This will be done in section 5 for the latter, by means of what is called, for

obvious reasons, an estimate near the boundary (of Ω). As to the other two types

of counting function, the underlying sets of which are the n-cubes Jρ
ν , they will be

dealt with in section 4.

4 Estimates for cubes

4.1 The problem when Ω is a cube

We will first reduce the problem of controlling

N(λ, V0(Jρ
ν ), L(Jρ

ν ), aρ
ν),
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both from below and from above, to similar problems involving periodic functions.

We use the same method as was applied in section 3 in order to reduce part of our

original problem to the problem now under consideration.

We need first to introduce some notations.

The letter J will stand for an arbitrary n-cube in IRn, and δ for its side length.

We define, moreover, the spaces

C∞
# (J) ≡ {f |J : f ∈ C∞(IRn) and is periodic of period δ in each coordinate},

H1
#(J) ≡ “closure of C∞

# (J) in H1(J)”

H#(J) ≡ (H1
#(J))n;

V#(J) ≡ {u ∈ H#(J) : div u = 0}.

It is clear that V#(J) is a Hilbert space for the inner product inherited from

that in H#(J) (which, in turn, is inherited from H(J)). Moreover

(V#(J), L(J), aJ)

is a variational triplet, where aJ is given by formula (1.3) but with Ω replaced by

J .

Since V0(J) is a closed subspace of V#(J), we can apply [10, Lem. 2.5] and

write, for all λ ∈ IR,

N(λ, V0(J), L(J), aJ)− |J |n
(2π)n (n− 1)|Bn|nλn/2 (4.1)

≤ N(λ, V#(J), L(J), aJ)− |J |n
(2π)n (n− 1)|Bn|nλn/2.

If we use, on the other hand, [10, Prop. 2.7], we get, for all λ ∈ IR,

N(λ, V0(J), L(J), aJ)− |J |n
(2π)n (n− 1)|Bn|nλn/2
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≥ N(λ, V#(J), L(J), aJ)− |J |n
(2π)n (n− 1)|Bn|nλn/2

−N(λ, Z#
λ (J), L(J), aJ), (4.2)

where

Z#
λ (J) ≡ {u ∈ V#(J) : ∀v ∈ V0(J), aJ(u, v) = λ(u, v)L(J)}. (4.3)

We see from (4.1) and (4.2) that we have reduced the problem mentioned in

the starting of this subsection to the controlling of

N(λ, V#(J), L(J), aJ),

both from below and from above, and to obtaining upper estimates for

N(λ, Z#
λ (J), L(J), aJ).

Observe that we can easily relate this latter counting function with one we

already met before, namely one mentioned at the end of section 3 and which we

also need to estimate. In fact, recalling (3.6), we can write

Z#
λ (J) = Zλ(J) ∩H#(J),

so that Z#
λ (J) is a closed subspace of Zλ(J), and [10, Lem. 2.5] applies to yield,

for all λ ∈ IR,

N(λ, Z#
λ (J), L(J), aJ) ≤ N(λ, Zλ(J), L(J), aJ);

since (·, ·)H(J) = (·, ·)L(J) + aJ(·, ·) (cf. (1.7) for a particular case) we can finally

write, for all λ ∈ IR,

N(λ, Z#
λ (J), L(J), aJ) ≤ N(λ + 1, Zλ(J), L(J), (·, ·)H(J)). (4.4)
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Our problem thus reduces to controlling, both from below and from above,

N(λ, V#(J), L(J), aJ)

for big values of λ and to obtain suitable upper estimates for

N(µ, Zλ(J), L(J), (·, ·)H(J)),

at least for µ = λ+1 and µ = 2(λ+1). This is the same approach as the one used

for elliptic problems in [10].

4.2 Scaling and translation properties

Instead of dealing with an arbitrary n-cube J , it is a standard argument to restrict

attention to one particular n-cube and afterwards invoke a scaling and translation

argument to get the corresponding results in the general case.

We summarize the relevant results in our context.

Denoting by d ∈ IRn the centre of the n-cube J with side length δ > 0, and by

Q the n-cube ]− π, π[n, consider the application

T : L(J) → L(Q)

given by (Tu)(x) =
(

δ
2π

)n/2
u( δ

2πx+d). It is easy to see that T is unitary and that

H(J) and H(Q) are linearly homeomorphic under this map. Also,

T (V#(J)) = V#(Q),

T (Zλ(J)) = Z(δ/(2π))2λ(Q), ∀λ ∈ IR , and

aQ(u, v) =
(

δ
2π

)2
aJ(T−1u, T−1v), ∀u, v ∈ H(Q),

so that

N(λ, V#(J), L(J), aJ) = N((δ/(2π))2λ, V#(Q), L(Q), aQ), (4.5)
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for all λ ∈ IR, and

N(µ, Zλ(J), L(J), (·, ·)H(J)) (4.6)

= N((δ/(2π))2(µ− 1) + 1, Z(δ/(2π))2λ(Q), L(Q), (·, ·)H(Q)),

for all µ ∈ IR.

