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1 Introduction

The problem of determining the local growth envelope fumctof a function
space containing unbounded functions consists, roughdglspg, in obtaining
the fastest local growth which the functions from that spearetolerate. In other
words, it is the problem of studying the worst possible slagty that a function
from some given function space can have.

We give an example:

In the figure we see represented the

1 function
x Y PXj0.1]5

whichdoes not belontp Lp(R), 0< p <
. Nevertheless, no matter how small we
take thee > 0, the function
X_(l_e)/pX]O,l}
already belongsto Lp(R). Therefore,
the functionx*l/Px}OJ} has some of the
> properties of what we would like to call
a local growth envelope function of the
spacelp(R). It has, however, the disadvantage of describing only whppkns
with respect to a particular point and of having itself a atar form coming
from the special type of functions considered in this exampl
The next step will then be to find a way of measuring the “maxirhability
of local growth without falling in this type of particulagzions.
An adequate tool is the so-called decreasing rearrangeafeatfunction:
given any measurable functioh: R" — C, its decreasing rearrangement is de-
fined as

0 1 X

f ) :=inf{fA>0:ms(\) <t}, t>0,
where
mi(A) = [{xeR":|f(X)| >A}, A>0.
Notice that
o f*(t) €[0,00];
e f*is decreasing;

e f*is continuous from the right;



e f andf* are equimeasurable, that is, for eachk 0, m;(A) coincides with
{teRg :[F*(t)] > A},

Thus, in natural language we can say thatearranged in such a way that
the greater values come first, that is, near zero. Consdgjuietbehaviour off *
near zero give us an indication about the ability of localgtofor f.

Returning to the example &f,(R), observing the behaviour of the function

t— sup f*(t), t>0, (1)
If]Lp(R)|I<1

near zero we get an indication about the “maximum” abilityaxfal growth for
the functions oL p(R) (notice that if we hadn’t normalized the functiohgo be
considered in (1), the definition would not make sense!). alet,fthe following
promising result holds:

Proposition 1.1 Given0 < p < o,  sup ¢ @)<1 f*(t) =t ™V, t>0.

Later on we will sketch a proof for this result. For the momertwould like
to introduce the following general definition justified byetbonsiderations done
until now:

Definition 1.2 The growth envelope function of a quasi-normed space Aadgeb
of equivalence of) locally integrable complex function®&ihis a function defined
by
ElAt):= sup f*(t), forsmallt>0
[flAl<1

or the class of equivalence of such functions.

The concept was introduced by Haroske [17] (cf. also [18][@54) in 2001,
under the influence of works of Edmunds and Triebel [13] andbEl [24] and
having as forerunners works of Netrusov [22], [23]. As Hamokerself refers, it
is related with the concept of fundamental function, from tieory of rearrange-
ment invariant spaces. As we will see, it is related with edalegs of Sobolev
type and refinements obtained along several years by vaauth®rs, specially
if we complement the notion of growth envelope function witie notion of fine
index (it is to both things together that we call growth eoyel), about which we
will briefly talk in the last part of this lecture.

Besides its intrinsic interest, as it allows the classifarabf function spaces
according to the ability of local growth of its elements, ttencept of growth
envelope has been successfully used in the determinatioecelssary conditions
for the existence of embeddings between function spacegreTéxists also a
surprising connection with the concept of approximatiombers which allows
in some cases to obtain sharp upper estimates for the latter.
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2 Historically-oriented survey of results

We are here interested in the growth envelope functions étfan spaces of
Besov and Triebel-Lizorkin type. General properties ofvgtoenvelopes were
established by Haroske in [17], but we will only refer to therhen there is a
need for that. In that same paper, Haroske also obtained dwelgenvelopes of
more elementary function spaces. We will not describe Hereg results (with the
exception of the case bf,-spaces), though they were used in some of the proofs of
results we would like to present (the more general resutteelrer, are obtained
through techniques that do not use such preliminary resihits justifying the
omission of the latter here).

