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Abstract
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1 Introduction

Classical Besov spaces play a signi�cant role in numerous parts of mathematics.
These spaces are particular cases of Besov spaces of generalized smoothness. The
latter spaces have been studied especially by the Soviet mathematical school
(cf. [21, Sect. 8]). A lot of attention has been paid to optimal embeddings
and to growth and continuity envelopes of such spaces (see, e.g., [15], [17], [22],
[6], [7], [14], [2], [20], [5], [18], [19], [24, Chapt. 1], [16], [3], [4], etc.). This
paper is a direct continuation of [4], where local embeddings of Besov spaces
B0,b
p,r = B0,b

p,r(Rn) into classical Lorentz spaces have been characterized. These
results have been applied to establish sharp local embedding of Besov spaces in
question into Lorentz-Karamata spaces and to determine growth envelopes of
spaces B0,b

p,r. Besov spaces B
0,b
p,r are de�ned by means of the modulus of continuity

and they involve the zero classical smoothness and a slowly varying smoothness
b.1) In particular, the following two theorems are proved there.

1) We refer to Section 2 for precise de�nitions.
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Theorem 1.1 ([4, Theorem 3.3]). Let 1 ≤ p <∞, 1 ≤ r ≤ ∞, 0 < q ≤ ∞ and

let b be a slowly varying function on the interval (0, 1) (notation b ∈ SV (0, 1))
satisfying

‖t−1/rb(t)‖r,(0,1) =∞. (1)

Put b(t) = 1 if t ∈ [1, 2) . De�ne, for all t ∈ (0, 1),

br(t) := ‖s−1/rb(s1/n)‖r,(t,2) (2)

and

b̃(t) :=
{
br(t)1−r/q+r/max{p,q}b(t1/n)r/q−r/max{p,q} if r 6=∞
b∞(t) if r =∞ . (3)

Then the inequality

‖t1/p−1/q b̃(t)f∗(t)‖q,(0,1) . ‖f‖B0,b
p,r

(4)

holds for all f ∈ B0,b
p,r if and only if q ≥ r.

Theorem 1.2 ([4, Theorem 3.4(i)]). Let 1 ≤ p < ∞, 1 ≤ r ≤ q ≤ ∞ and let

b ∈ SV (0, 1) satisfy (1). Put b(t) = 1 if t ∈ [1, 2) , de�ne br and b̃ by (2) and
(3). Let κ be a non-negative and non-increasing function on (0, 1). Then the

inequality

‖t1/p−1/q b̃(t)κ(t)f∗(t)‖q,(0,1) . ‖f‖B0,b
p,r

(5)

holds for all f ∈ B0,b
p,r if and only if κ is bounded.

In the whole paper we assume that any slowly varying function on (0, 1) is
extended by 1 to the interval (0,∞).

Theorems 1.1 and 1.2 describe the optimal continuous embeddings of the
Besov space B0,b

p,r(Rn) into the Lorentz-Karamata space Lp,q;b̃(Ω), where Ω is
a domain in Rn of �nite Lebesgue measure. Namely, these theorems imply that

B0,b
p,r(Rn) ↪→ Lp,q;b̃(Ω) 2) (6)

and that this embedding is optimal within the scale of Lorentz-Karamata spaces.
The aim of this paper is to characterize compact embeddings of the Besov

space B0,b
p,r(Rn) into Lorentz-Karamata spaces. Our main result reads as follows.

Theorem 1.3. Let 1 ≤ p < ∞, 1 ≤ r ≤ q ≤ ∞ and let b ∈ SV (0, 1)
satisfy (1). De�ne functions br and b̃ by (2) and (3). Let Ω be a bounded

domain in Rn and let 0 < P ≤ p. Assume that b̄ ∈ SV (0, 1) and, if P = p > q,
that b̄/b̃ is a non-negative and non-decreasing function on the interval (0, δ) for

some δ ∈ (0, 1). Then

B0,b
p,r(Rn) ↪→↪→ LP,q;b(Ω) 3) (7)

2) This means that the mapping u 7→ u|Ω from B0,b
p,r(Rn) into Lp,q;b̃(Ω) is continuous.

3) This means that the mapping u 7→ u|Ω from B0,b
p,r(Rn) into LP,q;b(Ω) is compact.
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if and only if

lim
t→0+

t1/P b̄(t)
t1/pb̃(t)

= 0. (8)

In fact, Theorem 1.3 is a corollary of more general Theorems 3.3, 4.4 and
Remark 3.4 mentioned below. The su�ciency part of Theorem 1.3 follows from
Theorem 3.3 and Remark 3.4, while the necessity part from Theorem 4.4 and
Remark 3.4.

