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1 Introduction

The problem of determining the local growth envelope function of a function
space containing unbounded functions consists, roughly speaking, in obtaining
the fastest local growth which the functions from that spacecan tolerate. In other
words, it is the problem of studying the worst possible singularity that a function
from some given function space can have.

We give an example:

0 1 x

In the figure we see represented the
function

x−1/pχ]0,1],

whichdoes not belongto Lp(R), 0< p<
∞. Nevertheless, no matter how small we
take theε > 0, the function

x−(1−ε)/pχ]0,1]

already belongsto Lp(R). Therefore,
the functionx−1/pχ]0,1] has some of the
properties of what we would like to call
a local growth envelope function of the

spaceLp(R). It has, however, the disadvantage of describing only what happens
with respect to a particular point and of having itself a particular form coming
from the special type of functions considered in this example.

The next step will then be to find a way of measuring the “maximum” ability
of local growth without falling in this type of particularizations.

An adequate tool is the so-called decreasing rearrangementof a function:
given any measurable functionf : Rn → C, its decreasing rearrangement is de-
fined as

f ∗(t) := inf{λ ≥ 0 : mf (λ) ≤ t}, t ≥ 0,

where

mf (λ) := |{x∈ R
n : | f (x)| > λ}|, λ ≥ 0.

Notice that

• f ∗(t) ∈ [0,∞];

• f ∗ is decreasing;

• f ∗ is continuous from the right;
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• f and f ∗ are equimeasurable, that is, for eachλ ≥ 0, mf (λ) coincides with
|{t ∈ R

+
0 : | f ∗(t)|> λ}|.

Thus, in natural language we can say thatf ∗ rearrangesf in such a way that
the greater values come first, that is, near zero. Consequently, the behaviour off ∗

near zero give us an indication about the ability of local growth for f .
Returning to the example ofLp(R), observing the behaviour of the function

t 7→ sup
‖ f |Lp(R)‖≤1

f ∗(t), t > 0, (1)

near zero we get an indication about the “maximum” ability oflocal growth for
the functions ofLp(R) (notice that if we hadn’t normalized the functionsf to be
considered in (1), the definition would not make sense!). In fact, the following
promising result holds:

Proposition 1.1 Given0 < p < ∞, sup‖ f |Lp(R)‖≤1 f ∗(t) = t−1/p, t > 0.

Later on we will sketch a proof for this result. For the momentwe would like
to introduce the following general definition justified by the considerations done
until now:

Definition 1.2 The growth envelope function of a quasi-normed space A of (classes
of equivalence of) locally integrable complex functions inRn is a function defined
by

E LG|A(t) := sup
‖ f |A‖≤1

f ∗(t), for small t> 0

or the class of equivalence of such functions.

The concept was introduced by Haroske [17] (cf. also [18] and[25]) in 2001,
under the influence of works of Edmunds and Triebel [13] and Triebel [24] and
having as forerunners works of Netrusov [22], [23]. As Haroske herself refers, it
is related with the concept of fundamental function, from the theory of rearrange-
ment invariant spaces. As we will see, it is related with embeddings of Sobolev
type and refinements obtained along several years by variousauthors, specially
if we complement the notion of growth envelope function withthe notion of fine
index (it is to both things together that we call growth envelope), about which we
will briefly talk in the last part of this lecture.

Besides its intrinsic interest, as it allows the classification of function spaces
according to the ability of local growth of its elements, theconcept of growth
envelope has been successfully used in the determination ofnecessary conditions
for the existence of embeddings between function spaces. There exists also a
surprising connection with the concept of approximation numbers which allows
in some cases to obtain sharp upper estimates for the latter.
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2 Historically-oriented survey of results

We are here interested in the growth envelope functions of function spaces of
Besov and Triebel-Lizorkin type. General properties of growth envelopes were
established by Haroske in [17], but we will only refer to themwhen there is a
need for that. In that same paper, Haroske also obtained the growth envelopes of
more elementary function spaces. We will not describe here those results (with the
exception of the case ofLp-spaces), though they were used in some of the proofs of
results we would like to present (the more general results, however, are obtained
through techniques that do not use such preliminary results, this justifying the
omission of the latter here).