4.3 Controlling N(λ, V#(J), L(J), aJ)

This can be recovered from the result in [2, p.113], which deals with a similar

problem in a much more general context, but we shall briefly sketch a simpler

approach for our present concrete situation (besides, the considerations we are

going to make here in this connection will be useful later on).

In accordance with the preceding subsection, we consider first the case J =

Q =]− π, π[n.

Note first that the counting function now under discussion is the same as

N(λ, V#(Q), L#(Q), aQ),

where L#(Q) stands for the closure of V#(Q) in L(Q). Then, as in section 1,

we can associate with the form aQ in V#(Q) a lower semi-bounded self-adjoint

operator AQ in L#(Q) by means of the Lax-Milgram lemma. The compactness

of the natural embedding H1(Q) → L2(Q) implies, moreover, that our counting

function is nothing more than

#{k ∈ IN : λk ≤ λ}

where (λk)k∈IN is now the sequence of eigenvalues of AQ (cf. what we have done in

section 1 with respect to the form a and the operator A).
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In order to get an impression of the structure of this sequence of eigenvalues,

recall (see, e.g., [2, p.32] or [5, pp.175-176]) that the domain of AQ is

D(AQ) ≡ {u ∈ V#(Q) : aQ(u,w) = (v, w)L(Q)

for some v ∈ L#(Q) and all w ∈ V#(Q)};

and that the v in this definition is precisely the image of u under AQ.

We proceed by using the Fourier series representation for the functions involved.

We know that

{ϕk}k∈ZZn ≡ {(2π)−n/2 exp(ik.x)}k∈ZZn

is a complete orthonormal system in L2(Q), where x ∈ IRn stands for the variable

of ϕk and k.x denotes the inner product of k and x in IRn. From this we get the

representation

u =
∑

k∈ZZn

ϕk û(k)

in L(Q) for any u ≡ (uj)n
j=1 in this space, where û(k) = (ûj(k))n

j=1, ûj(k) =

(uj, ϕk)L2(Q), and ϕk û(k) ≡ (ûj(k)ϕk)n
j=1; and if u ∈ H#(Q) then the above rep-

resentation is even valid in the topology of H(Q).

It is not difficult to see that

V#(Q) = {u ∈ H#(Q) : ∀k ∈ ZZn, û(k).k = 0}

and

L#(Q) ⊂ {u ∈ L(Q) : ∀k ∈ ZZn, û(k).k = 0} ≡ L⊥(Q),

where û(k).k denotes the inner product of û(k) and k in Cn. Also, denoting by

{ej}n
j=1 the canonical basis of Cn and by {ek

j}n−1
j=1 an orthonormal basis of < k >⊥

in Cn, k ∈ ZZn \ {0}, the system

{ϕ0ej}n
j=1 ∪ {ϕkek

j} k∈ZZn\{0}
j∈{1,...,n−1}

(4.7)
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is complete orthonormal in the closed subspace L⊥(Q) of L(Q) — in particular,

we have L⊥(Q) = L#(Q); on the other hand, the system

{ϕkej} k∈ZZn

j∈{1,...,n}
(4.8)

is complete orthonormal in L(Q).

Now it is an easy task to show that, with u any of the elements of the system

(4.7) and w any of the elements of the system (4.8), the following holds true:

aQ(u,w) = (|k|2u,w)L(Q), (4.9)

where k ∈ ZZn denotes the index of ϕ in u. And from this it is an easy matter to

check that (4.9) indeed holds true for all w ∈ H#(Q).

It is clear that this is more than enough to prove that, given any u in the

system (4.7),

u ∈ D(AQ) and AQu = |k|2u, (4.10)

where k ∈ ZZn has the same meaning as in (4.9) above.

The self-adjointness of AQ and the completeness of the system (4.7) in L#(Q)

implies now that the sequence of values |k|2 (disposed in non-decreasing order)

corresponding to each and every eigenvector in (4.7) is precisely the sequence

(λk)k∈IN of the eigenvalues of AQ.

As a result (cf. Proposition 2.1 for the relation between the counting function

under discussion and the eigenvalues just mentioned)

N(λ, V#(Q), L(Q), aQ) = n + (n− 1).#{k ∈ ZZn \ {0} : |k|2 ≤ λ} (4.11)

for λ ≥ 0 (it equals 0 otherwise). From this formula, some volume estimates can

be used (as in the case of the Laplacian) in order to get the desired result (cf. also

20



[4, pp.43-44]). We have
∣

∣

∣

∣

∣

N(λ, V#(Q), L(Q), aQ)− |Q|n
(2π)n (n− 1)|Bn|nλn/2

∣

∣

∣

∣

∣

≤ cnλ(n−1)/2

for all λ ≥ 1, where cn depends only on n.

We can get rid of this restriction on λ (which can be a bit annoying when

scaling) in the following sense: since our counting function is monotone increasing

in λ, then we can write

∣

∣

∣N(λ, V#(Q), L(Q), aQ)− (n− 1)|Bn|nλn/2
∣

∣

∣ ≤ cn(1 + λ(n−1)/2)

for all λ ≥ 0, possibly after redefining cn (still depending only on n).