In particular, Theorem 1.3 shows that the optimal embedding (6) is not com-
pact. Such assertions about optimal embeddings of Sobolev-type spaces into
Banach function spaces are known. It seems that the same is true for optimal
embeddings of Besov-type spaces but it is almost impossible to �nd correspond-
ing references to a proof of this property in the existing literature. This is even
the case of optimal embeddings of classical Besov spaces into Lebesgue spaces
Lq with q ∈ [1,∞). (For example, in such a case the result can be proved by
a contradiction using [24, Proposition 4.6, p. 197], combined with the relation-
ship between Besov and Triebel-Lizorkin spaces [23, (22), p. 96] and the fact
that F 0

q2 = Lq if 1 < q <∞ [23, Remark 2, p. 25]). Note also that target spaces
of our embeddings need not be Banach function spaces.

The paper is organized as follows. Section 2 contains notation and prelimi-
naries. In Section 3 we prove the su�ciency part of Theorem 1.3, while Section 4
is devoted to a proof of the necessity part of this theorem.

2 Notation and Preliminaries

Whenever convenient, we use the abbreviation LHS(∗) (RHS(∗)) for the left-
(right-) hand side of the relation (∗).

For two non-negative expressions A and B, the symbol A . B (or A & B)
means that A ≤ cB (or cA ≥ B ), where c is a positive constant independent
of appropriate quantities involved in A and B. If A . B and A & B, we write
A ≈ B and say that A and B are equivalent.

Given a set A, its characteristic function is denoted by χA. If a ∈ Rn and
r ≥ 0, the symbol B(a, r) stands for the closed ball in Rn centred at a with the
radius r. The volume of B(0, 1) in Rn is denoted by Vn though, in general, we
use the notation | · |n for Lebesgue measure in Rn.

Let Ω be a measurable subset of Rn. The symbol M(Ω) is used to denote
the family of all complex-valued or extended real-valued (Lebesgue-)measurable
functions de�ned a.e. on Ω. ByM+(Ω) we mean the subset ofM(Ω) consisting
of those functions which are non-negative a.e. on Ω. If Ω = (a, b), we write
simply M(a, b) and M+(a, b) instead of M(Ω) and M+(Ω), respectively. By
M+(a, b; ↓) or M+(a, b; ↑) we mean the collection of all f ∈ M+(a, b) which
are non-increasing or non-decreasing on (a, b), respectively. Finally, by W(Ω)
(or by W(a, b)) we denote the class of weight functions on Ω (resp. on (a, b)),
consisting of all measurable functions which are positive a.e. on Ω (resp. on
(a, b)). A subscript 0 is added to the previous notation (as in M0(Ω), for
example) if one restricts to functions in the considered class which are �nite a.e.
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Given two quasi-Banach spaces X and Y , we write X = Y (and say that X
and Y coincide) if X and Y are equal in the algebraic and the topological sense
(their quasi-norms are equivalent). The symbol X ↪→ Y or X ↪→↪→ Y means
that X ⊂ Y and the natural embedding of X in Y is continuous or compact,
respectively.

Let either a = 1 or a = ∞. A function b ∈ M+
0 (0, a), b 6≡ 0, is said to

be slowly varying on (0, a), notation b ∈ SV (0, a), if, for each ε > 0, there are
functions gε ∈M+

0 (0, a; ↑) and g−ε ∈M+
0 (0, a; ↓) such that

tεb(t) ≈ gε(t) and t−εb(t) ≈ g−ε(t) for all t ∈ (0, a).

Let p, q ∈ (0,∞], let Ω be a domain in Rn and let w ∈ W(0, |Ω|n) be such
that

Wp,q;w(t) := ‖τ1/p−1/q w(τ)‖q;(0,t) <∞ for all t ∈ (0, |Ω|n], (9)

where ‖·‖q;E is the usual Lq-(quasi-)norm on the measurable set E. The Lorentz-
type space Lp,q;w(Ω) consists of all (classes of) functions f ∈ M(Ω) for which
the quantity

‖f‖p,q;w;Ω := ‖t1/p−1/q w(t) f∗(t)‖q;(0,|Ω|n) (10)

is �nite; here f∗ denotes the non-increasing rearrangement of f given by

f∗(t) = inf{λ > 0 : |{x ∈ Ω : |f(x)| > λ}|n ≤ t}, t ≥ 0. (11)

We shall also need the maximal function f∗∗ of f∗ de�ned by

f∗∗(t) =
1
t

ˆ t

0

f∗(s) ds, t > 0.

It is known (see, e.g., [9, Cor. 2] for the case q ∈ (0,∞)) that the func-
tional (10) is a quasi-norm on Lp,q;w(Ω) if and only if the functionWp,q;w given
by (9) satis�es

Wp,q;w ∈ ∆2, (12)

that is, Wp,q;w(2t) .Wp,q;w(t) for all t ∈ (0, |Ω|n/2). One can easily verify that
this is satis�ed provided that

w(2t) . w(t) for a.e. t ∈ (0, |Ω|n/2).

