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Abstract

The type of convergence in atomic representations of spaces of Besov

and Triebel-Lizorkin is usually presented in the sense of the topology of

the tempered distributions, occasionally with some remarks about the pos-

sibility of the convergence being valid in some Lebesgue spaces, if some

conditions are met. Until now we are not aware of any explicit indica-

tion that those representations usually converge in the Besov or Triebel-

Lizorkin spaces themselves. Yet this is indeed the case, as explained in

this note.

We deal also with a corresponding question for wavelet representations

in a recently introduced class of generalized local Hardy spaces.
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1 Introduction

Results on atomic representations of spaces of Besov and Triebel-Lizorkin, either
of classical or generalized smoothness, are always presented, as far as we are
aware, in terms of convergence in the sense of tempered distributions (see, for
example, [6] and [7]). Sometimes a remark is added about the possibility of
the convergence being valid in some Lebesgue spaces, under some restrictions
on the parameters. However, it follows from the structure of the assertions
on the atomic representations that, possibly apart from the cases when the
parameters are in�nite, the convergence holds (even unconditionally) in the
spaces themselves. One of the main aims of this note is to present straighforward
proofs that this is indeed the case. The other aim is to prove something similar
regarding wavelet representations in a class of generalized local Hardy spaces
recently introduced (see [1]), leading us to show that they admit unconditional
Schauder bases formed by wavelets. We deal with the �rst question in section
2 and with second one in section 3.
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2 Atomic representations in Besov and Triebel-

Lizorkin spaces.

We start by recalling several ingredients we shall need, following [6], [7]. The
�rst one is the meaning of the atoms to be considered.

By Qνm, with ν ∈ N0 and m ∈ Zn, we denote the closed cube in Rn with
sides parallel to the axes of coordinates, centred at 2−νm and with side length
2−ν+1. Given a cube Q in Rnand r > 0, by rQ we denote the cube in Rn which
is concentric with Q and has side length r times the side length of Q.

De�nition 2.1. Let s ∈ R, 0 < p ≤ ∞, K,L ∈ N0 and c ≥ 1. A continuous
function aνm : Rn → C, with ν ∈ N0 and m ∈ Zn, for which there exist all
(classical) derivatives Dαaνm if |α| ≤ K is called a (s, p)K,L,c-atom (or, brie�y,
a (s, p)-atom) if

suppaνm ⊂ cQνm,

|Dαaνm(x)| ≤ 2−ν(s−n/p)+ν|α| for |α| ≤ K

and ˆ
Rn
xβaνm(x) dx = 0 when ν 6= 0 and β ∈ Nn0 with |β| < L. (1)

Clearly, the condition (1) is interpreted as non-existing when L = 0 is taken.
Note also that the cancellation in (1) is not required when ν = 0.

Next we recall the sequence spaces in which the coe�cients in the atomic
representations shall live, for which we need the following notation:

Given 0 < p ≤ ∞, ν ∈ N0 and m ∈ Zn, χ(p)
νm(x) := 2(ν−1)n/p if x ∈ Qνm and

χ
(p)
νm(x) := 0 if x /∈ Qνm.

De�nition 2.2. Let 0 < p, q ≤ ∞ and write λ := (λνm) ν∈N0
m∈Zn

, where λνm are

complex numbers.
(i) bpq is the quasi-Banach space of those (generalized) sequences λ for which

‖λ|bpq‖ :=

 ∞∑
ν=0

( ∑
m∈Zn

|λνm|p
)q/p1/q

(with the usual modi�cation if p or q are ∞) is �nite.
(ii) fpq is the quasi-Banach space of those (generalized) sequences λ for which

‖λ|fpq‖ :=

∥∥∥∥∥∥
( ∞∑
ν=0

∑
m∈Zn

|λνmχ(p)
νm(·)|q

)1/q

|Lp(Rn)

∥∥∥∥∥∥
(with the usual modi�cation if q is ∞) is �nite.
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Finally, we recall the atomic representation theorem for the Besov spaces
Bspq(Rn) and the Triebel-Lizorkin spaces F spq(Rn). These are the usual spaces
de�ned by using Fourier-analytical tools � see, for example, [6, De�nition 1.2
(pp. 4-5)].