It is not our intention to refer here the various authors whwehcontributed
for the construction of the various results to be presengedth information can
be seenin [25, Cap. Il] and in the list of references includdgtat book. Our idea
here is to start telling the story since the time when the ephaf growth envelope
was introduced, but we should mention that its invention diesctly influenced
by the works [13] of Edmunds and Triebel and [24] of Triebehe$e have also
influenced decisively the results we would like to take agtigig point, namely
the determination of the growth envelope functions for B'emncesB%q(R”) and
Triebel-Lizorkin space§§q(]R{”). We will have, however, opportunity to refer
immediately after to some particular cases where it is appahe influence of
results well-known to the mathematical analyst in the stafiyhe problem in
question.

In order one can appreciate what is at stake to be proved antdogtsketching
the proof of the preliminary result contained in Propositiol:

1> | f|Lp(R)| = (/jf*(s)pds)l/pz (f f*(s)pds)”"z PP,

and this guarantees that $p, <1 f*(t) <t™/P, t>0.

For the opposite inequality,
0 we take, for each €]0,1] and
€>0,

fre(X) = (t +8)71/pX}0,t+8}7

—1/p
(t+4¢) " F—eo
so that we have

fie(s) = (t +5)_l/pX[o,t+s[

and the required conclusion, af-
ter lettinge go to zero.
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As hereafter all spaces will be considered o8r we shall omit this infor-
mation in the notation of the spaces. On the other hand, thergkrestrictions
for the parameters, p,q (that is, the ones which hold by default) a¥e R and
0 < p,q < o« (with the further restrictiorp < o in the case of spaces of Triebel-
Lizorkin type).

We consider now the, say, classical Besov and Triebel-kinaspaces. For
these, Haroske [17] and Triebel [25] proved in 2001 the fwilhy:

Proposition 2.1 Assuming that s- n(% -1)4,

1. ifs<% (the subcritical case),

b1l

f'-G|B?),q(t)a'El_(;“:piq(t) Nt% nearO;

2. ifs:% (the critical case),
n 1
Z.6|Bpg(t) ~ |logt|d nearQ assuming further that o+ 1;
n 1
E.o|Fpq(t) ~|logt|? near Q assuming further that p- 1;
Here and hereafter, any expression like
f(t) ~g(t) near0
means that there exists> 0 and constants;, ¢, > 0 such that

cig(t) < f(t) <cpg(t) for O<t <e.

To avoid misunderstandings, it is convenient to mentiontvidigoing on in
the cases excluded from the assertion above:

Remark2.2 1. Ifs> 2 orif s=2 and g< 1 (in the case of B-spaces) or
p <1 (in the case of F-spacesi the estimate for the growth epedianc-
tion has no interest, because in these cases we have thap#tesare
continuously embedded in.L.and therefore the growth envelope functions
remain bounded.

2. The situation is different whensn(£ — 1), : if this inequality is strict,
the function space in question contains other distribugionaddition to the
regular ones (it is not contained in'l‘LC), hence tools like the decreasing
rearrangement do not make sense; in the case Wh:em§p —1),, then

the existence of inclusion irifE depends on the values of the parameters
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p and g and, in fact, Haroske obtained also in [17] results ethextend
the above mentioned ones. We will, however, tend to exdhisled-called
borderlinesituation from our considerations; one reason is that far Ho-
calledfine index— with which we shall briefly deal in the last part of this
lecture — there is still no final results in this borderlinéusition, even for
the classical Besov and Triebel-Lizorkin spaces.

We illustrate now the results of Proposition 2.1 in the paifar context of
Sobolev space®l, using the fact that they coincide (up to equivalent norms)
with F2L,: therefore,

Corollary 2.3 Always near 0,
1 £ WA(t) ~tn2 ifn>2
2. T.oWA(t) ~ |logt|z if n=2;
3. E W (t) ~1if n=1.

This corollary constitutes a good opportunity to relats tiipe of results with
older ones, well-known to the mathematical analyst: usihegfact that the em-
beddingX; — Xz implies the inequality, ;| X1 < £,5|X2, we have that

e the upper estimate in assertion 1 of the above corollary isrseguence
of the Sobolev embedding Theorem (which, in the present gasgantees
thatWy — Lan);

¢ on the other hand, the corresponding lower estimate immtﬁwzl > Lp,
vp > 2;

¢ in an analogous way, the lower estimate in assertion 2 oflitbeeacorollary
(where — we recall — one is assumimg= 2) implies thatVy & Le;

¢ while the corresponding upper estimate is a consequenctaof@us result
of Trudinger, about the embedding\l&nl5l into an Orlicz space.