Moreover, since the relation w ∈ W(0, |Ω|n) yields Wp,q;w(t) > 0 for all t ∈
(0, |Ω|n), one can prove that the space Lp,q;w(Ω) is complete (cf. the proof of
[8, Prop. 2.2.9]).

If q ∈ [1,∞), the spaces Lp,q;w(Ω) coincide with the classical Lorentz spaces
Λq(ω). On the other hand, if w is a slowly varying function, then Lp,q;w(Ω) is
the so-called Lorentz-Karamata space introduced in [13]. The scale of Lorentz-
Karamata spaces involves as particular cases a lot of well-known spaces (cf.,
e.g., [13], [11]).

If Ω = Rn, we sometimes omit this symbol in the notation and, for example,
simply write ‖·‖p,q;w or Lp,q;w instead of ‖·‖p,q;w;Rn or Lp,q;w(Rn), respectively.
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De�nition 2.1. A subsetK of a Lorentz-type space Y = Y (Ω), with |Ω|n <∞,
is said to have uniformly absolutely continuous quasi-norm in the space Y ,
written K ⊂ UAC(Y ), if

∀ε > 0, ∃δ > 0 : f ∈ K, |E|n < δ ⇒ ‖fχE‖Y < ε.

Lemma 2.2. ([12, Lemma 2.2]) Let K ⊂ UAC(Y ), where Y = Lp,q;w(Ω) is

a Lorentz-type space such that Wp,q;w ∈ ∆2 and ‖χΩ‖Y ≡ Wp,q;w(|Ω|n) < ∞.

Then every sequence {ui} ⊂ K which converges in measure on Ω converges also

in the space Y .

Given f ∈ Lp, 1 ≤ p < ∞, the �rst di�erence operator ∆h of step h ∈ Rn
transforms f in ∆hf de�ned by

(∆hf)(x) := f(x+ h)− f(x), x ∈ Rn,

whereas the modulus of continuity of f is given by

ω1(f, t)p := sup
h∈Rn
|h|≤t

‖∆hf‖p, t > 0.

De�nition 2.3. Let 1 ≤ p < ∞, 1 ≤ r ≤ ∞ and let b ∈ SV (0, 1) satisfy (1).
The Besov space B0,b

p,r = B0,b
p,r(Rn) consists of those functions f ∈ Lp for which

the norm
‖f‖B0,b

p,r
:= ‖f‖p + ‖t−1/rb(t)ω1(f, t)p‖r,(0,1) (13)

is �nite.

3 Proof of the su�ciency part of Theorem 1.3

We shall start with some auxiliary statements. Our �rst assertion is an analogue
of the well-known result which states that the classical Besov space Bsp,r(Rn)
is compactly embedded into the Lebesgue space Lp(Ω) when Ω is a bounded
domain in Rn, 1 ≤ p < ∞, 1 ≤ r ≤ ∞ and s > 0. While such a statement can
be easily proved from the corresponding one for Sobolev spaces by interpolation
of compactness, such an argument does not work in the limiting case when the
classical Besov space is replaced by the Besov space B0,b

p,r(Rn) involving only
slowly varying smoothness. Nevertheless, the result continues to hold.

Lemma 3.1. Let 1 ≤ p <∞, 1 ≤ r ≤ ∞ and let b ∈ SV (0, 1) satisfy (1). If Ω
is a bounded domain in Rn, then

B0,b
p,r(Rn) ↪→↪→ Lp(Ω).

Proof. Put X := B0,b
p,r(Rn) and B(R) := {x ∈ Rn : |x| < R} for R ∈ (0,∞).

Since Ω is bounded, there is R0 ∈ (0,∞) such that Ω ⊂ B(R0). Take a Lipschitz
continuous function ϕ in Rn satisfying

0 ≤ ϕ ≤ 1, ϕ = 1 on Ω and ϕ = 0 on Rn \B(R0 + 1). (14)
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As
‖u‖p,Ω ≤ ‖ϕu‖p,Rn ,

it is su�cient to prove that the set

K := {ϕu : ‖u‖X ≤ 1}

is precompact in Lp(Rn).
By [10, Thm. IV.8.21], it is enough to verify that:
(i) K is bounded in Lp(Rn);
(ii) given ε > 0, there exists δ > 0 such that

‖∆h(ϕu)‖p,Rn < ε

for every u ∈ X, ‖u‖X ≤ 1, and all h ∈ Rn with |h| < δ;
(iii) given ε > 0, there exists R1 ∈ (0,∞) such that

‖ϕu‖p,Rn\B(R) < ε

for every u ∈ X, ‖u‖X ≤ 1, and all R ∈ (R1,∞).
Condition (i) is satis�ed, since

‖ϕu‖p,Rn . ‖u‖p,Rn ≤ ‖u‖X for all u ∈ X.