We use, as usual, the notation σp := n( 1
p − 1)+ and σpq := n( 1

min{p,q} − 1)+.

Theorem 2.3. (i) Let 0 < p, q ≤ ∞, s ∈ R, K,L ∈ N0 and c ≥ 1 satisfy

K > s and L > σp − s.

Then f ∈ S ′(Rn) belongs to Bspq(Rn) if, and only if, it can be represented as

f =

∞∑
ν=0

∑
m∈Zn

λνmaνm, unconditional convergence in S ′(Rn), (2)

where aνm are (s, p)-atoms and λ ∈ bpq. Furthermore,

‖f |Bspq(Rn)‖ ≈ inf ‖λ|bpq‖

are equivalent quasi-norms, where the in�mum is taken over all admissible rep-
resentations (2).

(ii) Let 0 < p <∞, 0 < q ≤ ∞, s ∈ R, K,L ∈ N0 and c ≥ 1 satisfy

K > s and L > σpq − s.

Then f ∈ S ′(Rn) belongs to F spq(Rn) if, and only if, it can represented as in (2),
where aνm are (s, p)-atoms and λ ∈ fpq. Furthermore,

‖f |F spq(Rn)‖ ≈ inf ‖λ|fpq‖

are equivalent quasi-norms, where the in�mum is taken over all admissible rep-
resentations (2).

Remark 2.4. The (unconditional) convergence in S ′(Rn) of the sum in (2) is
not an assumption: it follows from the assumptions on λ and the hypotheses on
the parameters.

We are now ready to state and prove one of the main results in this note:

Theorem 2.5. Let 0 < p, q < ∞ and s ∈ R. Any atomic representation of
a given distribution f in Bspq(Rn) or F spq(Rn), according to the theorem above,
converges unconditionally in Bspq(Rn) or F spq(Rn) respectively.

Proof. (i) Consider �rst the case of f ∈ Bspq(Rn) and a representation like (2).
Since, given any T ∈ N, T∑

ν=0

( ∑
m∈Zn

|λνm|p
)q/p1/q

≤ ‖λ|bpq‖,
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then also the partial sums
T∑
ν=0

∑
m∈Zn

λνmaνm

belong to Bspq(Rn) and, moreover, again using the theorem above,∥∥∥∥∥f −
T∑
ν=0

∑
m∈Zn

λνmaνm|Bspq(Rn)

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

ν=T+1

∑
m∈Zn

λνmaνm|Bspq(Rn)

∥∥∥∥∥
.

 ∞∑
ν=T+1

( ∑
m∈Zn

|λνm|p
)q/p1/q

,

which tends to 0 as T goes to ∞. This proves the convergence to f in Bspq(Rn)
of the sum in (2) using the order that it exhibits. In order to ensure the uncon-
ditional convergence in the same space, we prove the summability of the sum
to f , i.e., that

∀δ > 0,∃N0 ⊂ N0 × Zn with ]N0 <∞ :

∀N ∈ N0 × Zn with ]N <∞, N ⊃ N0 ⇒ ‖f −
∑

(ν,m)∈N

λνmaνm|Bspq(Rn)‖ < δ.

In fact, let δ > 0 be given and consider N0 := {(ν,m) ∈ N0×Zn : ν ≤ ν0, |m| ≤
m0}, with ν0,m0 ∈ N to be chosen depending on δ. Then, for N ⊃ N0 we can
write, with the �rst sums converging unconditionally in S ′(Rn),

‖f −
∑

(ν,m)∈N

λνmaνm|Bspq(Rn)‖

= ‖
∑

(ν,m)/∈N

λνmaνm|Bspq(Rn)‖

. ‖
ν0∑
ν=0

∑
m∈Zns.t.

(ν,m)/∈N

λνmaνm|Bspq(Rn)‖+ ‖
∞∑

ν=ν0+1

∑
m∈Zns.t.

(ν,m)/∈N

λνmaνm|Bspq(Rn)‖

.