It is not our intention to refer here the various authors who have contributed
for the construction of the various results to be presented.Such information can
be seen in [25, Cap. II] and in the list of references includedin that book. Our idea
here is to start telling the story since the time when the concept of growth envelope
was introduced, but we should mention that its invention wasdirectly influenced
by the works [13] of Edmunds and Triebel and [24] of Triebel. These have also
influenced decisively the results we would like to take as starting point, namely
the determination of the growth envelope functions for Besov spacesBs

pq(R
n) and

Triebel-Lizorkin spacesFs
pq(R

n). We will have, however, opportunity to refer
immediately after to some particular cases where it is apparent the influence of
results well-known to the mathematical analyst in the studyof the problem in
question.

In order one can appreciate what is at stake to be proved, we start by sketching
the proof of the preliminary result contained in Proposition 1.1:

1≥ ‖ f |Lp(R)‖ =

(Z ∞

0
f ∗(s)pds

)1/p

≥

(Z t

0
f ∗(s)pds

)1/p

≥ (t f ∗(t)p)1/p ,

and this guarantees that sup‖ f |Lp(R)‖≤1 f ∗(t) ≤ t−1/p, t > 0.

0 x

(t+ε)
−1/p

t+ε 1

For the opposite inequality,
we take, for eacht ∈]0,1[ and
ε > 0,

ft,ε(x) = (t + ε)−1/pχ]0,t+ε],

so that we have

f ∗t,ε(s) = (t + ε)−1/pχ[0,t+ε[

and the required conclusion, af-
ter lettingε go to zero.

3



As hereafter all spaces will be considered overRn, we shall omit this infor-
mation in the notation of the spaces. On the other hand, the general restrictions
for the parameterss, p,q (that is, the ones which hold by default) ares∈ R and
0 < p,q≤ ∞ (with the further restrictionp < ∞ in the case of spaces of Triebel-
Lizorkin type).

We consider now the, say, classical Besov and Triebel-Lizorkin spaces. For
these, Haroske [17] and Triebel [25] proved in 2001 the following:

Proposition 2.1 Assuming that s> n( 1
p −1)+,

1. if s< n
p (the subcritical case),

E LG|B
s
p,q(t),E LG|F

s
p,q(t)∼ t

s
n−

1
p near0;

2. if s= n
p (the critical case),

E LG|B
n
p
p,q(t)∼ | logt|

1
q′ near 0, assuming further that q> 1;

E LG|F
n
p

p,q(t) ∼ | logt|
1
p′ near 0, assuming further that p> 1;

Here and hereafter, any expression like

f (t) ∼ g(t) near 0

means that there existsε > 0 and constantsc1,c2 > 0 such that

c1g(t)≤ f (t)≤ c2g(t) for 0 < t < ε.

To avoid misunderstandings, it is convenient to mention what is going on in
the cases excluded from the assertion above:

Remark 2.2 1. If s> n
p, or if s = n

p and q≤ 1 (in the case of B-spaces) or
p≤ 1 (in the case of F-spaces), the estimate for the growth envelope func-
tion has no interest, because in these cases we have that the spaces are
continuously embedded in L∞, and therefore the growth envelope functions
remain bounded.

2. The situation is different when s≤ n( 1
p − 1)+: if this inequality is strict,

the function space in question contains other distributions in addition to the
regular ones (it is not contained in Lloc

1 ), hence tools like the decreasing
rearrangement do not make sense; in the case when s= n( 1

p − 1)+, then

the existence of inclusion in Lloc
1 depends on the values of the parameters
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p and q and, in fact, Haroske obtained also in [17] results which extend
the above mentioned ones. We will, however, tend to exclude this so-called
borderlinesituation from our considerations; one reason is that for the so-
calledfine index— with which we shall briefly deal in the last part of this
lecture — there is still no final results in this borderline situation, even for
the classical Besov and Triebel-Lizorkin spaces.