The tools used in the proof of Proposition 2.1 were, in thecstibal case,
interpolation theory (for the upper estimates) and corsitn of extremal func-
tions (for the lower estimates), while in the critical casenaic decompositions
and, again, extremals functions were respectively used.

In order to present results for more general spaces, we oegidd here the
definitions of these less known spaces. Partly by reasonimpfification of the
presentation, and partly also due to the fact that, at the engnthe available re-
sults are not so complete for the spaces of fypom now on we deal essentially
only with spaces of Besov type.



Definition 2.4 Given s€ R, 0 < p,q < c and a monotone functioW : (0,1] —
R* satisfying the relation

W) ~w@?), jeN,

we define

1
q<00}

W W)L
Biy = {f €1 fIBRg I == ( gzmw Hal; FYILP)

(obvious modification for the case=g),

wheres’ refers to the space of tempered distributionsnd™ stand, respectively,
for the Fourier transform and its inverse, and;)jcn, is the dyadic partition of
unity usually considered when defining Besov spaces.

We obtain the classical Besov spaces if one considetss 1. In general, the
presence of¥ induces a perturbation in the smoothness given by the paeame
A typical example of such & is W(x) = Wy(x) = (1+ |logx|)®, for real fixedb.
While the influence of the main smoothnasa the definition above is translated
by the power %, the additional influence of the functié#is given by a factor of
logarithmic type.

In this form, the spaces from Definition 2.4 were introducgd&ldmunds and
Triebel in [11], [12], but in fact they belong to the class bétso-called Besov
spaces of generalized smoothness considered since marsybgethe Russian
school, in particular by Kalyabin and Goldman. More exaétmences can be
seenin [14].

In 2001 and 2002, Caetano and Moura [7], [6] proved the falhgnand a
corresponding result for spaces of type

Proposition 2.5 Assuming that s- n(% -1)4,

1. ifs<% (the subcritical case),
o[BS (1) ~ t W)t nearo;
2. ifs= % (the critical case), and assuming further tha#(2-1)~1); ¢ ly,

(0.w) 1 N N
rolBga ()~ ([, w0 I5)T neara

where in the subcase < 1 the conjugate s taken to bex and the right-
hand side of the equivalence above should be interpretedgﬁngygl W(y)~L
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We make here a remark corresponding to part 1 of Remark 2.2:

Remark 2.6 If s> 0, orif s= 2 and (W(271)~1); € £y, the upper estimate for
the growth envelope function ﬁas no interest, because setbases one has that
the spaces are continuously embedded.in &nd therefore the growth envelope
functions remain bounded.

As before, the tools used in the proof of Proposition 2.5 wierthe subcritical
case, interpolation theory — now with a function parameteffe+the upper esti-
mates) and the construction of extremal functions (for threer estimates), while
in the critical case atomic decompositions in the meantitn@ined by Moura
in [21] and, again, extremal functions were respectivelgdusAnd, thought the
arguments had become substantially more complicated irpaoson with the
classical situation, the fact we have adopted a more abgiat of view allowed
us to notice that the expression obtained in the criticad @#ss suggesting a gen-
eralization that would unify the two cases (critical and@itiral). Summing up,
in [6] it was already possible to state that, even if with eliéint (though equiva-
lent) expressions, we have the following unifying resuttd@ corresponding one
for spaces of typé€):

Proposition 2.7 Assuming that s- n(% —1), and (271679 W2 ) & £y,
it holds

1 ey dwvy &
(SW) 4y (s—p)a —q Y\ ¢
rolBRY 0 ~ ([, ¥ Py 47 neara

using, in the subcase< 1, the same interpretations as before.

This remark was going to do us a great service afterwards,eawil see.
Meanwhile there had been, influenced by [7], developmentshat concerns
the subcritical case in the context of function spaces oegdized smoothness.
Interest in this type of spaces was reappearing. We havadgireeferred the
works of Edmunds and Triebel [11], [12] in the study of thecp theory for
isotropic fractal drums, but interest in such spaces was a&ising for example
in stochastics. More exact references can be found in thergag] of Farkas
and Leopold. The point of view adopted by these authors ieg¢renough to
include the spaces considered by Goldman and Kalyabinfécfexample, [15],
[20]). However they were only able to get atomic represémat(an important
detail in our context) with some further restrictions. Té@g include already in
the definition we give here (as before, we will only detail tase of spaces of
Besov type) :



Definition 2.8 Let N:= (Nj)jen, @ando := (0j) jen, b€ two sequences of positive
numbers such that there exisgt ¢c; > 0 andAg, A1 > 1 for which one has that

Vj€eNo, €o0j<0jr1<c10j, AoNj < Njy1 <AN;.