 ν0∑
ν=0

 ∑
|m|>m0

|λνm|p
q/p


1/q

+

 ∞∑
ν=ν0+1

( ∑
m∈Zn

|λνm|p
)q/p1/q

.

We have already seen above that the second term tends to 0 when ν0 goes
to ∞, therefore it is possible to choose ν0 ∈ N such that this second term
is dominated by a suitable constant times δ. As to the �rst term, from the
hypothesis ‖λ|bpq‖ < ∞ it follows that, for each ν ∈ 0, . . . , ν0, we can choose
m(ν) ∈ N such that  ∑

|m|>m(ν)

|λνm|p
q/p

< c1
δq

ν0 + 1
,

4



where c1 is a suitably chosen positive constant; choosing thenm0 := maxν=0,...,ν0 m(ν)
we arrive at ν0∑

ν=0

 ∑
|m|>m0

|λνm|p
q/p


1/q

≤

(
ν0∑
ν=0

c1
δq

ν0 + 1

)1/q

= c
1/q
1 δ.

(ii) Consider now the case f ∈ F spq(Rn) and a representation like (2). Simi-
larly as in part (i), given any T ∈ N, we arrive at∥∥∥∥∥f −

T∑
ν=0

∑
m∈Zn

λνmaνm|F spq(Rn)

∥∥∥∥∥ =

∥∥∥∥∥
∞∑

ν=T+1

∑
m∈Zn

λνmaνm|F spq(Rn)

∥∥∥∥∥
.

∥∥∥∥∥∥
( ∞∑
ν=T+1

∑
m∈Zn

|λνmχ(p)
νm(·)|q

)1/q

|Lp(Rn)

∥∥∥∥∥∥ ,
and the conclusion that this tends to 0 as T goes to∞ follows from the Lebesgue
dominated convergence theorem. This proves the convergence to f in F spq(Rn)
of the sum in (2) using the order that it exhibits. In order to ensure the un-
conditional convergence in the same space, we do as in part (i), proving the
summability of the sum to f , i.e., that

∀δ > 0,∃N0 ⊂ N0 × Zn with ]N0 <∞ :

∀N ∈ N0 × Zn with ]N <∞, N ⊃ N0 ⇒ ‖f −
∑

(ν,m)∈N

λνmaνm|F spq(Rn)‖ < δ.

We proceed as in part (i), considering δ > 0, N0 chosen of the same type, with
ν0,m0 ∈ N to be chosen depending on δ, and N ⊃ N0. Similarly, we arrive at

‖f −
∑

(ν,m)∈N

λνmaνm|F spq(Rn)‖

.

∥∥∥∥∥∥∥
 ν0∑
ν=0

∑
|m|>m0

|λνmχ(p)
νm(·)|q

1/q

|Lp(Rn)

∥∥∥∥∥∥∥ (3)

+

∥∥∥∥∥∥
( ∞∑
ν=ν0+1

∑
m∈Zn

|λνmχ(p)
νm(·)|q

)1/q

|Lp(Rn)

∥∥∥∥∥∥ .
We have already seen above that the last term tends to 0 when ν0 goes to ∞,
therefore it is possible to choose ν0 ∈ N such that this second term is dominated
by a suitable constant times δ. However, the same type of argument � starting

by writing
∑ν0
ν=0

∑
|m|>m0

|λνmχ(p)
νm(·)|q as

∑
|m|>m0

∑ν0
ν=0|λνmχ

(p)
νm(·)|q, upper

estimating this by
∑
|m|>m0

∑∞
ν=0 |λνmχ

(p)
νm(·)|q and choosing an ordering of the
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m's which goes from smaller |m|'s to larger ones � also allow us to control the
term (3): we just have to choose m0 such that∥∥∥∥∥∥

∑
|m|>m0

∞∑
ν=0

|λνmχ(p)
νm(·)|q|Lp(Rn)

∥∥∥∥∥∥ ≤ c2δ,
where c2 is a suitably chosen positive constant.