Condition (iii) holds as well. Indeed, taking R1 := R0 + 1 and using (14),
we obtain for all u ∈ X and R ∈ (R1,∞) that

‖ϕu‖p,Rn\B(R) ≤ ‖ϕu‖p,Rn\B(R0+1) = 0

and condition (iii) follows.
To verify condition (ii), �rst note that, for all u ∈ X and x, h ∈ Rn,

|∆h(ϕu)(x)| ≤ ‖ϕ‖∞,Rn |∆hu(x)|+ ‖∆hϕ‖∞,Rn |u(x)|
. |∆hu(x)|+ |h| |u(x)|,

which implies that

‖∆h(ϕu)‖p,Rn . ‖∆hu‖p,Rn + |h| ‖u‖p,Rn . (15)

Second, if u ∈ X and ‖u‖X ≤ 1, then, for any T ∈ (0, 1),

1 ≥ ‖u‖X ≥ ‖t−1/rb(t)ω1(u, t)p‖r,(T,1) ≥ ω1(u, T )p‖t−1/rb(t)‖r,(T,1).

Hence, for any T ∈ (0, 1) and all u ∈ X with ‖u‖X ≤ 1,

ω1(u, T )p ≤ ‖t−1/rb(t)‖−1
r,(T,1).

Together with (1), this shows that given ε1 > 0 there is δ1 > 0 such that

‖∆hu‖p,Rn < ε1 (16)

for all h ∈ Rn, |h| < δ1, and every u ∈ X with ‖u‖X ≤ 1. Now, making use of
(15) and (16), we can easily verify condition (ii).
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Lemma 3.2. Let 0 < q ≤ ∞, I = (α, β) ⊂ R, w, v ∈M+(I) and let C ∈ (0,∞).
Then

‖fw‖q,I ≤ C ‖fv‖q,I for all f ∈M+(I; ↓) (17)

if and only if

‖w‖q,(α,t) ≤ C ‖v‖q,(α,t) for all t ∈ I. (18)

Proof. To prove the necessity part, test inequality (17) with f := χ(α,t), where
t ∈ I.

To prove the su�ciency part, we distinguish two cases:
(i) Let 0 < q < ∞. Then the proof is analogous to that of [1, Chapt. 2,

Prop. 3.6]. Start with

fq =
k∑
j=1

cjχ(α,tj),

where the coe�cients cj are positive and α < t1 < . . . < tk < β, and verify
the result. Then apply the monotone convergence theorem to prove the general
case.

(ii) Let q = ∞. Put W (t) := ‖w‖∞,(α,t), t ∈ I. Since f ∈ M+(I; ↓),
exchanging the essential suprema, we obtain that

‖fW‖∞,I = ‖fw‖∞,I . (19)

Moreover, by (18),

f(t)W (t) ≤ Cf(t)‖v‖∞,(α,t) ≤ C‖fv‖∞,(α,t) ≤ C‖fv‖∞,I

for a.e. t ∈ I. Consequently,

‖fW‖∞,I ≤ C ‖fv‖∞,I for all f ∈M+(I; ↓).

Together with (19), this yields the result.

Theorem 3.3. Let 1 ≤ p < ∞, 1 ≤ r ≤ q ≤ ∞ and let b ∈ SV (0, 1)
satisfy (1). De�ne br and b̃ by (2) and (3). Let Ω be a bounded domain in Rn,
0 < P ≤ p and let w ∈ W(0, |Ω|n) be such that the function

WP,q,w(t) := ‖τ1/P−1/qw(τ)‖q,(0,t), t ∈ (0, |Ω|n],

satisfy

WP,q,w ∈ ∆2 and WP,q,w(|Ω|n) <∞.

If

lim
t→0+

WP,q,w(t)
Wp,q,b̃(t)

= lim
t→0+

‖τ1/P−1/qw(τ)‖q,(0,t)
‖τ1/p−1/q b̃(τ)‖q,(0,t)

= 0, (20)

then

B0,b
p,r(Rn) ↪→↪→ LP,q,w(Ω).
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Proof. By Theorem 1.2,

B0,b
p,r(Rn) ↪→ Lp,q,b̃(Ω). (21)

Put
K := {u ∈ B0,b

p,r(Rn) : ‖u‖B0,b
p,r(Rn) ≤ 1}.