Letko € N be such that, for any ¢ No, 2Nj < Nj .
Given0 < p,q < o, define

(o]

= (5 e TIl) <o

BIN = {f e 5’ |/f|BS

(obvious modification for the case=g),

wheres’,”,"are as in Definition 2.4 an(ﬁkl)ﬂ-“)jeNo is a sequence of infinitely differ-

b

entiable nonnegative functions verifying the followingdiions:
1. suppd® C {€ € R™: [§] < Njixp} ifj=0,1,...,Ko—1;

suppd™ C {€ € R": Nj_y, < [€] < Njiko} if j =Ko,Ko+1,..;

2. for eachy € Ny, there is a constant,c> 0 such that

DY (&) <cy(1+[E)¥? VjeNo, VEERY

3. there is a constantyc> 0 such that
0< _Z)q)?‘(i) =Cy <o, VECR"
J:

Remark 2.9 In the case when one considers N2/ and gj = 2ISW(271), j ¢
Np in the preceding definition, one obtains the spa&@wéfrom Definition 2.4.
It is known that the conditions imposed onin Definition 2.8 are much more
flexible than considering just @ of the form pointed out in this remark. In par-
ticular, there might not exist a well identified exponent lated witho. For more
information, see section 2.2 of [14]

By default, the general conditions to impose Mrand o in this lecture are
the ones indicated in Definition 2.8. We need, moreover (fer result which
follows), the following definition:



Definition 2.10 With the notation

g, = inf Ok and 0 ::sup%, | € Np, (2)

k>0 Ok k>0 Ok
we define the upper and lower Boyd indicegaéspectively by

. log,0
ag = lim 2929

| —00 |

IOgZ (o)) ) (3)

and Bg=Iim
| —o00 |

Bricchi and Moura [2] proved in 2002 the following in the sultical case
(and a corresponding result for space of tf)e

Proposition 2.11 Assuming3s > n(% —1); andag < §, itholds that

zLG|ng&ZJ)j(t)wt’%/\(t‘%)_l near Q

for any continuous functioh\ : Rt — R* satisfying the relationshipA (bz)
A(2) (with constants which might depend on b, but not om\zy, 1) = A(2)
andA(z) ~ aj for ze [2),2)1] (constants independent of ).

-1

The tools used in the proof of this proposition were inteagioh theory with
a function parameter for the upper estimates and construofi extremal func-
tions for the lower estimates, having for such effect beegfftom the atomic
representations obtained meanwhile by Farkas and Leop@la].

Whenaj = 218 j € No, thenag = By = s, and this justifies calling subcritical
to the case treated in Proposition 2.11.

Still in the caseoj = 2Is, if for each small positivé we can findj such that

2-(+1n « t < 2-In thatis, 2+1 > t=7 > 2], in such a way thah(t ) ~ oj and

ol

tRAE) T~ 2080y = 208 iR
we obtain, in fact, the behaviour near zero already estadddi®vefore in the clas-
sical context. .

Hence, in order to generalize it seems convenient to detdech P smoothness

and integrability a$_% th. By analogy, the formulaeof Caetano and Moura [7] and
of Bricchi and Moura [2] for the subcritical case are moreedily comparable if
one writes the former ds » (trw(t)1).

After these remarks — and comparing with the unified form giveProposi-
tion 2.7 — the following result recently proved by Caetand &arkas [3] should
not be totally surprising:



Proposition 2.12 Assuming

(07 Mieng € Lming1) if p>1
(3148 . 4)
(g, "N, )1eNo € Lmin(q,1), forsome 3> 0, if p<1
and
(Oj_l N;P )jENo ¢ fq’a (5)
it holds that

1 N , dy L
0>N ~ —pUd —1 —-q =7 q
EclBRR®) ~ ( [,y PIAY )T nearo

(usual modification for the casé ¢ o, i.e., when < 1),

for any continuous functior\ : Rt — R* satisfying the relationship(bz) ~
A(z) (with constants which might depend on b, but not on z) A(g] ~ gj for
z € [Nj,Nj41] (constants independent of j).