From this we finally get for any J , using the scaling and translation argument

in (4.5),
∣

∣

∣

∣

∣

N(λ, V#(J), L(J), aJ)− |J |n
(2π)n (n− 1)|Bn|nλn/2

∣

∣

∣

∣

∣

(4.12)

≤ cn(1 + (δ/(2π))n−1λ(n−1)/2)

for all λ ≥ 0.

4.4 Estimating N(µ, Zλ(J), L(J), (·, ·)H(J))

We try to follow closely the proof of [10, Prop. 4.1.i].

Again, according to subsection 4.2, we consider first the case J = Q =]−π, π[n.

For fixed µ, λ ≥ 0, the idea is to find, in accordance with the definition (2.1)

of counting function, a closed subspace E of Zλ(Q) such that

∃ε > 0 : ∀u ∈ E, (u, u)H(Q) − µ(u, u)L(Q) ≥ ε‖u‖2
L(Q) (4.13)

(cf. also [10, Lem. 2.1]) and, moreover, with codimZλ(Q)(E) bounded above by

something of the order of µ(n−1)/2 + λ(n−1)/2.
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Using ϕkej, for k ∈ ZZn and j ∈ {1, . . . , n}, in the same sense as in (4.8), we

will first prove that the closed subspace

Z ≡ {u ∈ Zλ(Q) : (u, ϕkej)L(Q) = 0 for all k ∈ ZZn

such that |k|2 ≤ ν and all j ∈ {1, . . . , n} },

of Zλ(Q) has co-dimension of the required order, provided ν(≥ 0) is chosen in a

suitable way.

In what follows we shall write ϕkek
j , for k ∈ ZZn \ {0} and j ∈ {1, . . . , n − 1},

in the same sense as in (4.7), and also ϕ0e0
j , for j ∈ {1, . . . , n}, as meaning the

same as ϕ0ej in (4.7). We also remark that, to take advantage of the definition of

Zλ(Q), one must deal with functions the divergence of which is zero. This is why

we are going to consider now the system (4.7) and not the system (4.8). This is a

point that doesn’t show up in the case of elliptic problems. We have a price to pay

for it, however, as (4.7) does not span L(Q): later on one must study also what

happens with the system {ϕkk}k∈ZZn in order to recover the picture in the whole

space L(Q).

Note that, given u ∈ Zλ(Q) and k ∈ ZZn,

(|k|2 − λ)(u, ϕkek
j )L(Q)

= (u, |k|2ϕkek
j )L(Q) − (λu, ϕkek

j )L(Q) (4.14)

=
(

(u, |k|2ϕkek
j )L(Q) − aQ(u, ϕkek

j )
)

+
(

aQ(u, ϕkek
j )− (λu, ϕkek

j )L(Q)

)

.

This way of writing things will enable us, by means of Green’s type formulae,

to reduce our estimates to estimates in trace spaces, where the dimension of the

underlying subsets of IRn being n − 1 helps to get the desired powers of µ and λ

for the order of the co-dimension of Z.
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Before stating which Green’s type formulae these are, we start to consider the

two expressions within the larger brackets in (4.14) in a somewhat more general

context:

• instead of the first one, we consider

(u,Av)L(Q) − aQ(u, v) (4.15)

for all u ∈ H(Q) and v ∈ (H2(Q))n, where H2(Q) stands for the Sobolev

space of the functions of L2(Q) which have weak partial derivatives up to

order two also in L2(Q), and Av = A(vj)n
j=1 ≡ (−∆vj)n

j=1;

• instead of the second one, we consider

aQ(u, v)− (λu, v)L(Q) (4.16)

for all u ∈ Zλ(Q) and v ∈ V (Q) ≡ {u ∈ H(Q) : div u = 0} .

We deal first with (4.15).

Since the essential argument is already given in [10, pp.166-167], we may use

Lemma 4.4 of that paper, namely that

“∀u ∈ H1(Q), ∀v ∈ H2(Q), (4.17)
n

∑

j=1

(

∂v
∂xj

,
∂u
∂xj

)

L2(Q)

− (−∆v, u)L2(Q) = (τ̃ v, γ̃u)∏2n
`=1 L2(F`)

”.

Here, F` is the face of Q with equation x` = π if ` ∈ {1, . . . , n} and is the face of

Q with equation x`−n = −π if ` ∈ {n + 1, . . . , 2n}; also,

γ̃ : H1(Q) →
2n
∏

`=1

H1/2(F`) (4.18)
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is the trace type operator given by γ̃u = (u|F`)
2n
`=1, where H1/2(F`) is a fractional

Sobolev space, and

τ̃ : H2(Q) →
2n
∏

`=1

H1/2(F`)

is the composition of γ̃ with derivation operators, as we define

τ̃ v = (D`v|F`)
2n
`=1 ,

with D`v = + ∂v
∂x`

if ` ∈ {1, . . . , n} and D`v = − ∂v
∂x`−n

if ` ∈ {n + 1, . . . , 2n}.