We illustrate now the results of Proposition 2.1 in the particular context of
Sobolev spacesW1

2 , using the fact that they coincide (up to equivalent norms)
with F1

2,2: therefore,

Corollary 2.3 Always near 0,

1. E LG|W1
2 (t)∼ t

1
n−

1
2 if n > 2;

2. E LG|W1
2 (t)∼ | logt|

1
2 if n = 2;

3. E LG|W1
2 (t)∼ 1 if n = 1.

This corollary constitutes a good opportunity to relate this type of results with
older ones, well-known to the mathematical analyst: using the fact that the em-
beddingX1 →֒ X2 implies the inequalityE LG|X1 ≤ E LG|X2, we have that

• the upper estimate in assertion 1 of the above corollary is a consequence
of the Sobolev embedding Theorem (which, in the present case, guarantees
thatW1

2 →֒ L 2n
n−2

);

• on the other hand, the corresponding lower estimate impliesthatW1
2 6 →֒ Lp,

∀p > 2n
n−2;

• in an analogous way, the lower estimate in assertion 2 of the above corollary
(where — we recall — one is assumingn = 2) implies thatW1

2 6 →֒ L∞;

• while the corresponding upper estimate is a consequence of afamous result
of Trudinger, about the embedding ofW1

2 into an Orlicz space.

The tools used in the proof of Proposition 2.1 were, in the subcritical case,
interpolation theory (for the upper estimates) and construction of extremal func-
tions (for the lower estimates), while in the critical case atomic decompositions
and, again, extremals functions were respectively used.

In order to present results for more general spaces, we need to give here the
definitions of these less known spaces. Partly by reasons of simplification of the
presentation, and partly also due to the fact that, at the moment, the available re-
sults are not so complete for the spaces of typeF, from now on we deal essentially
only with spaces of Besov type.
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Definition 2.4 Given s∈ R, 0 < p,q≤ ∞ and a monotone functionΨ : (0,1] →
R+ satisfying the relation

Ψ(2− j) ∼ Ψ(2−2 j), j ∈ N,

we define

B(s,Ψ)
p,q := { f ∈ S ′ : ‖ f |B(s,Ψ)

p,q ‖ :=
( ∞

∑
j=0

2 jsqΨ(2− j)q‖(ϕ j f̂ )̌ |Lp‖q
)

1
q
< ∞}

(obvious modification for the case q= ∞),

whereS ′ refers to the space of tempered distributions,ˆ andˇ stand, respectively,
for the Fourier transform and its inverse, and(ϕ j) j∈N0 is the dyadic partition of
unity usually considered when defining Besov spaces.

We obtain the classical Besov spaces if one considersΨ ≡ 1. In general, the
presence ofΨ induces a perturbation in the smoothness given by the parameters.
A typical example of such aΨ is Ψ(x) = Ψb(x) = (1+ | logx|)b, for real fixedb.
While the influence of the main smoothnesss in the definition above is translated
by the power 2js, the additional influence of the functionΨ is given by a factor of
logarithmic type.

In this form, the spaces from Definition 2.4 were introduced by Edmunds and
Triebel in [11], [12], but in fact they belong to the class of the so-called Besov
spaces of generalized smoothness considered since many years by the Russian
school, in particular by Kalyabin and Goldman. More exact references can be
seen in [14].

In 2001 and 2002, Caetano and Moura [7], [6] proved the following (and a
corresponding result for spaces of typeF):

Proposition 2.5 Assuming that s> n( 1
p −1)+,

1. if s< n
p (the subcritical case),

E LG|B
(s,Ψ)
p,q (t)∼ t

s
n−

1
p Ψ(t)−1 near0;

2. if s= n
p (the critical case), and assuming further that(Ψ(2− j)−1) j 6∈ ℓq′,

E LG|B
( n

p ,Ψ)
p,q (t) ∼

(

Z 1

t1/n
Ψ(y)−q′ dy

y

)
1
q′ near 0,

where in the subcase q≤ 1 the conjugate q′ is taken to be∞ and the right-
hand side of the equivalence above should be interpreted assupt1/n≤y≤1 Ψ(y)−1.
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We make here a remark corresponding to part 1 of Remark 2.2:

Remark 2.6 If s > n
p, or if s= n

p and (Ψ(2− j)−1) j ∈ ℓq′, the upper estimate for
the growth envelope function has no interest, because in these cases one has that
the spaces are continuously embedded in L∞, and therefore the growth envelope
functions remain bounded.