If {u′i}i∈N ⊂ K, then Lemma 3.1 implies that there is a subsequence {ui}i∈N ⊂
{u′i}i∈N such that ui → u in Lp(Ω). Thus, by [1, Chapt. 1, Thm. 1.4], ui

meas−→ u
on Ω. In view of Lemma 2.2, it is su�cient to show that

K ⊂ UAC (LP,q,w(Ω)). (22)

Let ε > 0. By (20), there is δ ∈ (0, |Ω|n) such that

‖τ1/P−1/qw(τ)‖q,(0,t) ≤ ε‖τ1/p−1/q b̃(τ)‖q,(0,t) for all t ∈ (0, δ]. (23)

Assume that u ∈ K and M ⊂ Ω with |M |n < δ. Since (uχM )∗ ≤ u∗χ[0,δ), we
obtain

‖uχM‖P,q,w;Ω ≤ ‖t1/P−1/qw(t)u∗(t)‖q,(0,δ). (24)

Moreover, using (23) and Lemma 3.2, we arrive at

‖t1/P−1/qw(t)u∗(t)‖q,(0,δ) ≤ ε‖t1/p−1/q b̃(t)u∗(t)‖q,(0,δ) (25)

for all u ∈ Lp,q,b̃(Ω). Estimates (24), (25) and embedding (21) imply that

‖uχM‖P,q,w;Ω . ε‖u‖B0,b
p,r(Rn) ≤ ε for all u ∈ K

and (22) follows.

Remark 3.4. (i) Let P = p ∈ (0,∞) and w = b̄ ∈ SV (0, |Ω|n). Then

WP,q,w(t)
Wp,q,b̃(t)

≈ t1/P b̄(t)
t1/pb̃(t)

=
b̄(t)
b̃(t)

for all t ∈ (0, |Ω|n)

and (20) is equivalent to

lim
t→0+

b̄(t)
b̃(t)

= 0. (26)

(ii) Let 0 < P < p <∞ and w = b̄ ∈ SV (0, |Ω|n). Then

WP,q,w(t)
Wp,q,b̃(t)

≈ t1/P b̄(t)
t1/pb̃(t)

for all t ∈ (0, |Ω|n)

and condition (20) holds since

lim
t→0+

WP,q,w(t)
Wp,q,b̃(t)

= lim
t→0+

t1/P b̄(t)
t1/pb̃(t)

= 0.

Proof of the su�ciency part of Theorem 1.3.

The su�ciency part of Theorem 1.3 follows from Theorem 3.3 and Re-
mark 3.4. �
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4 Proof of the necessity part of Theorem 1.3

We shall start with some auxiliary results.

Lemma 4.1. ([3, Proposition 3.5]) (i) Let f ∈ L1(Rn) and let F (x) := f∗(Vn|x|n),
x ∈ Rn. Then

ω1(F, t)1 . n

ˆ tn

0

f∗(s) ds+ (n− 1) t
ˆ ∞
tn

f∗(s)s−1/n ds

= t
(ˆ ∞

tn
s−1/n

ˆ s

0

(f∗(u)− f∗(s)) du ds
s

)
for all t > 0 and f ∈ L1(Rn).

(ii) Let 1 < p <∞, f ∈ Lp(Rn) and let F (x) = f∗∗(Vn|x|n), x ∈ Rn. Then

ω1(F, t)p . t
(ˆ ∞

tn
s−p/n

ˆ s

0

(f∗(u)− f∗(s))p du ds
s

)1/p

for all t > 0 and f ∈ Lp(Rn).

Making use of Lemma 4.1, one can prove the next statement.

Lemma 4.2. Let 1 ≤ p < ∞, 1 ≤ r ≤ ∞ and let b ∈ SV (0, 1) satisfy (1). If

f ∈ Lp(0, 1) and the function F is de�ned on Rn by

F (x) = f∗(Vn|x|n) when p = 1 and F (x) = f∗∗(Vn|x|n) when 1 < p <∞,

then

‖F‖B0,b
p,r
.
∥∥∥t1−1/rb(t)

( ˆ 2

tn
s−p/n

ˆ s

0

(f∗(u)− f∗(s))p du ds
s

)1/p∥∥∥
r,(0,1)

.

