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3810-193 Aveiro, Portugal; acaetano@mat.ua.pt
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1 Introduction

In the present note we prove the so-called homogeneity property for some Besov
spaces on R

n. We show that for 0 < p, q ≤ ∞ and s > σp,

‖f(λ·) |Bs
p,q(R

n)‖ ∼ λs−n
p ‖f |Bs

p,q(R
n)‖, (1)
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for all 0 < λ ≤ 1 and all

f ∈ Bs
p,q(R

n) with supp f ⊂ {x ∈ R
n : |x| ≤ λ}. (2)

A corresponding property for the spaces F s
p,q(R

n) may be found in [9, Corol-
lary 5.16, p. 66]. It is of some use in connection with refined localization,
non-smooth atoms, scaling properties and pointwise multipliers. We refer to
[10, Section 4.2.2]. Here we prove this property for the spaces Bs

p,q(R
n), with

s > σp. For the particular case where σp < s < n/p this property can be
obtained via atomic decompositions. This was the starting point for the main
result presented in this note.

This note is organised as follows: firstly we give the necessary definitions; sec-
ondly we deal with equivalent quasi-norms for the elements of a certain sub-
spaces of Bs

p,q(R
n); finally we present the main result referred above.

2 Preliminaries

First we introduce some standard notation and useful definitions. As usual, N

denotes the set of all natural numbers, R
n, n ∈ N, stands for the n-dimensional

real Euclidean space and R = R
1. We use the symbol “.” in

ak . bk or φ(r) . ψ(r)

always to mean that there is a positive number c1 such that

ak ≤ c1bk or φ(r) ≤ c1ψ(r)

for all admitted values of the discrete variable k or the continuous variable
x, where (ak)k, (bk)k are non-negative sequences and φ, ψ are non-negative
functions. We use the equivalence “∼” in

ak ∼ bk or φ(r) ∼ ψ(r)

for

ak . bk and bk . ak or φ(r) . ψ(r) and ψ(r) . φ(r).

As usual S(Rn) denotes the Schwartz space of all complex-valued rapidly de-
creasing infinitely differentiable functions on R

n equipped with the usual topol-
ogy, and S ′(Rn) denotes its topological dual, the space of all tempered distri-
butions on R

n. Furthermore, Lp(R
n), with 0 < p ≤ ∞, stands for the usual

quasi-Banach space with respect to the Lebesgue measure, quasi-normed by

‖f |Lp(R
n)‖ :=

( ∫

Rn

|f(x)|pdx
) 1

p
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with the appropriate modification if p = ∞.
We use the standard abbreviations

p := max(1, p) and σp := n
(1

p
− 1

)

+
= n

( 1

min{1, p}
− 1

)
. (3)

As usually, “domain” stands for “open set”.
Next, we recall the definition of differences of functions. If f is an arbitrary
complex-valued function on R

n, h ∈ R
n and M ∈ N, then

(∆M
h f)(x) :=

M∑

j=0

(
M

j

)
(−1)M−jf(x+ jh), x ∈ R

n, (4)

where
(
M
j

)
are the binomial coefficients.

Definition 1. Let

0 < p, q ≤ ∞ and σp < s < M ∈ N. (5)

Then Bs
p,q(R

n) is the collection of all f ∈ Lp(R
n) such that

‖f |Bs
p,q(R

n)‖M := ‖f |Lp(R
n)‖ +

( ∫

Rn

|h|−sq‖∆M
h f |Lp(R

n)‖q dh

|h|n

)1/q

(6)

(with the usual modification if q = ∞) is finite.