To simplify notation, we shall write L2(∂Q) and H1/2(∂Q) instead of
∏2n

`=1 L2(F`)

and
∏2n

`=1 H1/2(F`), respectively. We shall also write, in line with the conventions

set up in the beginning of this paper, L(∂Q) instead of (L2(∂Q))n.

If we now consider u = (ui)n
i=1 ∈ H(Q) and v = (vi)n

i=1 ∈ (H2(Q))n and apply

(4.17) above for each ui and vi, we get, on summing,

aQ(v, u)− (Av, u)L(Q) =
n

∑

i=1
(τ̃ vi, γ̃ui)L2(∂Q),

or

aQ(v, u)− (Av, u)L(Q) = (T̃ v, Γ̃u)L(∂Q), (4.19)

∀u ≡ (ui)n
i=1 ∈ H(Q), v ≡ (vi)n

i=1 ∈ (H2(Q))n, if we define

T̃ : (H2(Q))n →
(

H1/2(∂Q)
)n

by T̃ v = (τ̃ vi)n
i=1 and

Γ̃ : H(Q) →
(

H1/2(∂Q)
)n

by Γ̃u = (γ̃ui)n
i=1.

T̃ and Γ̃ are, clearly, continuous linear operators.

We deal now with (4.16).
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Consider the quotient space T (Q) ≡ V (Q)/V0(Q), let Γ be the natural pro-

jection of V (Q) onto T (Q), and let R be a lifting of Γ, i.e., a continuous linear

operator from T (Q) into V (Q) such that Γ ◦ R = idT (Q) (it is not difficult to see

that such a R exists, taking account of the Hilbert structure of V (Q)).

Note that the kernel of Γ̃|V (Q) is V0(Q) (cf. [10, p.167]) and that this implies

the injectivity of the operator Γ̃ ◦R, allowing us to identify T (Q) with a subspace

of
(

H1/2(∂Q)
)n

.

We have the following

Lemma 4.1 There exists a continuous linear operator

Tλ : Zλ(Q) → T ′(Q),

where the target space is the anti-dual of T (Q), such that, for all u ∈ Zλ(Q),

v ∈ V (Q),

aQ(u, v)− (λu, v)L(Q) = 〈Tλu, Γv〉T ′(Q)×T (Q) (4.20)

Proof. Given u ∈ Zλ(Q), define Tλu in the following way: for all ϕ ∈ T (Q),

〈Tλu, ϕ〉T ′(Q)×T (Q) = aQ(u,Rϕ)− (λu,Rϕ)L(Q).

It is easy to see that this defines an operator Tλ with the desired properties.

We return now to (4.14). Using (4.19), (4.20), taking into account thatA(ϕkek
j )

= |k|2ϕkek
j , we can write

(|k|2 − λ)(u, ϕkek
j )L(Q)

=
(

(u,A(ϕkek
j ))L(Q) − aQ(u, ϕkek

j )
)

+
(

aQ(u, ϕkek
j )− (λu, ϕkek

j )L(Q)

)

(4.21)

= −(T̃ (ϕkek
j ), Γ̃u)L(∂Q) + 〈Tλu, Γ(ϕkek

j )〉T ′(Q)×T (Q)

= 〈Tλu, Γ(ϕkek
j )〉T ′(Q)×T (Q) − (Γ̃u, T̃ (ϕkek

j ))L(∂Q),

25



for all u ∈ Zλ(Q).

Turning now to the consideration of the system {ϕkk}k∈ZZn , note first that we

have

(u, ϕkk)L(Q) = û(k).k, ∀u ∈ L(Q), ∀k ∈ ZZn. (4.22)

Note also that, for u ≡ (uj)n
j=1 ∈ H(Q),

div u =
n

∑

j=1

∂uj

∂xj
=

n
∑

j=1

∑

k∈ZZn

̂∂uj

∂xj
(k)ϕk

=
∑

k∈ZZn





n
∑

j=1

(

∂uj

∂xj
, ϕk

)

L2(Q)



 ϕk (4.23)

=
∑

k∈ZZn

(

iû(k).k +
2n
∑

`=1

(ε`u`|F` , ϕk|F`)L2(F`)

)

ϕk

=
∑

k∈ZZn

(

iû(k).k + (σu, γ̃ϕk)L2(∂Q)

)

ϕk

in L2(Q), where

ε` =
{

1 if ` ∈ {1, . . . , n}
−1 if ` ∈ {n + 1, . . . , 2n} , (4.24)

γ̃ is the mapping in (4.18) and

σ : H(Q) → H1/2(∂Q)

is defined as σu = (ε`u`|F`)
2n
`=1 (it is, obviously, a continuous linear operator). If

u ∈ V (Q) we have div u = 0 and we can then say, in virtue of (4.23), that

û(k).k = i(σu, γ̃ϕk)L2(∂Q), ∀k ∈ ZZn,

or, taking (4.22) into account, that

(u, ϕkk)L(Q) = i(σu, γ̃ϕk)L2(∂Q), ∀k ∈ ZZn. (4.25)

Next, define
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W the space spanned by the γ̃ϕk for |k|2 ≤ ν;

X the space spanned by the Γ(ϕkek
j ) for |k|2 ≤ ν;

Y the space spanned by the T̃ (ϕkek
j ) for |k|2 ≤ ν;

G the space generated by the ϕkek
j for |k|2 = λ.