Proof. Let f ∈ Lp(0, 1). Then f∗(t) = 0 for t ≥ 1. Therefore, when s ∈ (1,∞),´ s
0

(f∗(u)− f∗(s))p du =
´ s

0
f∗(u)p du =

´ 1

0
f∗(u)p du. Hence,

‖f‖p=
(ˆ 1

0

f∗(u)p du
)1/p

≈
(ˆ 2

1

s−p/n−1 ds

ˆ 1

0

f∗(u)p du
)1/p

≈ ‖t1−1/rb(t)‖r,(0,1)

( ˆ 2

1

s−p/n−1

ˆ s

0

(f∗(u)− f∗(s))p du ds
)1/p

≤
∥∥∥t1−1/rb(t)

( ˆ 2

tn
s−p/n−1

ˆ s

0

(f∗(u)− f∗(s))p du ds
)1/p∥∥∥

r,(0,1)
. (27)
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Moreover, using (27), we obtain∥∥∥t1−1/rb(t)
(ˆ ∞

tn
s−p/n

ˆ s

0

(f∗(u)− f∗(s))p du ds
s

)1/p∥∥∥
r,(0,1)

≤
∥∥∥t1−1/rb(t)

(ˆ 1

tn
s−p/n

ˆ s

0

(f∗(u)− f∗(s))p du ds
s

)1/p∥∥∥
r,(0,1)

+
∥∥∥t1−1/rb(t)

(ˆ ∞
1

s−p/n
ˆ 1

0

f∗(u)p du
ds

s

)1/p∥∥∥
r,(0,1)

.
∥∥∥t1−1/rb(t)

( ˆ 2

tn
s−p/n

ˆ s

0

(f∗(u)− f∗(s))p du ds
s

)1/p∥∥∥
r,(0,1)

. (28)

Now, since ‖F‖p . ‖f‖p, the desired result follows from (13), Lemma 4.1,
[1, Chapt. 2, Corollary 7.8] and estimates (27) and (28).

We shall also need the following assertion.

Lemma 4.3. Let 1 ≤ p <∞, 1 ≤ r ≤ ∞, and let b ∈ SV (0, 1). Then∥∥∥t1−1/rb(t)
(ˆ 2

tn
s−p/n

ˆ s

0

(f∗(u)− f∗(s))p du ds
s

)1/p∥∥∥
r,(0,1)

≈ ‖f‖p +
∥∥∥t−1/rb(t1/n)

(ˆ t

0

(f∗(u)− f∗(t))p du
)1/p∥∥∥

r,(0,1)

≈
∥∥∥t−1/rb(t1/n)

( ˆ t

0

f∗(u)p du
)1/p∥∥∥

r,(0,2)

for all f ∈ Lp(0, 1).

Proof. Lemma is a consequence of [4, Lemmas 4.4 and 4.6] and [1, Chapt. 2,
Corollary 7.8].

Theorem 4.4. Let 1 ≤ p < ∞, 1 ≤ r ≤ q ≤ ∞ and let b ∈ SV (0, 1)
satisfy (1). De�ne br and b̃ by (2) and (3). Let Ω be a bounded domain in Rn,
0 < P ≤ p and let w ∈ W(0, |Ω|n) be such that the function

WP,q,w(t) := ‖τ1/P−1/qw(τ)‖q,(0,t), t ∈ (0, |Ω|n],

satisfy

WP,q,w ∈ ∆2 and WP,q,w(|Ω|n) <∞.
If

B0,b
p,r(Rn) ↪→↪→ LP,q,w(Ω), (29)

then (20) holds provided that one of the following conditions is satis�ed:

(A) p ≤ q;
(B) q < p, P < p,

there exists b̄ ∈ SV (0, δ), with δ ∈ (0, |Ω|n), such that w = b̄ on (0, δ);
(C) q < p, P = p,

there exists b̄ ∈ SV (0, δ), with δ ∈ (0, |Ω|n), such that w = b̄ on (0, δ) and

b̄/b̃ ∈M+
0 (0, δ; ↑).
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Proof. Without loss of generality, we can suppose that |Ω|n = 1.
Assume that (29) holds but (20) does not and seek for a contradiction. It is

enough to �nd a sequence {Fk}k∈N ⊂ B0,b
p,r(Rn) with

sup
k∈N
‖Fk‖B0,b

p,r(Rn) . 1 (30)

such that {Fk}k∈N has no convergent subsequence in LP,q,w(Ω).
To this end, it is su�cient to construct a sequence {Fk}k∈N ⊂ B0,b

p,r(Rn)
satisfying (30) and

‖Fk‖P,q,w,Ω & 1 for all su�ciently large k ∈ N, (31)

Fk
meas−→ 0 on Ω. (32)

Indeed, suppose that F ∈ LP,q,w(Ω) is a limit of some convergent subse-
quence {Fσ(k)}k∈N in the space LP,q,w(Ω), that is,

‖Fσ(k)(x)− F (x)‖P,q;w;Ω → 0 as k →∞. (33)

Then, by (9) and (10),

WP,q;w(|{x ∈ Ω : |Fσ(k)(x)− F (x)| > α}|n)

= ‖τ1/P−1/q w(τ)‖q; (0, |{x∈Ω: |Fσ(k)(x)−F (x)|>α}|n)

= ‖τ1/P−1/q w(τ)χ∗{x∈Ω: |Fσ(k)(x)−F (x)|>α}(τ)‖q;(0, |Ω|n)

= ‖χ{x∈Ω: |Fσ(k)(x)−F (x)|>α}‖P,q;w;Ω

≤ α−1‖Fσ(k)(x)− F (x)‖P,q;w;Ω. (34)

Since the function WP,q,w satis�es WP,q,w(t) > 0 if t ∈ (0, |Ω|n], (34) and (33)

imply that Fσ(k)
meas−→ F on Ω (otherwise (34) and (33) lead to a contradiction).