If we conjugate the just proved theorem with some well-known embedding
properties of the Besov and the Triebel-Lizorkin spaces, we get in a simple
way results of convergence of atomic representations in more classical spaces
(without claiming that this is easier than a direct proof). We present two
examples, assuming in both that 0 < p, q < ∞, in order that Theorem 2.5 can
be applied:

Since, for s > σp, B
s
pq(Rn), F spq(Rn) ↪→ Lp̄(Rn), where p̄ := max{1, p},

then in such a case any atomic representation of a function f in those Besov
or Triebel-Lizorkin spaces converges also unconditionally to f in Lp̄(Rn). And
since, for s > n/p, Bspq(Rn), F spq(Rn) ↪→ C(Rn), where C(Rn) stands for the
space of complex-valued, bounded and uniformly continuous functions on Rn
endowed with the sup norm, then in such a case any atomic representation of
a function f in those Besov or Triebel-Lizorkin spaces converges also uncondi-
tionally and uniformly to f .

Remark 2.6. Looking at the structure of the atomic representation theorems
for Besov and Triebel-Lizorkin spaces of generalized smoothness as considered
in [5] (see also [4]) and [2], it is clear that a result corresponding to Theorem
2.5 also holds for such spaces of generalized smoothness.

3 Unconditional Schauder bases of wavelets in

generalized Hardy spaces

Such bases have been obtained in many function spaces, for example in the Besov
and Triebel-Lizorkin spaces we considered in the previous section. Recently, a
class of spaces called generalized Hardy spaces have been introduced for which
wavelet representations were derived � see [1]. However, with respect to the
existence of corresponding unconditional Schauder bases, in the latter paper
it was only announced that it would be proved elsewhere. We deal with that
matter here.

We need to recall a few things.
As to the system Ψk := (ψj,Gm )j,G,m , for k large enough, of wavelets we shall

consider, we refer, for details, to [6] or to the just mentioned paper [1]. Here
we just mention that they are real compactly supported wavelets of Daubechies
(inhomogeneous) type of class Ck, with vanishing moments until order k, given
by

ψj,Gm (x) :=

{
ψGm(x) j = 0, G ∈ G0, m ∈ Zn

2
j−1
2 n ψGm(2j−1x) j ∈ N, G ∈ Gj , m ∈ Zn

,
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where Gj denotes sets of n-tuples which count the possible combinations of basic
father and mother wavelets to be considered. And, for simplicity, we shall omit
the set of indices from the notation.

The generalized Hardy spaces we shall consider here are de�ned by

hq(φ) =
{
f ∈ S ′(Rn) : ‖f |hq(φ)‖ϕ :=

∥∥R1
ϕf |Λq(φ)

∥∥ <∞} ,
where

• 0 < q <∞;

• φ : (0,∞) → (0,∞) is continuous with φ(1) = 1 and φ̄(t) := sups>0
φ(st)
φ(s)

is �nite for every t > 0; and such that βφ̄ := limt→+∞
log φ̄(t)

log t > 0;

• ϕ ∈ S(Rn) with
´
Rn ϕ(x) dx = 1;

• (R1
ϕf)(x) := sup0<t<1 |(ϕt ∗ f)(x)|, x ∈ Rn, with ϕt(x) := t−nϕ(x/t);

• Λq(φ) is the generalized Lorentz space de�ned as the collection of all mea-
surable functions f on Rn such that

‖f |Λq(φ)‖ :=

(ˆ ∞
0

[f∗(t)φ(t)]q
dt

t

)1/q

<∞,

with f∗ the usual decreasing rearrangement of f .

For further details and considerations, we refer to [1]. In particular, the de�ni-
tion of hq(φ) is independent of the ϕ considered, in the sense of equivalent quasi-
norms, and therefore we shall simply write ‖f |hq(φ)‖ instead of ‖f |hq(φ)‖ϕ.

We need also the de�nition of the sequence spaces λq(φ), with q and φ as
above:

λq(φ) := {µ ≡ (µj,Gm )j,G,m ⊂ C : ‖µ|λq(φ)‖ <∞},

where

‖µ|λq(φ)‖ :=

∥∥∥∥∥∥∥
 ∑
j,G,m

|µj,Gm χjm(·)|2
1/2

|Λq(φ)

∥∥∥∥∥∥∥ ,
with χjm the characteristic function of the cubeQjm introduced in the beginning
of the preceding section.