It follows immediately from (4.21), (4.25), the definition of Z and the fact that,

for each k ∈ ZZn \ {0}, the vectors ek
j constitute, together with k, a basis of Cn,

that the space

Z0 ≡ {u ∈ Zλ(Q) : u ∈ G⊥ in L(Q), Γ̃u ∈ Y ⊥ in L(∂Q),

Tλu ∈ X◦ in T ′(Q), σu ∈ W⊥ in L2(∂Q)}

is a closed subspace of Z. This implies that

codimZλ(Q) Z ≤ codimZλ(Q) Z0 ≤ dim G + dim Y + dim X + dim W, (4.26)

so that we are going to prove our initial claim on the first co-dimension by means

of a suitable control of the others.

This control reduces, however, to a counting problem similar to one Métivier

faced in the elliptic setting — cf. [10, pp. 169-170]. We briefly sketch how it can

be done.

In the case of dimG we clearly have

dim G ≤ cn(1 + λ(n−1)/2), (4.27)

where cn is a positive number depending only upon n.

In the case of dimX, define X̃ to be the space spanned by Γ̃(ϕkek
j ) for |k|2

≤ ν, and note that dim X̃ = dim X: in fact, the maximum number of linearly
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independent elements is the same in both spaces, as we can easily see by using the

observation ker Γ̃|V (Q) = V0(Q) (made just before Lemma 4.1).

We now estimate dim X̃. Introduce the notations

ek
j ≡ (ek

jm)n
m=1,

̂k` ≡ (k1, . . . , k`−1, k`+1, . . . , kn) if ` ∈ {1, . . . , n},

̂k` ≡ (k1, . . . , k`−n−1, k`−n+1, . . . , kn) if ` ∈ {n + 1, . . . , 2n},

and analogously for x̂`,

k` ≡ k`−n if ` ∈ {n + 1, . . . , 2n}.

Note that we can write, using these notations and the one established in (4.24),

Γ̃(ϕkek
j ) = (2π)−n/2

2n
∑

`=1

n
∑

m=1
ek

jm exp(ik`ε`π)
(

(exp(îk`.x̂`)δ`r)2n
r=1δms

)n

s=1
,

so that each Γ̃(ϕkek
j ) in X̃ is a linear combination of elements of

(

H1/2(∂Q)
)n

of

the form
(

(exp(îk`.x̂`)δ`r)2n
r=1δms

)n

s=1
, (4.28)

where m ∈ {1, . . . , n}, ` ∈ {1, . . . , 2n} and ̂k` must satisfy the relation |̂k`|2 ≤ ν.

We can then estimate dim X̃ by counting the number of such elements. Clearly,

the number of different possibilities for the ̂k` cannot exceed (2ν1/2 +1)n−1 and the

number of different possibilities for ((δ`r)2n
r=1δms)n

s=1 is 2n2. Therefore, the number

of elements of the form (4.28) does not exceed

cn(1 + ν(n−1)/2), (4.29)

where cn depends only on n.
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In the case of dimY , we proceed in a way similar to the estimation of dim X̃.

Using the same notations, we can write

T̃ (ϕkek
j ) = (2π)−n/2

2n
∑

`=1

n
∑

m=1
−ek

jm exp(ik`ε`π)ε`ik`

(

(exp(îk`.x̂`)δ`r)2n
r=1δms

)n

s=1
,

so that we get the same upper estimate

cn(1 + ν(n−1)/2) (4.30)

for dim Y .

Finally, in the case of dimW we can also benefit from what was done in esti-

mating dim X̃. Using the same notations, we can write

γ̃ϕk = (2π)−n/2
2n
∑

`=1

exp(ik`ε`π)
(

exp(îk`.x̂`)δ`r

)2n

r=1
,

so that W can be generated by {exp(îk`.x̂`)(δ`r)2n
r=1}`=1,...,2n

|̂k`|≤ν

. We can then say that

cn(1 + ν(n−1)/2) (4.31)

is an upper estimate for dimW , with cn depending only on n.

Putting (4.27), (4.29), (4.30) and (4.31) into (4.26) we get

codimZλ(Q) Z ≤ cn(1 + λ(n−1)/2 + ν(n−1)/2) (4.32)

(cn has been redefined, of course, but still depends only on n).

We shall delay the choice of ν till later on.