As before, the tools used in the proof of Proposition 2.5 were, in the subcritical
case, interpolation theory — now with a function parameter —(for the upper esti-
mates) and the construction of extremal functions (for the lower estimates), while
in the critical case atomic decompositions in the meantime obtained by Moura
in [21] and, again, extremal functions were respectively used. And, thought the
arguments had become substantially more complicated in comparison with the
classical situation, the fact we have adopted a more abstract point of view allowed
us to notice that the expression obtained in the critical case was suggesting a gen-
eralization that would unify the two cases (critical and subcritical). Summing up,
in [6] it was already possible to state that, even if with different (though equiva-
lent) expressions, we have the following unifying result (and a corresponding one
for spaces of typeF):

Proposition 2.7 Assuming that s> n( 1
p −1)+ and (2− j(s− n

p) Ψ(2− j)−1) j 6∈ ℓq′,
it holds

E LG|B
(s,Ψ)
p,q (t)∼

(

Z 1

t1/n
y(s− n

p)q′ Ψ(y)−q′ dy
y

)
1
q′ near 0,

using, in the subcase q≤ 1, the same interpretations as before.

This remark was going to do us a great service afterwards, as we will see.
Meanwhile there had been, influenced by [7], developments inwhat concerns
the subcritical case in the context of function spaces of generalized smoothness.
Interest in this type of spaces was reappearing. We have already referred the
works of Edmunds and Triebel [11], [12] in the study of the spectral theory for
isotropic fractal drums, but interest in such spaces was also arising for example
in stochastics. More exact references can be found in the paper [14] of Farkas
and Leopold. The point of view adopted by these authors is general enough to
include the spaces considered by Goldman and Kalyabin (cf.,for example, [15],
[20]). However they were only able to get atomic representations (an important
detail in our context) with some further restrictions. These we include already in
the definition we give here (as before, we will only detail thecase of spaces of
Besov type) :
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Definition 2.8 Let N := (Nj) j∈N0 andσ := (σ j) j∈N0 be two sequences of positive
numbers such that there exist c0,c1 > 0 andλ0,λ1 > 1 for which one has that

∀ j ∈ N0, c0σ j ≤ σ j+1 ≤ c1σ j , λ0Nj ≤ Nj+1 ≤ λ1Nj .

Let κ0 ∈ N be such that, for any j∈ N0, 2Nj ≤ Nj+κ0.
Given0 < p,q≤ ∞, define

Bσ,N
p,q := { f ∈ S ′ : ‖ f |Bσ,N

p,q ‖ :=
( ∞

∑
j=0

σq
j‖(ϕ

N
j f̂ )̌ |Lp‖

q
)

1
q
< ∞}

(obvious modification for the case q= ∞),

whereS ′, ,̂ˇare as in Definition 2.4 and(ϕN
j ) j∈N0 is a sequence of infinitely differ-

entiable nonnegative functions verifying the following conditions:

1. suppϕN
j ⊂ {ξ ∈ Rn : |ξ| ≤ Nj+κ0} if j = 0,1, . . . ,κ0−1;

suppϕN
j ⊂ {ξ ∈ Rn : Nj−κ0 ≤ |ξ| ≤ Nj+κ0} if j = κ0,κ0+1, . . .;

2. for eachγ ∈ N0, there is a constant cγ > 0 such that

|DγϕN
j (ξ)| ≤ cγ (1+ |ξ|2)−γ/2 ∀ j ∈ N0, ∀ξ ∈ R

n;

3. there is a constant cϕ > 0 such that

0 <
∞

∑
j=0

ϕN
j (ξ) = cϕ < ∞, ∀ξ ∈ R

n.

Remark 2.9 In the case when one considers Nj = 2 j and σ j = 2 jsΨ(2− j), j ∈

N0 in the preceding definition, one obtains the space B(s,Ψ)
p,q from Definition 2.4.