Together with (32), this means that F = 0 a.e. on Ω, which contradicts (31).
So, to prove our theorem, we will construct a sequence {Fk}k∈N ⊂ B0,b

p,r(Rn)
satisfying (30), (31) and (32).

As (20) does not hold, there exists a sequence (tk)k∈N ⊂ (0, 1), tk+1 < tk,
k ∈ N, limk→∞ tk = 0, satisfying

WP,q,w(tk) &Wp,q,b̃(tk) for all k ∈ N. (35)

Let (fk)k∈N ⊂ Lp(0, 1). If p = 1, put Fk := f∗k (Vn|x|n), x ∈ Rn, and, if
1 < p <∞, put Fk := f∗∗k (Vn|x|n), x ∈ Rn. Then, by Lemmas 4.2 and 4.3,

‖Fk‖B0,b
p,r(Rn) .

∥∥∥t−1/rb(t1/n)
(ˆ t

0

f∗k (u)p du
)1/p ∥∥∥

r,(0,2)

.
∥∥∥t−1/rb(t1/n)

(ˆ t

0

f∗k (u)p du
)1/p ∥∥∥

r,(0,tk)

+
∥∥∥t−1/rb(t1/n)

(ˆ t

0

f∗k (u)p du
)1/p ∥∥∥

r,(tk,2)

=: N1 +N2. (36)
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(i) Let p ≤ q. Put fk(t) := t
−1/p
k br(tk)−1χ(0,tk](t), t ∈ (0, 1). Then

N1 = t
−1/p
k br(tk)−1

∥∥∥t−1/rb(t1/n)
(ˆ t

0

(χ(0,tk](u))p du
)1/p ∥∥∥

r,(0,tk)

= t
−1/p
k br(tk)−1‖t1/p−1/rb(t1/n)‖r,(0,tk)

≈ br(tk)−1b(t1/nk ) . 1 for all k ∈ N. (37)

(The last estimate in (37) follows from properties of slowly varying functions -
cf. [4, Lemma 2.2, part 7].) Moreover, for all k ∈ N,

N2 = t
−1/p
k br(tk)−1

(ˆ tk

0

du

)1/p

‖t−1/rb(t1/n)‖r,(tk,2) = 1. (38)

Thus, by (36)-(38), condition (30) is satis�ed.
On the other hand, for all k ∈ N,

‖Fk‖P,q,w,Ω = ‖t1/P−1/qw(t)F ∗k (t)‖q,(0,1)

≥ ‖t1/P−1/qw(t)fk(t)‖q,(0,tk)

= fk(tk)‖t1/P−1/qw(t)‖q,(0,tk)

= t
−1/p
k br(tk)−1WP,q,w(tk). (39)

Using estimate (35), the facts that b̃ = br if p ≤ q and Wp,q,b̃(tk) ≈ t
1/p
k br(tk)

for all k ∈ N, we obtain from (39) that (31) holds.
Given any α > 0,

|{x ∈ Ω : |Fk(x)| > α}|n = |{t ∈ (0, 1) : F ∗k (t) > α}|1
= |{t ∈ (0, tk) : t−1/p

k br(tk)−1 > α}|1
+χ(1,∞)(p) |{t ∈ (tk, 1) : t−1t

1−1/p
k br(tk)−1 > α}|1

≤ tk + χ(1,∞)(p)α−1t
1−1/p
k br(tk)−1.

Thus, on using properties of slowly varying functions, we see that (32) is satis-
�ed.

(ii) Let (B) hold. Together with the assumption r ≤ q, this shows that
r < ∞. Take γ > 0 and put fk(t) := br(tk)γϕ(t)χ(0,tk), t ∈ (0, 1), where
ϕ ∈M+

0 (0, 1; ↓) and ϕ(t) ≈ t−1/pbr(t)−γ−1−r/pb(t1/n)r/p for all t ∈ (0, 1).
It is easy to verify that, given β > 0, then

Iβ(t) :=
ˆ t

0

u−1br(u)−β−rb(u1/n)r du ≈ br(t)−β for all t ∈ (0, 1). (40)
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Using this estimate, we obtain

N1 =
∥∥∥t−1/rb(t1/n)