We recall that the objective of this subsection is to find a closed subspace E

of Zλ(Q) satisfying (4.13) and with a suitable bound on codimZλ(Q)(E). We are

going to show that such an E can be taken as

E ≡ {u ∈ Z : Γ̃u ∈ E} (4.33)
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where E is a closed subspace of
(

H1/2(∂Q)
)n

such that, for all u ∈ E and all

v ∈
(

H1/2(∂Q)
)n

,

|(u, v)L(∂Q)| ≤ ν−1/2‖u‖(H1/2(∂Q))n‖v‖(H1/2(∂Q))n (4.34)

and codim E ≤ Kν(n−1)/2, where K(> 0) does not depend on the ν(≥ 0) consid-

ered.

We must, of course, first of all ensure that there exists such an E . The essential

step is already done in [10, p.168], namely that there is a constant k(> 0) such

that for all ν ≥ 0 there exists a closed subspace H of H1/2(∂Q) of co-dimension

bounded above by

kν(n−1)/2

and such that, for all u ∈ H and all v ∈ H1/2(∂Q),

|(u, v)L2(∂Q)| ≤ ν−1/2‖u‖H1/2(∂Q)‖v‖H1/2(∂Q)

(we would like to remark that the proof of this result relies on the estimates of

[6] for the Kolmogorov diameters of embeddings of fractional Sobolev spaces into

Lp-spaces). It is straightforward to show that if we define E ≡ Hn we get a space

E with the properties required above (in particular, K can be taken equal to nk).

Returning then to the space E defined in (4.33), it is clear that E is a closed

subspace of Zλ(Q), the co-dimension of which is

codimZλ(Q) E ≤ dim
Zλ(Q)

Z
+ dim

Zλ(Q)
Zλ(Q) ∩ Γ̃−1(E)

≤ cn(1 + λ(n−1)/2 + ν(n−1)/2) + Kν(n−1)/2,

in view of (4.32) and the choice of E . That is,

codimZλ(Q) E ≤ C(1 + λ(n−1)/2 + ν(n−1)/2), (4.35)
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where C is independent of λ and ν.

From this we see that we get the required result for the co-dimension of E (cf.

phrase after (4.13)) if we choose ν proportional to µ (which is what we are going

to do in the end).

Our next task is therefore to prove that (4.13) holds for a suitable choice of ν

proportional to µ, which can be done by a reasoning entirely similar to the one

used in the elliptic setting — cf. [10, pp. 171-172]. We refer only the main points.

Given u ∈ E, define

v ≡
∑

k,j

(u, ϕkej)L(Q)

|k|2 − λ
ϕkej in L(Q), (4.36)

where the summation runs over all k ∈ ZZn such that |k|2 > ν and all j ∈ {1, . . . , n}.

Actually, in order that this be well-defined, we shall require that ν ≥ 2λ ≥ 2.

Moreover, it is then a standard exercise in Hilbert space techniques to show that

v ∈ (H2(Q))n and that, indeed, the series in (4.36) converges to v in this latter

space. As a consequence we have

(A− λ)v = u in L(Q) for u ∈ E. (4.37)

Note also that, for such u and v,

(u, v)L(Q) =
∑

k,j

|(u, ϕkej)L(Q)|2

|k|2 − λ
≥ 0, (4.38)

so that, with the help of (4.19) and (4.34), we can write

‖u‖2
L(Q) ≤ cν−1/2‖u‖H(Q)‖v‖(H2(Q))n + ‖u‖H(Q)‖v‖H(Q), (4.39)

where c is a constant that may be taken as the product of the norms of Γ̃ and T̃ .

Since ‖v‖2
H(Q) ≤ 6ν−1‖u‖2

L(Q) and ‖v‖2
(H2(Q))n ≤ 7‖u‖2

L(Q), we get

‖u‖2
H(Q) ≥ cν‖u‖2

L(Q),
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where, of course, the constant c(< 1) has been redefined.

Choosing now ν = 2µ
c (assuming that µ ≥ cλ) we finally get

(u, u)H(Q) − µ(u, u)L(Q) ≥ ε‖u‖2
L(Q) (4.40)

for all u ∈ E, as required in (4.13) (we can choose ε = µ in (4.40)), so that,

recalling also (4.35),

N(µ, Zλ(Q), L(Q), (·, ·)H(Q)) ≤ c′(1 + λ(n−1)/2 + µ(n−1)/2) (4.41)

for µ ≥ cλ ≥ c. Actually, due to the monotonicity of the counting function with

respect to µ, (4.41) holds for all µ ≥ 0 and λ ≥ 1, possibly by redefinition of c′,

and from it we get, using the translation and scaling argument in (4.6),

N(µ, Zλ(J), L(J), (·, ·)H(J)) ≤ c′′
(

1 + (δ/(2π))n−1(λ(n−1)/2 + µ(n−1)/2)
)

(4.42)

for 0 < δ ≤ 2π and µ, λ ≥ (2π)2δ−2.