It is known that the conditions imposed onσ in Definition 2.8 are much more
flexible than considering just aσ of the form pointed out in this remark. In par-
ticular, there might not exist a well identified exponent s related withσ. For more
information, see section 2.2 of [14]

By default, the general conditions to impose onN andσ in this lecture are
the ones indicated in Definition 2.8. We need, moreover (for the result which
follows), the following definition:
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Definition 2.10 With the notation

σl := inf
k≥0

σl+k

σk
and σl := sup

k≥0

σl+k

σk
, l ∈ N0, (2)

we define the upper and lower Boyd indices ofσ respectively by

ασ = lim
l→∞

log2σl

l
and βσ = lim

l→∞

log2 σl

l
. (3)

Bricchi and Moura [2] proved in 2002 the following in the subcritical case
(and a corresponding result for space of typeF):

Proposition 2.11 Assumingβσ > n( 1
p −1)+ and ασ < n

p, it holds that

E LG|B
σ,(2 j) j
p,q (t) ∼ t−

1
p Λ(t−

1
n)−1 near 0,

for any continuous functionΛ : R+ → R+ satisfying the relationshipsΛ(bz) ∼
Λ(z) (with constants which might depend on b, but not on z),Λ(z−1) = Λ(z)−1

andΛ(z) ∼ σ j for z∈ [2 j ,2 j+1] (constants independent of j).

The tools used in the proof of this proposition were interpolation theory with
a function parameter for the upper estimates and construction of extremal func-
tions for the lower estimates, having for such effect benefited from the atomic
representations obtained meanwhile by Farkas and Leopold in [14].

Whenσ j = 2 js, j ∈ N0, thenασ = βσ = s, and this justifies calling subcritical
to the case treated in Proposition 2.11.

Still in the caseσ j = 2 js, if for each small positivet we can findj such that

2−( j+1)n < t ≤ 2− jn, that is, 2j+1 > t−
1
n ≥ 2 j , in such a way thatΛ(t−

1
n) ∼ σ j and

t−
1
p Λ(t−

1
n)−1 ∼ 2 j n

p σ−1
j = 2 j(−s+ n

p) ∼ t
s
n−

1
p ,

we obtain, in fact, the behaviour near zero already established before in the clas-
sical context.

Hence, in order to generalize it seems convenient to detach in t
s
n−

1
p smoothness

and integrability ast−
1
p t

s
n . By analogy, the formulæof Caetano and Moura [7] and

of Bricchi and Moura [2] for the subcritical case are more directly comparable if

one writes the former ast−
1
p (t

s
n Ψ(t)−1).

After these remarks — and comparing with the unified form given in Proposi-
tion 2.7 — the following result recently proved by Caetano and Farkas [3] should
not be totally surprising:
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Proposition 2.12 Assuming

{

(σ−1
l )l∈N0 ∈ ℓmin(q,1) if p > 1

(σ−1
l N

n( 1
p−1)+δ

l )l∈N0 ∈ ℓmin(q,1), for some δ > 0, if p ≤ 1
(4)

and

(σ−1
j N

n
p
j ) j∈N0 6∈ ℓq′, (5)

it holds that

E LG|B
σ,N
p,q (t)∼

(

Z 1

t1/n
y−

n
pq′ Λ(y−1)−q′ dy

y

)
1
q′ near 0

(usual modification for the case q′ = ∞, i.e., when q≤ 1),

for any continuous functionΛ : R+ → R+ satisfying the relationshipsΛ(bz) ∼
Λ(z) (with constants which might depend on b, but not on z) andΛ(z) ∼ σ j for
z∈ [Nj ,Nj+1] (constants independent of j).

Similarly as in Remark 2.2, it is convenient to justify here the reason why
some cases were excluded in the assertion above:

Remark 2.13 1. If (5) is false, i.e., if(σ−1
j N

n
p
j ) j∈N0 ∈ ℓq′ , the estimate of the

growth envelope function has no interest, because in these cases the spaces
are continuously embedded in L∞, and therefore the growth envelope func-
tions remain bounded.