Remark 2. The above spaces are quasi-Banach spaces. They have a substantial
history. The classical spaces, which means 1 ≤ p, q ≤ ∞, s > 0, go back to
S.M. Nikol’skij in the 1950s (q = ∞) and O.V. Besov around 1960. These
spaces have been considered afterwards in great detail especially by the Russian
school. This may be found in [5] and [1]. At least in this specification they
are also denoted as Nikol’skij-Besov spaces. The extension to s < 0 (what is
not of interest for our purpose) and to p < 1 (which is subject of the later
considerations) was first done by J. Peetre at the end of the 1960s and the early
1970s in terms of Fourier-analytical definitions. We refer to [6]. Systematic
studies of these spaces may be found in [7, 8]. The first chapters both of [8]
and [10] are surveys (entitled How to measure smoothness) where one finds the
history of these spaces. The spaces Bs

p,q(R
n) are nowadays often introduced in

terms of Fourier-analytical decompositions. If p, q, s are restricted by (5) then
these spaces coincide with the spaces as introduced in Definition 1. A proof
may be found in [7, Section 2.5.12, Theorem, Remark 3, Corollary, pp. 110-114]
covering also that

Bs
∞,∞(Rn) = Cs(Rn), s > 0,

are the usual Hölder-Zygmund spaces, characterized by

sup
x∈Rn

|f(x)| + sup
x∈Rn,0 6=h∈Rn

|h|−s|∆M
h f(x)| <∞

where again s < M ∈ N. The quasi-norms in (6) are equivalent to each other
for different values of M with 0 < s < M ∈ N. This justifies our omission of
the subscript M in the sequel.
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3 Equivalent quasi-metrics

We collect a few further notation.

Definition 3. Let Ω be a domain in R
n. Let s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞.

(i) Then Lp(Ω) is the collection of all complex-valued Lebesgue measurable
functions in Ω such that

‖f |Lp(Ω)‖ :=
( ∫

Ω

|f(x)|pdx
) 1

p

(with the usual modification if p = ∞) is finite.
(ii) Then Bs

p,q(Ω) is the collection of all f ∈ D′(Ω) such that there is a g ∈
Bs

p,q(R
n) with g|Ω = f . Furthermore,

‖f |Bs
p,q(Ω)‖ := inf ‖g|Bs

p,q(R
n)‖, (7)

where the infimum is taken over all g ∈ Bs
p,q(R

n) such that its restriction g|Ω
to Ω coincides in D′(Ω) with f .

(iii) Then B̃s
p,q(Ω) is the closed subspace of Bs

p,q(R
n) given by

B̃s
p,q(Ω) := {f ∈ Bs

p,q(R
n) : supp f ⊂ Ω}. (8)

Remark 4. These spaces are quasi-Banach spaces. Function spaces on domains
have also been studied in detail from the very beginning of the theory of function
spaces in 1950s and 1960s. We refer to the books in Remark 2 and to [7, Chapter
3],[8, Chapter 5] and [9, Section 5].

Proposition 5. Let Ω be a bounded domain in R
n and

0 < p ≤ ∞, 0 < q ≤ ∞, σp < s < M ∈ N. (9)

Then

‖f |Bs
p,q(R

n)‖ ∼

(∫

Rn

|h|−sq‖∆M
h f |Lp(R

n)‖q dh

|h|n

)1/q

, (10)

for all f ∈ B̃s
p,q(Ω) (equivalent quasi-norms), with the usual modification if

q = ∞.

Proof. We consider
BR = {x ∈ R

n : |x| < R} (11)

with Ω ⊂ BR. Let 0 < q < ∞. We recall that by Definition 1 we have (6) for
the full space Bs

p,q(R
n). If p < 1, as s > σp, we get by well-known embedding

theorems that Bs
p,q(R

n) ⊂ L1(R
n). Consequently, by (6), we obtain

‖f |L1(R
n)‖ +

(∫

Rn

|h|−sq‖∆M
h f |Lp(R

n)‖q dh

|h|n

)1/q

. ‖f |Bs
p,q(R

n)‖. (12)
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If f ∈ B̃s
p,q(Ω), then

‖f |Lp(R
n)‖ = ‖f |Lp(BR)‖ . ‖f |L1(BR)‖ = ‖f |L1(R

n)‖. (13)

Thus, using (6), we obtain, for p < 1,

‖f |Bs
p,q(R

n)‖ . ‖f |L1(R
n)‖ +

( ∫

Rn

|h|−sq‖∆M
h f |Lp(R

n)‖q dh

|h|n

)1/q

. (14)