In [1] the following result was proved:

Theorem 3.1. Let q, φ and Ψk be as just introduced. There exists k(φ) ∈ N
such that, for every N 3 k > k(φ), the following holds: f ∈ S ′(Rn) belongs to
hq(φ) if, and only if, it can be represented as

f =
∑
j,G,m

µj,Gm 2−jn/2ψj,Gm with µ = (µj,Gm )j,G,m ∈ λq(φ) (4)
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(summability in S ′(Rn)). Moreover, the wavelet coe�cients µj,Gm are uniquely
determined by

µj,Gm = µj,Gm (f) := 2jn/2〈f, ψj,Gm 〉.

Furthermore,

‖f |hq(φ)‖ ≈ ‖µ(f) |λq(φ)‖ (equivalent quasi-norms),

where µ(f) ≡ (µj,Gm (f))j,G,m.

Remark 3.2. The summability in S ′(Rn) of the sum in (4) is not an assumption:
it follows from the assumptions on µ and the hypotheses on the parameters.

We can �nally state and prove the second main result of this note:

Theorem 3.3. Under the hypotheses of the preceding theorem (namely with
k > k(φ)), the system Ψk is an unconditional Schauder basis in hq(φ).

Proof. From Theorem 3.1, any f ∈ hq(φ) can be represented in a unique way as
an in�nite linear combination of the elements of Ψk, in the sense of summability
in S ′(Rn). So, what remains to be proved is that such a linear combination
is also summable in hq(φ), as this implies summability in S ′(Rn) (this follows
from the characterization of hq(φ) as an interpolation space of classical Hardy
spaces � cf. [1] � and the fact that the latter are continuously embedded in
S ′(Rn)).

We start as in the proof of Theorem 2.5. Since, given any T ∈ N,∥∥∥∥∥∥∥
 T∑
j=0

∑
G,m

|µj,Gm χjm(·)|2
1/2

|Λq(φ)

∥∥∥∥∥∥∥ ≤ ‖µ|λq(φ)‖,

then also the partial sums

T∑
j=0

∑
G,m

µj,Gm 2−jn/2ψj,Gm

belong to hq(φ) and, moreover, again using the theorem above, with the con-
vergence of the �rst sums being in S ′(Rn),∥∥∥∥∥∥f −

T∑
j=0

∑
G,m

µj,Gm 2−jn/2ψj,Gm |hq(φ)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∞∑

j=T+1

∑
G,m

µj,Gm 2−jn/2ψj,Gm |hq(φ)

∥∥∥∥∥∥
.

∥∥∥∥∥∥∥
 ∞∑
j=T+1

∑
G,m

|µj,Gm χjm(·)|2
1/2

|Λq(φ)

∥∥∥∥∥∥∥ . (5)
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Notice now that from the hypothesis (and Theorem 3.1), we can writeˆ ∞
0



 ∞∑
j=0

∑
G,m

|µj,Gm χjm(·)|2
1/2


∗

(t)φ(t)


q

dt

t


1/q

<∞,

from which follows that the expression inside the integral must be �nite a.e.,
the same must be true to the decreasing rearrangement part (because φ > 0),
and therefore  ∞∑

j=0

∑
G,m

|µj,Gm χjm(·)|2
1/2

is also �nite a.e.. Consequently, the rest inside the quasi-norm in (5) must go
to 0 a.e. as T tends to ∞. Now our hypotheses guarantee that the dominated
convergence theorem for Λq(φ) � cf. [3, Proposition 2.3.3]) � can be applied,
allowing us to conclude that (5) goes to 0 as T tends to ∞ and prove that

f =

∞∑
j=0

∑
G,m

µj,Gm 2−jn/2ψj,Gm in hq(φ).

It only remains to show that this convergence is unconditional. This can
be done in much the same way as in the summability part in part (ii) of the
proof of Theorem 2.5. The fact that we have now the extra index G in the
summation causes no big changes in the approach, as G has only a �nite number
of possibilities. Otherwise we are now considering hq(φ) instead of F spq(Rn) and
Λq(φ) instead of Lp(Rn) (and some other minor modi�cations), so we skip the
details.
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