2. The reasons for the requirement (4) are partly technical.Even so, it should
be mentioned that (4) implies that

(σ−1
j N

n( 1
p−1)+

j ) j∈N0 ∈ ℓq′, (6)

and that this is a sufficient condition for the function spaces under consid-
eration to contain only regular distributions, what justifies the use of tools
like the decreasing rearrangement. Nevertheless, even thelatter condition
is not necessary for the inclusion of the spaces in Lloc

1 , so that it remains to
be clarified what happens in theborderlinesituation when(6) is false but,
even so, the distributions under consideration are in Lloc

1 . The justification
for calling the latter aborderlinesituation comes from the comparison with
the classical setting, since in that context the condition (4) is equivalent to
the condition s> n( 1

p −1)+.
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The result presented in Proposition 2.12 includes, in particular, all the pre-
viously known results involving the estimation of growth envelope functions of
spaces of Besov type, apart from borderline situations. Thebasic tool used in its
proof was the atomic representation proved by Farkas and Leopold [14] for the
spaces in question, together with the ideas which had already led Caetano and
Moura to the proof of Proposition 2.7. In particular, the statement of Proposition
2.12 does not make any distinction between the critical caseand the subcritical
case.

We would also like to mention that recently Gurka and Opic [16] recovered
some of the results proved in [7] and [6] without using atomicrepresentations
(nor interpolation theory). Instead they have strongly based their approach on the
consideration of Hardy type inequalities.

Although after some time we have concentrated our attentionon results for
spaces of typeB, we have pointed out in several occasions that there exist coun-
terparts for spaces of typeF. In fact, the bulk of the work is generally done for
the first type of spaces, being possible in most cases to studythe other type of
spaces by some method of reduction to what was obtained for spaces of typeB.
Unfortunately, it is not so clear how such a reduction can be done starting from
Proposition 2.12, so that at the time when the work [3] was complete it was not
known how to prove corresponding results for spaces of typeF . Recently, how-
ever, in collaboration with H.-G. Leopold, it seems we have found out a way of
solving the problem, but this joint work is still under discussion.

3 Complements

3.1 The fine index

In the preceding section we choose, for ease of exposition, to report only on re-
sults for growth envelope functions. However, and in accordance to what was
mentioned in the Introduction, the concept of growth envelope involves, besides
the growth envelope function, also the concept of fine index.It is fairly more
complicated to compute such index, by comparison with the estimation of the
growth envelope function, and also we don’t want to go here through the history
of the various results that had been obtained until one reaches the most general
one. Therefore we state only the result of Caetano and Farkasin [3], which was
obtained after several partial generalizations starting from the fundamental works
[17] of Haroske and [25] of Triebel.

Nevertheless, we need to introduce some further notation first:

• we denote byΦ(t) the expression
(R 1

t1/n y−
n
pq′ Λ(y−1)−q′ dy

y

)
1
q′ (or the cor-
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responding one in the caseq′ = ∞) considered in Proposition 2.12;

• we denote byµ the Borel measure associated with− log2Φ in (0,ε], for
any ε ∈ (0,1), i.e., the only Borel measureµ in (0,ε] such thatµ([a,b]) =

− log2 Φ(b)− (− log2 Φ(a)) = log2
Φ(a)
Φ(b) , ∀ [a,b] ⊂ (0,ε].

We are now ready to state the general result of Caetano and Farkas [3]:

Proposition 3.1 Under the same conditions as in Proposition 2.12, it holds that
the least v> 0 for which there areε > 0 small enough and c(v) > 0 such that

(

Z ε

0

(

f ∗(t)
Φ(t)

)v

µ(dt)
)

1
v
≤ c(v)‖ f |Bσ,N

p,q ‖ (7)

for all f ∈ Bσ,N
p,q exists and is equal to q.

Remark 3.2 In the case v= ∞, the left-hand side of(7) must be read as

sup
t∈(0,ε]

f ∗(t)
Φ(t)

.

It is even possible to prove that the inequality (7) does not stand if one sub-
stitutes f ∗(t)

Φ(t) by κ(t) f ∗(t)
Φ(t) , for any given positive functionκ decreasing in(0,ε],

unlessκ is chosen bounded.
The measureµcan in several situations be determined explicitly. For example,

if q > 1 then the expressionµ(dt) in (7) can be replaced by

dt

Φ(t)q′ t
q′
p Λ(t−

1
n)q′ t

.

3.2 Continuity envelopes

As was mentioned several times, when the function spaces arein L∞, there is
no interest to estimate the growth envelope function, because this one is then al-
ways bounded. Furthermore, at least in the context of Besov and Triebel-Lizorkin
spaces, the embedding inL∞ ensures that all the functions from these spaces are
uniformly continuous. One can, nevertheless, ask about howfar from being Lip-
schitzian is the “worst” function of such a space.