Hence, for all f ∈ B̃s
p,q(Ω) and 0 < p ≤ ∞,

‖f |Bs
p,q(R

n)‖ ∼ ‖f |Lp(R
n)‖ +

(∫

Rn

|h|−sq‖∆M
h f |Lp(R

n)‖q dh

|h|n

)1/q

. (15)

It remains to prove that there is a positive number c such that

‖f |Lp(R
n)‖ ≤ c

(∫

Rn

|h|−sq‖∆M
h f |Lp(R

n)‖q dh

|h|n

)1/q

, (16)

for all f ∈ B̃s
p,q(Ω). Assuming that there is no such c, then for every j ∈ N one

finds a function fj ∈ B̃s
p,q(Ω) which can be normalised such that

1 = ‖fj |Lp(R
n)‖ > j

( ∫

Rn

|h|−sq‖∆M
h fj |Lp(R

n)‖q dh

|h|n

)1/q

. (17)

Hence

‖fj |BR
|Bs

p,q(BR)‖ ≤ ‖fj |B
s
p,q(R

n)‖

∼ ‖fj |Lp(R
n)‖ +

(∫

Rn

|h|−sq‖∆M
h fj |Lp(R

n)‖q dh

|h|n

)1/q

< 1 +
1

j
≤ 2. (18)

As {fj |BR
}j∈N is bounded in Bs

p,q(BR) and the embedding of Bs
p,q(BR) into

Lp(BR) is compact (cf. e.g. [10, Theorem 1.97, Proposition 4.6] and the refer-
ences given there), {fj |BR

}j∈N is precompact in Lp(BR). We may assume that,
for some f ∈ Lp(BR),

fj |BR
→ f in Lp(BR), (19)

and, consequently,
‖f |Lp(BR)‖ = 1. (20)

For j, j′ ∈ N, using (6), we get

‖fj − fj′ |Bs
p,q(R

n)‖

∼ ‖fj − fj′ |Lp(R
n)‖ +

(∫

Rn

|h|−sq‖∆M
h (fj − fj′) |Lp(R

n)‖q dh

|h|n

)1/q

.
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Using (19) and the fact that fj ∈ B̃s
p,q(Ω), we obtain

‖fj − fj′ |Lp(R
n)‖ = ‖fj |BR

− fj′ |BR
|Lp(BR)‖ → 0 as j, j′ → ∞. (21)

By (17) we get

(∫

Rn

|h|−sq‖∆M
h (fj − fj′) |Lp(R

n)‖q dh

|h|n

)1/q

.

( ∫

Rn

|h|−sq‖∆M
h fj |Lp(R

n)‖q dh

|h|n

)1/q

+

( ∫

Rn

|h|−sq‖∆M
h fj′ |Lp(R

n)‖q dh

|h|n

)1/q

<
1

j
‖fj |Lp(R

n)‖ +
1

j′
‖fj′ |Lp(R

n)‖

=
1

j
+

1

j′
→ 0 as j, j′ → ∞.

Hence {fj}j∈N converges in Bs
p,q(R

n) to, say, g. As all fj are elements of B̃s
p,q(Ω),

which is a closed subspace of Bs
p,q(R

n), we get g ∈ B̃s
p,q(Ω). As

‖fj − g|Bs
p,q(R

n)‖ → 0 as j → ∞, (22)

we get

‖fj |BR
− g|BR

|Lp(BR)‖ = ‖fj − g|Lp(R
n)‖ → 0 as j → ∞ (23)

and g = f according to (19). Thus,

‖g|BR
|Lp(BR)‖ = ‖fj |BR

|Lp(BR)‖ = 1. (24)

Now (assuming q <∞)

∫

Rn

|h|−sq‖∆M
h g |Lp(R

n)‖q dh

|h|n

.

∫

Rn

|h|−sq‖∆M
h (g − fj) |Lp(R

n)‖q dh

|h|n
+

∫

Rn

|h|−sq‖∆M
h fj |Lp(R

n)‖q dh

|h|n

. ‖g − fj |B
s
p,q(R

n)‖q +
1

jq
→ 0 as j → ∞.