4.5 The result when Ω is a cube

Denoting, as in subsection 4.1, by J an arbitrary n-cube in IRn with side length δ,

we can write, due to (4.1) and (4.12),

N(λ, V0(J), L(J), aJ)− |J |n
(2π)n (n− 1)|Bn|nλn/2 ≤ cn(1 + (δ/(2π))n−1λ(n−1)/2)

(λ ≥ 0) and, due to (4.2), (4.12), (4.4) and (4.42),

N(λ, V0(J), L(J), aJ)− |J |n
(2π)n (n− 1)|Bn|nλn/2 ≥ −C

(

1 + (δ/(2π))n−1λ(n−1)/2
)

(0 < δ ≤ 2π ; λ ≥ (2π)2δ−2). That is, there exists some positive constant c such

that
∣

∣

∣

∣

∣

N(λ, V0(J), L(J), aJ)− |J |n
(2π)n (n− 1)|Bn|nλn/2

∣

∣

∣

∣

∣

≤ c δn−1λ(n−1)/2 (4.43)

for all δ ∈ (0, 2π] and all λ ≥ (2π)2δ−2.
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5 Estimates near the boundary

As promised at the end of section 3, we are now going to estimate

N(µ,V0(ωr), L(ωr), (·, ·)V0(ωr)) (5.1)

from above.

In what follows, r will stand for an arbitrary non-negative integer greater than

or equal to r0 (cf.beginning of section 3).

Note that

V0(ωr) ≡ {u|ωr : u ∈ V0(Ω)} ⊂ (H1
0(ωr))n ≡ H0(ωr), (5.2)

where H1
0(ωr) denotes the set of restrictions to ωr of the elements of H1

0 (Ω). We

know from [10, p.146] (cf. also subsection 2.1) that H1
0(ωr) is a Hilbert space the

norm of which is given by

‖v‖H1
0(ωr) ≡ inf

u∈H1
0 (Ω)

u|ωr=v

‖u‖H1
0 (Ω), ∀v ∈ H1

0(ωr), (5.3)

and that

(H1
0(ωr), L2(ωr), (·, ·)H1

0(ωr))

is a variational triplet. As a consequence we can state, with the help of [10, Prop.

2.8], that

(H0(ωr), L(ωr), (·, ·)H0(ωr))

is a variational triplet (where (·, ·)H0(ωr) ≡
∑n

j=1(·j, ·j)H1
0(ωr), as expected) and, for

all µ ∈ IR,

N(µ,H0(ωr), L(ωr), (·, ·)H0(ωr)) = nN(µ,H1
0(ωr), L2(ωr), (·, ·)H1

0(ωr)). (5.4)
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We would like now to compare the counting function in (5.1) with the counting

function on the left-hand side of (5.4). In order to do that, we use the characteri-

zation given in [10, Prop. 2.2], which allows us to write, for µ > 0,

N(µ,V0(ωr), L(ωr), (·, ·)V0(ωr)) = #{k ∈ IN0 : dk(BV0(ωr), L(ωr)) ≥ µ−1/2}

and

N(µ,H0(ωr), L(ωr), (·, ·)H0(ωr)) = #{k ∈ IN0 : dk(BH0(ωr), L(ωr)) ≥ µ−1/2},

where the B’s denote the closed unit balls of the corresponding spaces and dk stands

for the k-th diameter of Kolmogorov (for a precise definition, refer to [10, p. 130]).

In this way, the comparison follows from a corresponding comparison between

these balls: since, as it is easily seen, BV0(ωr) ⊂ BH0(ωr), then dk(BV0(ωr), L(ωr)) ≤

dk(BH0(ωr), L(ωr)), ∀k ∈ IN0, and finally

N(µ,V0(ωr), L(ωr), (·, ·)V0(ωr) ≤ N(µ,H0(ωr), L(ωr), (·, ·)H0(ωr)), (5.5)

for all µ > 0.

Observe that this argument avoids explicit consideration of the relation between

the factor spaces given by the divergence being zero.

In view of (5.5) and (5.4), it would now be convenient to have an estimate

for N(µ,H1
0(ωr), L2(ωr), (·, ·)H1

0(ωr)). It is, in fact, already known (see [10, p.151])3

that, for all µ > 0,

N(µ,H1
0(ωr), L2(ωr), (·, ·)H1

0(ωr)) ≤ cn|[ωr]µ−1/2 |nµn/2, (5.6)

where cn depends only on n and

[ωr]µ−1/2 ≡ {x ∈ Ω : dist (x, ωr) <
√

nµ−1/2} .

3The counting function in (5.6) is not exactly the same as the counting function featured in
the paper cited, but an argument similar to the one used to get (5.5) takes one through to (5.6).
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In order to connect this estimate with our hypothesis in Theorem 1.2, recall

that

ωr ⊂ (∂Ω)(
√

n+1)2−r

(cf. (3.2)) and, consequently,

[ωr]µ−1/2 ⊂ (∂Ω)(
√

n+1)2−r+
√

nµ−1/2 . (5.7)

Using this in (5.6) and putting the result in (5.4) and then in (5.5) we obtain,

possibly by redefining cn,

N(µ,V0(ωr), L(ωr), (·, ·)V0(ωr) ≤ cn|(∂Ω)(
√

n+1)2−r+
√

nµ−1/2|nµn/2 (5.8)

for all µ > 0 and all integers r ≥ r0.