Similarly as in Remark 2.2, it is convenient to justify hehe reason why
some cases were excluded in the assertion above:

Remark 2.13 1. If (5) is false, i.e., if(oj’l Nj_p)jgNo € (g, the estimate of the
growth envelope function has no interest, because in theesesadhe spaces
are continuously embedded i Land therefore the growth envelope func-
tions remain bounded.

2. The reasons for the requirement (4) are partly techniEaken so, it should
be mentioned that (4) implies that

1
O N e € f ©)
and that this is a sufficient condition for the function spaoeder consid-
eration to contain only regular distributions, what justithe use of tools
like the decreasing rearrangement. Nevertheless, evelattee condition
is not necessary for the inclusion of the spaces/ff, Iso that it remains to
be clarified what happens in th®rderlinesituation when(6) is false but,
even so, the distributions under consideration aref.LThe justification
for calling the latter aborderlinesituation comes from the comparison with
the classical setting, since in that context the conditibnig¢ equivalent to
the condition s> n( — 1)..
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The result presented in Proposition 2.12 includes, in @adr, all the pre-
viously known results involving the estimation of growthvelope functions of
spaces of Besov type, apart from borderline situations. betséc tool used in its
proof was the atomic representation proved by Farkas angdleéd14] for the
spaces in question, together with the ideas which had alretiCaetano and
Moura to the proof of Proposition 2.7. In particular, thetsitaent of Proposition
2.12 does not make any distinction between the critical easkethe subcritical
case.

We would also like to mention that recently Gurka and Opid [ overed
some of the results proved in [7] and [6] without using atom@ipresentations
(nor interpolation theory). Instead they have stronglyelatheir approach on the
consideration of Hardy type inequalities.

Although after some time we have concentrated our atterioresults for
spaces of typ®, we have pointed out in several occasions that there exist-co
terparts for spaces of tyge. In fact, the bulk of the work is generally done for
the first type of spaces, being possible in most cases to shadgther type of
spaces by some method of reduction to what was obtained &mesof typeB.
Unfortunately, it is not so clear how such a reduction can dxeedstarting from
Proposition 2.12, so that at the time when the work [3] wasets it was not
known how to prove corresponding results for spaces of EypRecently, how-
ever, in collaboration with H.-G. Leopold, it seems we hawend out a way of
solving the problem, but this joint work is still under dission.

3 Complements

3.1 The fine index

In the preceding section we choose, for ease of expositoregdort only on re-
sults for growth envelope functions. However, and in acanog to what was
mentioned in the Introduction, the concept of growth enpelmvolves, besides
the growth envelope function, also the concept of fine indiéxs fairly more
complicated to compute such index, by comparison with thignasion of the
growth envelope function, and also we don’t want to go hereuth the history
of the various results that had been obtained until one e=attte most general
one. Therefore we state only the result of Caetano and Far{8§ which was
obtained after several partial generalizations startiagnfthe fundamental works
[17] of Haroske and [25] of Triebel.
Nevertheless, we need to introduce some further notatisin fir

1
e we denote byd(t) the expressior(ft}/n y pAAy o d7y> Y (or the cor-
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responding one in the cage= ) considered in Proposition 2.12;

e we denote by the Borel measure associated withog, ® in (0,¢g], for

any € € (0,1), i.e., the only Borel measuiein (0,€] such thau([a,b]) =

—log, ®(b) — (—log, () = log, g}, ¥[a,b]  (0,¢]

We are now ready to state the general result of Caetano akd<¥H&1:

Proposition 3.1 Under the same conditions as in Proposition 2.12, it holds th
the least v> O for which there aree > 0 small enough and (@) > 0 such that

(5 wen) <o o

for all f € BSq exists and is equal to q.

Remark 3.2 In the case = «, the left-hand side of7) must be read as

sup 0
te(0,¢] (t)

It is even possible to prove that the inequality (7) does temicif one sub-
stitutesLT(tt)) by K(ULT(:))’ for any given positive functior decreasing ir{0, €],
unlesx is chosen bounded.