Therefore ∫

Rn

|h|−sq‖∆M
h g |Lp(R

n)‖q dh

|h|n
= 0. (25)

If q = ∞ one has to modify the argument in the usual way. Let

C = {y ∈ R
n : g(y) 6= 0} ∩BR. (26)
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We wish to show that |C| = 0. We prove it by contradiction. We suppose that
|C| > 0. By (25), ‖∆M

h g |Lp(R
n)‖ = 0 for almost every h ∈ R

n. Let A denote
a subset of R

n with |A| = 0 such that ‖∆M
h g |Lp(R

n)‖ = 0, for all h ∈ Ac. We
fix h ∈ Ac such that |h| > 2R. As ‖∆M

h g |Lp(R
n)‖ = 0, there is Dh ⊂ R

n with
|Dh| = 0 such that (∆M

h g)(x) = 0, for all x ∈ Dc
h. As |C| > 0 and |Dh| = 0,

there are points x ∈ Dc
h ∩ C. Considering such an x, we get on the one hand

that
(∆M

h g)(x) = 0, (27)

because h ∈ Ac and x ∈ Dc
h. On the other hand, by (26) and using the

hypothesis that x ∈ C ⊂ BR and |h| > 2R, we obtain

(∆M
h g)(x) =

M∑

j=0

(
M

j

)
(−1)M−jg(x+ jh) = (−1)Mg(x) 6= 0, (28)

which contradicts (27). Hence |C| = 0, i.e., g|BR
= 0 almost everywhere. This

contradicts (24).

4 Homogeneity

Finally we present and prove the main result. Recall that Bλ = {x ∈ R
n : |x| <

λ}.

Theorem 6. Let

0 < p ≤ ∞, 0 < q ≤ ∞, s > σp. (29)

Then, for all 0 < λ ≤ 1 and f ∈ B̃s
p,q(Bλ),

‖f(λ·) |Bs
p,q(R

n)‖ ∼ λs−n
p ‖f |Bs

p,q(R
n)‖ (30)

where the equivalence constants are independent of λ and f .

Proof. Let us fix 0 < λ ≤ 1 and f ∈ B̃s
p,q(Bλ). We remark that f, f(λ·) ∈

B̃s
p,q(B1). By Proposition 5

‖f(λ·)|Bs
p,q(R

n)‖ ∼

(∫

Rn

|h|−sq‖∆M
h (f(λ·)) |Lp(R

n)‖q dh

|h|n

)1/q

(31)

uniformly in λ. One inserts

∆M
h (f(λ·))(x) = (∆M

λhf)(λx) (32)

in (31) and gets (q <∞)

‖f(λ·) |Bs
p,q(R

n)‖q ∼ λ−
nq

p

∫

Rn

|h|−sq‖∆M
λhf |Lp(R

n)‖q dh

|h|n

∼ λq(s−n
p
)

∫

Rn

|h|−sq‖∆M
h f |Lp(R

n)‖q dh

|h|n

∼ λq(s−n
p
)‖f |Bs

p,q(R
n)‖q. (33)
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If q = ∞ one has to modify in the usual way.

5 Relations to Hardy inequalities

Denoting the right-hand side of (10) by ‖f |bsp,q(R
n)‖ (which makes sense for all

0 < p ≤ ∞, 0 < q ≤ ∞, 0 < s < M ∈ N) it follows from (6) (omitting M on
the left-hand side) for λ > 0 that

‖f(λ·) |Bs
p,q(R

n)‖ = λ−
n
p ‖f |Lp(R

n)‖ + λs−n
p ‖f |bsp,q(R

n)‖.

Then the equivalence (30) can be reduced to the Hardy inequality

‖f |Lp(R
n)‖ ≤ cλs ‖f |Bs

p,q(R
n)‖, f ∈ B̃s

p,q(Bλ),

where c > 0 is independent of f and of 0 < λ < 1. Inequalities of this type
attracted a lot of attention over the years. An early paper related to the above
problems is [4]. More recent results (also for weighted counterparts) and refer-
ences may be found in [2, 3].
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