In the particular case µ = 2(λ + 1), which is needed in (3.5), it is easy to get

from (5.8) the estimate

N(2(λ + 1),V0(ωr), L(ωr), (·, ·)V0(ωr)) ≤ c′n|(∂Ω)(
√

n+1)2−r+
√

nλ−1/2 |nλn/2 (5.9)

for all λ ≥ 1 and all integers r ≥ r0.

6 Assembling things together

We are now able to complete the line of thought initiated in section 3.

Recall that Ω is an arbitrary bounded open non-empty subset of IRn. Recall

also the decomposition of Ω that we made in the beginning of section 3 by means

of tessellations of IRn. The way we take advantage of those tessellations, of the

decomposition of the problem made in section 3 and of the estimates obtained in

sections 4 and 5 is the same as in the case of the Dirichlet Laplacian — cf. [10] or

[8].
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Using (3.1) and (4.43) we can write, for all integers r ≥ r0 and all λ ≥ (2π)222r,

N(λ, V0(Ω), L(Ω), a)− |Ω|n
(2π)n (n− 1)|Bn|nλn/2

≥
∑

ρ,ν
c 2−ρ(n−1)λ(n−1)/2 − n− 1

(2π)n |B
n|n|(∂Ω)(

√
n+1)2−r |nλn/2

= −c
( r

∑

ρ=r0

2−ρ(n−1)(#Aρ)
)

λ(n−1)/2 − n− 1
(2π)n |B

n|n|(∂Ω)(
√

n+1)2−r |nλn/2 (6.1)

≥ −c
( r

∑

ρ=r0

2ρ|(∂Ω)(
√

n+1)2−ρ+1|n
)

λ(n−1)/2 − n− 1
(2π)n |B

n|n|(∂Ω)(
√

n+1)2−r |nλn/2,

where this latter inequality follows from

(#Aρ).2−ρn =
{

|Ωρ \ Ωρ−1|n if ρ > r0

|Ωρ|n if ρ = r0
≤

{

|ωρ−1|n if ρ > r0

|Ω|n if ρ = r0
(6.2)

together with the inclusion (3.2) (the case ρ = r0 can be included in the main

stream by adjusting the constant c).

By this same token, and using also (3.3), (4.43), (3.5), (5.9) and (4.42), we can

write, for all integers r ≥ r0 and all λ ≥ (2π)222r,

N(λ, V0(Ω), L(Ω), a)− |Ω|n
(2π)n (n− 1)|Bn|nλn/2

≤ c
( r

∑

ρ=r0

2ρ|(∂Ω)(
√

n+1)2−ρ+1|n
)

λ(n−1)/2 + c′n|(∂Ω)(
√

n+1)2−r+
√

nλ−1/2 |nλn/2

+
∑

ρ,ν
c′′

(

1 +
2−ρ(n−1)

(2π)n−1 (λ(n−1)/2 + 2(n−1)/2(λ + 1)(n−1)/2)
)

(6.3)

≤ c′
( r

∑

ρ=r0

2ρ|(∂Ω)(
√

n+1)2−ρ+1 |n
)

λ(n−1)/2 + c′n|(∂Ω)(
√

n+1)2−r+
√

nλ−1/2|nλn/2.

From this and (6.1) we get, for some constant c and for all integers r ≥ r0 and

all λ ≥ (2π)222r,
∣

∣

∣

∣

∣

N(λ, V0(Ω), L(Ω), a)− |Ω|n
(2π)n (n− 1)|Bn|nλn/2

∣

∣

∣

∣

∣

(6.4)

≤ c









r
∑

ρ=0
2ρ|(∂Ω)(

√
n+1)2−ρ+1|n



 λ(n−1)/2 + |(∂Ω)(
√

n+1)2−r+
√

nλ−1/2|nλn/2



 .
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It follows now immediately that, if |∂Ω|n = 0,

lim
λ→+∞

N(λ, V0(Ω), L(Ω), a)
λn/2 =

|Ω|n
(2π)n (n− 1)|Bn|n , (6.5)

a result that, as far as we know, was only previously obtained in the case when

the boundary of Ω is smooth. Thus, our approach has shown that (6.5) holds

true for all bounded open non-empty subsets Ω of IRn the boundary of which have

n-dimensional Lebesgue measure equal to 0.

We may now conclude the proof of Theorem 1.2. Indeed, the deduction of the

result from the estimate (6.4) is similar to the case of the Dirichlet Laplacian, so

that we refer the reader to [3, proof of the Prop. of section 5] for the case d > n−1

and to [10, pp. 198-199] for the case d = n − 1 (for the special case of Theorem

1.2 covered by Corollary 1.3 the reader may also wish to compare with [8, pp.

499-507]).

Acknowledgement: The author would like to thank the referee for the improve-

ment of the presentation.
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