In many respects one can develop a theory and results parallel with what was
described for growth envelopes. The basic tool now, insteadof the decreasing
rearrangement of functions, is the modulus of continuity, or, to be more precise,
the quotient between modulus of continuity and the independent variable. From
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that starting point one builds the concept of continuity envelope functionE C|X of
the function spaceX by passing to the supremum over normalized functions. In
mathematical notation,

E C|X(t) := sup
‖ f |X‖≤1

ω( f , t)
t

, t > 0,

whereω( f , t) = sup|h|≤t supx∈Rn | f (x+h)− f (x)|, t > 0.

We are not going into details. As in the preceding case, thereare connections
with results well-known to the mathematical analyst, as is the case of the famous
result of Brézis and Wainger [1] about the “almost” Lipschitz continuity of the

functions from the Sobolev spaceW
1+ n

p
p , 1 < p < ∞. However, the notion itself

was only introduced by Haroske in [17], under influence of theworks [9] and [10]
of Edmunds and Haroske, and the first results in the new language were obtained
by Haroske and Triebel in [17] and [25]. For the more recent results, involving

spacesB(s,Ψ)
p,q (in accordance with Definition 2.4) andF (s,Ψ)

p,q , see [19] and [4].

3.3 Applications

Due to its characteristic of searching for the “worst” possible behaviour, growth
envelope and continuity envelope functions are specially well adapted to the task
of obtaining necessary conditions for the existence of embeddings between func-
tion spaces. For example, it was in this way that we proved in [3] that the condition

(σ−1
j N

n
p
j ) j∈N0 ∈ ℓq′ is necessary for the existence of the embeddingBσ,N

p,q →֒ L∞

(or, what is equivalent in this case, for the existence of theembeddingBσ,N
p,q →֒C,

whereC denotes the space of bounded and uniformly continuous functions en-
dowed with the supremum norm), after we have proved in [6] an analogous result

in the context of the spacesB(s,Ψ)
p,q . Since in the same works we had already proved

that the conditions in question were sufficient, we obtained, in this way, conditions
which are simultaneously necessary and sufficient for the existence of those con-
tinuous embeddings. This makes clear that growth envelope functions are indeed
an adequate tool for this type of task.

Another application was the proof, in [4], that, in the cases1 ≥ s2, 0< p1 ≤
p2 ≤ ∞, with s1−

n
p1

= s2−
n
p2

, the condition

(

Ψ2
(

2− j
)

Ψ1(2− j)

)

j∈N

∈ ℓq∗ , where q∗ is given by
1
q∗

:=

(

1
q2

−
1
q1

)

+

,

which had already, in [21], been proved to be sufficient for the existence of the
embedding
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B(s1,Ψ1)
p1,q1 (Rn) →֒ B(s2,Ψ2)

p2,q2 (Rn),

is also necessary for the existence of such embedding. In [4]our option was to use
as tool the concept of continuity envelope in the proof, due to the fact that work is
about that type of envelopes. It is important to highlight that, in this case, besides
the envelope function, also the fine index performed a fundamental role.

There is also a connection between envelope functions and approximation
numbersak, k ∈ N. Such a connection was, for example, explored in [5] in or-
der to obtain sharp estimates for approximation numbers of embeddings between
function spaces by means of the knowledge of the growth envelope functions of
the spaces involved. Though it is not always possible to obtain sharp estimates, it
is amazing that it is indeed possible in some cases. And, evenif in [5] it was the
growth envelope function which was used as a tool, in this context it is more nat-
ural to use the continuity envelope function. In fact, as pointed out in [17] and [4],
the following direct result comes from an estimate obtainedalready some years
ago by Carl and Stephani [8, Thm. 5.6.1]:

Proposition 3.3 Let X(U) be a Banach space of functions defined in the unit ball
U in Rn with X(U) →֒C(U). There exists c> 0 such that, for all k∈ N ,

ak (id : X(U)−→C(U)) ≤ ck−
1
n E C|X(k−

1
n) .
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