The measurg can in several situations be determined explicitly. Fonepie,

if g > 1 then the expressiqu(dt) in (7) can be replaced by
dt
/ q—/ 7l / ’
PH)AtP A(t™n)dt

3.2 Continuity envelopes

As was mentioned several times, when the function spacemadrg, there is

no interest to estimate the growth envelope function, beedhis one is then al-
ways bounded. Furthermore, at least in the context of Besdwaebel-Lizorkin
spaces, the embeddinglig, ensures that all the functions from these spaces are
uniformly continuous. One can, nevertheless, ask aboutfapwom being Lip-
schitzian is the “worst” function of such a space.

In many respects one can develop a theory and results pavdahevhat was
described for growth envelopes. The basic tool now, instdatie decreasing
rearrangement of functions, is the modulus of continuityf@ be more precise,
the quotient between modulus of continuity and the indepetdariable. From
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that starting point one builds the concept of continuityedope functionz.|X of
the function spac& by passing to the supremum over normalized functions. In
mathematical notation,

w(f,t
rox() = sup ATV,
[ fIX][<1

wherew(f,t) = supy < SUBegn | f(x+h) — f(x)|, t>0.

We are not going into details. As in the preceding case, there€onnections
with results well-known to the mathematical analyst, afiessdase of the famous
result of Brézis and Wainger [1] about the “almost” Lipsehtontinuity of the

functions from the Sobolev spakiq) , 1 < p < . However, the notion itself
was only introduced by Haroske in [17] under influence ofvtloeks [9] and [10]
of Edmunds and Haroske, and the first results in the new layegware obtained
by Haroske and Triebel in [17] and [25]. For the more receastlts, involving

spacesB%f’qw) (in accordance with Definition 2.4) anﬁﬁiw), see [19] and [4].

3.3 Applications

Due to its characteristic of searching for the “worst” pbgsibehaviour, growth
envelope and continuity envelope functions are speciadlly adapted to the task
of obtaining necessary conditions for the existence of eltings between func-
tion spaces. For example, it was in this way that we proved]ithpat the condition

(07 NP) jen, € Ly is necessary for the existence of the embedd#fg — Lo

(or, what is equivalent in this case, for the existence oﬁmeedding_%gqu — C,
whereC denotes the space of bounded and uniformly continuousiturscen-
dowed with the supremum norm), after we have proved in [6]redagous result
in the context of the spacéﬁf’qw). Since in the same works we had already proved
that the conditions in question were sufficient, we obtajirethis way, conditions
which are simultaneously necessary and sufficient for tistence of those con-
tinuous embeddings. This makes clear that growth envelapetibns are indeed
an adequate tool for this type of task.

Another application was the proof, in [4], that, in the cage> s, 0< p1 <
p2 < o, with s — % =S — %, the condition

W, (277) o 1 ( 1 1)
— €ly, Whereqg* isgivenby — = ———
<L|J1(2_J) jeN q q 9 y q* o o1 N

which had already, in [21], been proved to be sufficient fa& éxistence of the
embedding
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Bhro” (R") — BpZy? (R),
is also necessary for the existence of such embedding. bufAption was to use
as tool the concept of continuity envelope in the proof, duthé fact that work is
about that type of envelopes. It is important to highligtatthn this case, besides
the envelope function, also the fine index performed a fureddat role.

There is also a connection between envelope functions aprbx@mation
numbersay, k € N. Such a connection was, for example, explored in [5] in or-
der to obtain sharp estimates for approximation numbersntiieeldings between
function spaces by means of the knowledge of the growth epeeiunctions of
the spaces involved. Though it is not always possible toiolstaarp estimates, it
is amazing that it is indeed possible in some cases. And, iewefb] it was the
growth envelope function which was used as a tool, in thigeodnt is more nat-
ural to use the continuity envelope function. In fact, asyped out in [17] and [4],
the following direct result comes from an estimate obtaiakkdady some years
ago by Carl and Stephani [8, Thm. 5.6.1]:

Proposition 3.3 Let X(U) be a Banach space of functions defined in the unit ball
U in R" with X(U) — C(U). There exists ¢ 0 such that, for all ke N,

a (id : X(U) — C(U)) < ckn £o[X (k7).
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