(ˆ t

0

f∗k (u)p du
)1/p ∥∥∥

r,(0,tk)

≈ br(tk)γ
∥∥∥t−1/rb(t1/n)

(ˆ t

0

ϕ(u)p du
)1/p ∥∥∥

r,(0,tk)

= br(tk)γ‖t−1/rb(t1/n)(I(γ+1)p(t))1/p‖r,(0,tk)

≈ br(tk)γ‖t−1/rb(t1/n)br(t)−(γ+1)‖r,(0,tk)

= br(tk)γ(Iγr(tk))1/r

≈ br(tk)γbr(tk)−γ

= 1 for all k ∈ N. (41)

Moreover,

N2 =
∥∥∥t−1/rb(t1/n)

(ˆ t

0

f∗k (u)p du
)1/p ∥∥∥

r,(tk,2)

=
(ˆ tk

0

f∗k (u)p du
)1/p

br(tk), k ∈ N. (42)

Since (ˆ tk

0

f∗k (u)p du
)1/p

≈ br(tk)γ
(ˆ tk

0

ϕ(u)p du
)1/p

= br(tk)γ(I(γ+1)p(tk))1/p

≈ br(tk)γbr(tk)−(γ+1)

= br(tk)−1 for all k ∈ N,

(42) implies that
N2 ≈ 1 for all k ∈ N. (43)

By (36), (41) and (43), condition (30) is satis�ed.
Assumption (1) implies that given any k ∈ N, there exists sk ∈ {tk+j : j ∈

N} such that
br(tk)
br(sk)

≤ 2−1/(γq). (44)

Let k0 ∈ N be such that tk0 ≤ δ, K0 := {k ∈ N : k ≥ k0} (recall that δ is
the number from condition (B)). Putting

Mk := inf
t∈(sk,tk)

t1/P−1/p b̄(t)
b̃(t)

, k ∈ K0,

and using the fact that the function

t 7−→ t1/P−1/p b̄(t)
b̃(t)

, t ∈ (0, δ), (45)
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is equivalent to a non-decreasing function on (0, δ), we obtain

Mk & s
1/P−1/p
k

b̄(sk)
b̃(sk)

≈
WP,q,b̄(sk)
Wp,q,b̃(sk)

for all k ∈ K0. (46)

Now, making use of the de�nition of Fk and condition (B), we obtain, for all
k ∈ K0,

‖Fk‖P,q,w,Ω = ‖t1/P−1/qw(t)F ∗k (t)‖q,(0,1)

& br(tk)γ‖t1/P−1/qw(t)ϕ(t)‖q,(0,tk)

≥ br(tk)γ‖t1/P−1/qw(t)ϕ(t)‖q,(sk,tk)

≥ br(tk)γ‖t1/p−1/q b̃(t)ϕ(t)‖q,(sk,tk) ·Mk. (47)

As r ≤ q < p, b̃(t) = br(t)1−r/q+r/pb(t1/n)r/q−r/p for all t ∈ (0, 1). Using also
the de�nition of ϕ, we arrive at

‖t1/p−1/q b̃(t)ϕ(t)‖q,(sk,tk) = ‖t−1/qbr(t)−γ−r/qb(t1/n)r/q‖q,(sk,tk), k ∈ N. (48)

By a change of variables and (44),

RHS(48) =
{
r

γq
br(tk)−γq

[
1−

(
br(tk)
br(sk)

)γq]}1/q

≥ r

γq
br(tk)−γ

(
1
2

)1/q

≈ br(tk)−γ for all k ∈ N.

Thus,
‖t1/p−1/q b̃(t)ϕ(t)‖q,(sk,tk) & br(tk)−γ for all k ∈ K0.

Together with (47), (46) and (35) (and the hypothesis (B)), this implies that

‖Fk‖P,q,w,Ω & 1 for all k ∈ K0,

which means that (31) holds.
Let α > 0. Applying Hölder's inequality and (40), we get (with a convenient

positive constant c) that, for all k ∈ N,

|{x ∈ Ω : |Fk(x)| > α}|n = |{t ∈ (0, 1) : F ∗k (t) > α}|1
≤ tk + χ(1,∞)(p) |{t ∈ (tk, 1) : ct−1t

1−1/p
k br(tk)−1 > α}|1

≤ tk + χ(1,∞)(p) cα−1t
1−1/p
k br(tk)−1.

Thus, on using properties of slowly varying functions, we see that (32) holds.
(iii) Let (C) hold. The proof is the same as that of part (ii). Note that now

the function (45) is non-decreasing on (0, δ) by our assumption in (C).

Proof of the necessity part of Theorem 1.3.

The necessity part of Theorem 1.3 follows from Theorem 4.4 and Remark 3.4.
�
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